
WebRanz: Web Page Randomization For Better
Advertisement Delivery and Web-Bot Prevention

Weihang Wang1, Yunhui Zheng2, Xinyu Xing3, Yonghwi Kwon1, Xiangyu Zhang1, Patrick Eugster1
1Purdue University, USA 2IBM T.J. Watson Research Center, USA 3The Pennsylvania State University, USA

{wang1315, kwon58, xyzhang, p}@cs.purdue.edu zhengyu@us.ibm.com uxx16@psu.edu

ABSTRACT
Nowadays, a rapidly increasing number of web users are us-
ing Ad-blockers to block online advertisements. Ad-blockers
are browser-based software that can block most Ads on the
websites, speeding up web browsers and saving bandwidth.
Despite these benefits to end users, Ad-blockers could be
catastrophic for the economic structure underlying the web,
especially considering the rise of Ad blocking as well as the
number of technologies and services that rely exclusively on
Ads to compensate their cost.

In this paper, we introduce WebRanz that utilizes a ran-
domization mechanism to circumvent Ad-blocking. Using
WebRanz, content publishers can constantly mutate the in-
ternal HTML elements and element attributes of their web
pages, without affecting their visual appearances and func-
tionalities. Randomization invalidates the pre-defined pat-
terns that Ad-blockers use to filter out Ads. Though the
design of WebRanz is motivated by evading Ad-blockers,
WebRanz also benefits the defense against bot scripts. We
evaluate the effectiveness of WebRanz and its overhead using
221 randomly sampled top-alexa web pages and 8 represen-
tative bot scripts.

1. INTRODUCTION
Online advertising is the primary source of income for

many Internet companies, such as the IT giants Google and
Facebook. According to [20], the revenue of U.S. web ad-
vertising is as large as $15 billion in Q3 2015. With Ad
supports, online services give us instant access to more in-
formation than was ever stored in the entirety of the world’s
libraries just a few decades ago. Ad-supported services also
create and maintain systems that allow for instant communi-
cation and organization between more than a billion people.
Without web advertising, many of the world’s most useful
technologies may never have occurred.

Ad-blocker is a piece of software that allows a user to
roam the web without encountering any Ads. In particular,
it utilizes network control and in-page manipulation to help

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

users block most online advertisements. Network control
barricades HTTP requests to Ads and thus prevents them
from loading. In-page manipulation looks up Ads based on
pre-determined patterns and makes them invisible.

With Ad-blockers, web browsers generally run faster and
waste less bandwidth downloading Ads, and the users are no
longer distracted by the Ads. Not surprisingly, Ad-blocking
is gaining popularity with an astonishing pace. According
to a survey by Adobe and an Ad-blocking measurement ser-
vice PageFair, 16% of the US Internet users run Ad-blocking
software in their browsers [26]. Approximately 198 million
active users globally used Ad-blocking tools in 2015, up by
41% compared to 2014. AdBlock Plus [1], a leading Ad-
blocker, claims that their product has been downloaded at
an average rate of 2.3 million times per week since 2013 and
it is “at a steady clip” [11]. In addition, more iPhone and
iPad users start running Ad blockers thanks to the built-in
capacities in the latest iOS 9.

Despite its tangible convenience to the customers, Ad-
blocking could devastate the economic structure underly-
ing the web in the long run. This is because many con-
tent publishers make their primary legitimate income from
Ads, but Ad-blocking is destroying this ecosystem. In 2014,
Google made $59.1 billion from advertising, but lost $6.6 bil-
lion due to Ad-blocking [17]. During 2015, Ad-blocking has
cost Internet companies almost $22 billion [26]. The num-
ber will rise to 41.4 billion in 2016. Many games-related
websites currently encounter about 50% revenue loss due to
Ad-blocking [18]. It is suggested that if everybody used Ad-
blockers, Ad-supported Internet services would vanish. “it’s
the websites that ad-block users most love that are going out
of business first. This is to no one’s benefit” [18].

Furthermore, since Ad-blockers use pre-defined patterns
to identify and suppress DOM objects that appear to be
Ads, it is often the case that the patterns are so general that
part of the regular content is also blocked. As shown in Fig.
1, the text links marked in the red circle on the homepage
of www.autotrader.com, as part of the regular content, are
inappropriately blocked by Adblock.

To damp the negative effect of Ad-blockers on the web
ecosystem, tech companies and service providers introduce
many technologies and solutions [7, 9, 14, 23, 10]. For exam-
ple, one common approach is to integrate to a web page an
in-page JavaScript snippet that examines the presentation
of Ads and identifies the presence of Ad-blocker. Further-
more, such approaches often demand the users turn off their
Ad-blockers or subscribe to a website’s paywall. Despite the
effectiveness in detecting Ad-blocker’s presence, such tech-

www.autotrader.com

Figure 1: Non-ads on www.autotrader.com blocked by Ad-
block. Left: no Adblock. Right: with Adblock.

nologies often substantially degrade the user experience with
websites. More importantly, they still fail to punch through
Ad-blockers to serve the originally-intended Ads.

In this paper, we develop a technique that allows the con-
tent publishers to deliver their Ads without being blocked.
Our goal is to retain a healthy web ecosystem by providing an
option for the content publishers to protect their legitimate
right. Our technique, WebRanz, circumvents Ad-blocking
using a content and URL randomization mechanism. With
WebRanz, the publishers can constantly mutate their web
content – including HTML, CSS and JavaScript – so that
Ad-blockers cannot find the pre-determined patterns to filter
out Ads. More importantly, WebRanz retains the function-
alities of the original page and minimizes the visual differ-
ences caused by randomization so that the user experience
is not affected. WebRanz ensures that multiple accesses of
the same website return different content pages that have
the same appearances and functionalities.

Specifically, since a lot of Ads are loaded by third-party
JavaScript on the client side, without going through the
original content publisher server, the pages returned by the
server need to be instrumented so that the Ad contents gen-
erated on the client side can be randomized. WebRanz over-
writes native JavaScript APIs so that dynamic DOM ob-
jects can be randomized on the fly when they are generated
through the overwritten APIs.

Besides, Ad blockers also cancel network requests to black-
listed URLs by comparing URLs against pre-defined pat-
terns. To bypass, WebRanz randomizes the URLs and re-
source requested is fetched via a transparent proxy hosted
by content publishers.

While WebRanz is developed for circumventing Ad-blocker
scourges, last but not the least, our design principle also
benefits the defense against many unwanted bot scripts that
launch automated attacks on websites as these bots also ma-
nipulate DOM objects using pre-determined patterns.

In summary, this paper makes the following contributions.
• We propose a web page randomization technique We-

bRanz that prevents Ad-blockers from expunging Ads
on web pages, and helps defending against web bots.
At the same time, WebRanz preserves page appear-
ances and functionalities.
• We address the challenges entailed by URL and web

page randomization such as preserving dependencies
between DOM objects and CSS selectors, between DOM
elements and JavaScript, and handling dynamic gen-
erated elements as well as resolving randomized URLs.
• We implement WebRanz and evaluate it using 221 ran-

domly sampled top-alexa web pages and 8 real-world
bot scripts. We show that WebRanz is effective in cir-
cumventing Ad-blockers with negligible overhead. It
also defeats all the tested bot scripts.

1. <div id="j_id_1_20n" ...>
2. <div class="atcui‐column atcui‐span‐8" ...>
3.
4. ...
5. </div>
6. <div class="atcui‐column atcui‐span‐7" ...>
7.
8. ...
9. </div>
10. </div>

 Figure 2: Static Ads on www.autotrader.com

The rest of the paper is organized as follows. In Section 2,
we introduce Ad-blockers and web bots, and overview We-
bRanz. Section 3 discusses the technical details of WebRanz.
In Section 4, we evaluate the effectiveness and efficiency of
WebRanz. Section 5 discusses the threat model. Finally,
We discuss related work and conclude the work in Section 6
and 7, respectively.

2. MOTIVATION
In this section, we show how Ad-blockers and web bots

work in practice. We explain how pattern matching based
page element lookup plays an important role in these two.
We then overview our approach.

2.1 Ad-Blocking
Web advertising is one of the foundations of Internet econ-

omy. Most content publishers on the Internet earn their rev-
enue by delivering Ads together with the content. Ads are
delivered not only by the publishers themselves, but more
commonly by the various Ad delivery networks that buy Ad
space from the content publishers and also from each other.
When a page is loaded, the Ads loaded on the page often
go through many layers of delegations and redirections. We
call it the Ad delivery path.

We classify Ads into two categories based on the loading
procedure. Those that are literally included by the content
page are called the static Ads and those dynamically loaded
by JavaScript are called the dynamic Ads.

Static Ads. Static Ads are usually served by the content
publishers and delivered from a central domain. For ex-
ample, Fig. 2 shows two static Ads on the home page of
www.autotrader.com. They are two images with their URLs
at lines 3 and 7 in the HTML file. Observe that the URLs
are explicitly encoded in the source code. In other words,
the Ads are not dynamically loaded by JavaScript.

Dynamic Ads. Dynamic Ads are usually provided by on-
line advertisement vendors or Ad networks, and hosted on
servers other than the publisher server. Compared to static
Ads, they can be served from multiple domains owned by
various Ad networks. They are usually dynamically loaded
and may be different in each load. Hence, Ads networks are
able to deliver customized Ads to maximize their revenue.

We use www.much.com as an example to illustrate dynamic
Ad delivery. The website serves the latest music videos and
entertainment news. It ranks #6 in the category “Music
Videos” of Alexa top sites [12]. Fig. 3 shows the top portion
of the website. The Ad marked in the red cycle is dynami-
cally loaded from Google DoubleClick Ad Exchange service.

Fig. 4 shows its loading procedure which consists of 10
steps, each loading and executing some JavaScript, until the

www.autotrader.com
www.autotrader.com
www.autotrader.com
www.much.com

Figure 3: The homepage of www.much.com. The Ad is en-
closed by <div id =“div-gpt-ad-300 250-1”> in the red cycle.

[8] Insert an
 external image

[6] Insert an
 external JS

[9] Request image
 added in [8]

Homepage

gpt.js

pubads_impl_69r.js

 securepubads.g.doubleclick.net
ads?gdfp_req=1&…

[7] Request JS inserted in [6] bs.serving‐sys.com
adServer.bs?cn=…

[10] Ads image

Figure 4: An example of dynamic Ads loading procedure.

Ad is finally displayed. The source code related to the load-
ing procedure is shown in Fig. 5. The code is substantially
simplified for readability. The HTML after Ad loading is
shown in Fig. 6. The script in blue in Fig. 5 is replaced with
the script in blue in Fig. 6 after loading. The div in red in
the original page is replaced with that in red after loading,
containing an iframe with the Ad image. Particularly, the
loading procedure contains the following 10 steps (Fig. 4):
• Steps 1-2. The browser loads the home page. The

HTML returned by the server is shown lines 1-14 in
Fig. 5. When the script in lines 3-6 is executed, a new
script element is added to the page (line 3 in Fig. 6).
• Steps 3-4. The browser parses the new script element

and then executes gpt.js from www.googletagservices.

com. The script (i.e. line 23 in Fig. 5) inserts another
script pubads impl 69r.js to the page (line 4 in Fig. 6).
• Steps 5-6. The browser loads pubads impl 69r.js from
partner.googleadservices.com. This script creates
an iframe (lines 35-36) and adds it to the div at line 12
in the original page (lines 39-40). In lines 37-38, the
script writes two new script elements to the iframe. At
line 37, it adds the definition of a function cbProxy()
to the iframe. The function writes an Ad (provided
as the parameter) to the page. At line 38, the script
adds a new script element whose source is hosted by
securepubads.g.doubleclick.net, a Google Ad ser-
vice provider. The URL is parameterized for targeted
advertising. In particular, the server side logic takes
the parameters and identify the Ad(s) that should be
pushed to a particular client.
• Steps 7-8. The script is loaded from securepubads.

g.doubleclick.net. The source code is shown in line
54. The script invokes cbProxy(), which is supposed to
be defined by other scripts in the earlier steps, to write
an Ad image URL to the page. The image is hosted by
the MediaMind Advertising Server (serving-sys.com)

1. <head>
2. <script type="text/javascript">
3. var gads = document.createElement('script') ;
4. gads.src = "http://www.googletagservices.com/.../gpt.js";
5. var node = document.getElementsByTagName("script")[0];
6. node.parentNode.insertBefore(gads, node);
7. </script>
8. </head>
9. ...
10. <body>
11. ...
12. <div id = "div‐gpt‐ad‐300_250‐1"> </div>
13. ...
14. </body>

21. /*** gpt.js ***/
22. /***/
23. ...document.write('<script type="text/javascript" src="http://partner.googleadservices.com/gpt/pub

ads_impl_69r.js"></script>');
24. ...

31. /*** pubads_impl_69r.js ***/
32. /***/
33. // add "iframe" to the children list of a "div"
34. ...
35. f = document.createElement("iframe");
36. f.id = "google_ads_iframe_...";
37. f.contentWindow.document.write("<script>function cbProxy(ad){...document.write(ad);}</script>");

38. f.contentWindow.document.write("<script src=\"securepubads.g.doubleclick.net/.../ads?...");
39. e = document.getElementById("div‐gpt‐ad‐300_250‐1") ;
40. e.appendChild(f);

51. /*** securepubads.g.doubleclick.net/...ads ? ***/
52. /***/
53. // Insert the actual Ad image
54. cbProxy("...<img src=\"http://bs.serving‐sys.com/BurstingPipe/adServer.bs?cn=bsr...");

 Figure 5: Dynamic Ads loading on www.much.com.

1. <head>
2. ...
3. <script src="http://www.googletagservices.com/tag/js/gpt.js"></script>
4. <script src="http://partner.googleadservices.com/gpt/pubads_impl_69r.js"></script>
5. ...
6. </head>
7. <body>
8. <div id="div‐gpt‐ad‐300_250‐1">
9. <iframe id="google_ads_iframe_...">
10.
11. ...
12. </iframe>
13. </div>
14. </body>

 Figure 6: HTML after loading.

owned by an advertising company Sizmek. This leads
to the iframe in red in Fig. 6.
• Steps 9-10. Finally, the browser loads and renders

the actual Ad image.

2.1.1 How Ads are Blocked
From the previous discussion, the Ad delivery path may

be long and complex. If any of the steps along the path
are broken, the Ad is blocked. Most Ad-blockers leverages
this characteristics. They recognize steps on Ad delivery
paths by pattern matching. They maintain a long list of
patterns that can be used to distinguish Ads from normal
page content. Take Adblock Plus [1] as an example. Ads
are usually blocked by the following two means.

Network Control by URL Filtering. Since advertising
companies serve Ads on a limited number of servers, it’s
possible to collect a set of domain names and block requests
sent to domains on the URL blacklist. For example, the
request to “https://securepubads.g.doubleclick.net/..
./ads?...” sent in step [7] in Fig. 4 will be blocked by a
URL based rule “/securepubads.”. As a result, the loading
procedure is interrupted since the browser cannot obtain the
actual Ads enclosed in the response.

In-page Manipulation by Selector-based Filtering.
Elements not blocked by network control can be success-
fully loaded from the remote servers. However, they can
still be blocked before they are rendered by the browser.
This is done by identifying Ad elements inside the browser
using selector patterns and setting these elements to invisi-
ble. For example, in Fig. 5, two Ad related DOM elements
are set to invisible by Adblock Plus based on the following
two selectors:

www.googletagservices.com
www.googletagservices.com
partner.googleadservices.com
securepubads.g.doubleclick.net
securepubads.g.doubleclick.net
securepubads.g.doubleclick.net
serving-sys.com
www.much.com
https://securepubads.g.doubleclick.net/.../ads?...
https://securepubads.g.doubleclick.net/.../ads?...

1. <html>
2. ...
3. <a class="button‐called‐out button‐full" href=

"//outlet.lenovo.com/.../?sb=:000001BD:0002F49B:">Add to cart
4. ...
5. </html>

Figure 7: The source of the “Add to cart” button. The page
has totally 109 a elements but only one “Add to cart” button.

1. content = open_url(item_url_full,...)
2. tmp_found = re.findall(r"<a class=\"button‐called‐out button‐

full\"(.+?)Add to cart", content, ...)
3. if len(tmp_found) != 0:
4. itemid = re.findall(r"\?sb=(.+?)\"", tmp_found[0], ...)
5. new_addtocart_url = '//outlet.lenovo.com/...AddToCart? addtocart‐item‐

id=' + itemid[0]
6. webbrowser.open(new_addtocart_url)

Figure 8: A snippet of a web bot [8] for the Lenovo Outlet.

(1) Selector “##div[idˆ= “div-gpt-ad-”]” matches the div
element with id that starts with“div-gpt-ad-”. As such,
the div (line 8 in Fig. 6) is set to invisible.

(2) Selector “##iframe[idˆ= “google ads iframe”]” se-
lects the iframe with id begins with google ads iframe.
Therefore, the iframe at line 9 in Fig. 6) is hidden.

Consequently, the Ad image is not rendered.

2.2 Content-sensitive Web bots
Web bots are programs that simulate user browsing be-

havior. They read the HTML code, analyze the content
and interact with the web app just like humans. Web bots
are commonly used for various purposes such as searching,
scraping and impersonation. According to a recent study on
20, 000 popular websites by Incapsula Inc., out of 15 billion
visits observed, 56% of all traffic is generated by bots [21].

Bots can be roughly classified into two groups based on
the targets. Some do not focus on particular items but grab
all contents. Bots targeting search engines are examples of
this type. The bots in the other group focus on specific
elements. They parse the HTML and locate the targets
using predefined patterns. Once found, they either simulate
human behaviors (e.g., clicking buttons) or extract valuable
data. Data theft by web scraping and human impersonators
are typical examples. Since being able to locate the targets
is important, we dub them content-sensitive web bots.

Content-sensitive web bots such as scrappers have caused
substantial loss. According to ScrapeSentry, 39% of booking
traffic on travel industry websites is generated by scraping
bots [27]. As a result, airlines have increased booking fees
to balance the cost [16]. A scraper also demonstrated its ca-
pabilities in causing damages through the Twitter earnings
leak incident [19, 29]. In April 2015, Twitter planed to re-
lease its Q1 earning report after the stock market was closed.
However, the report link was mistakenly posted online be-
fore the schedule. Although it was deleted immediately, it
stayed online for 45s. A financial scraper owned by Selerity
discovered the report in such a short time and tweeted Twit-
ter’s disappointing result when the market was still open. As
a result, shares of Twitter fell as much as 22%.

Content-sensitive web bots are also widely used on Ecom-
merce websites. Take a bot [8] targeting at the Lenovo outlet
store as an example. The Lenovo outlet store offers substan-
tially discounted computers but the quantity is limited. It
is usually hard to get one since many people keep refreshing
the inventory and grab a deal as soon as it becomes available.
While it is tedious for a human to repeat this procedure, a
bot was programmed to monitor the store and add deals to
the shopping cart automatically.

Fig. 7 shows the HTML code of the “Add to cart” button.

Client‐side
Randomizer

properties

URL

Original
JavaScript

Randomized
HTML, CSS

Randomized
HTML, CSS

(loaded dynamically)

Element
Selector Helper

id

class

Dynamically loaded
JavaScript

(3rd party, ...)

Server‐side
Randomizer

properties

URL

Original
HTML, CSS

Randomized
HTML, CSS

Client‐side
Randomizer
(JavaScript)

Original
JavaScript

Element
Selector Helper
(JavaScript)

Transparent
Proxy

 Transparent
Proxy

…...

Figure 9: Overview of the web page randomization.

It is an <a> element representing a link. There are totally
109 <a> elements on this page. Fig. 8 shows a snippet of the
web bot. The script loads a product page at line 1. It hence
tries to locate the “Add to cart” link. Since there are many
<a> elements, the script has to distinguish the target from
the others. It does so by comparing the style class name
and the element id of a candidate link with some patterns.
In this case, at line 2, the script uses two style class names
“button-called-out” and “button-full” as the signature. If such
an <a> is found, at line 4, it further extracts the id from the
content after “sb=” in the link. In this example, the itemid is
“:000001BD:0002F49B:”. Then it constructs the actual add-
to-cart link at line 5 and invokes the browser at line 6 to
add the item to the shopping cart.

As observed above, a critical precondition for content-
sensitive web bots is that they identify important DOM ob-
jects by pattern matching, which is similar to Ad-blockers.

2.3 Our Solution: Web Page Randomization
WebRanz is a technique that randomizes both URLs and

content in web pages so that Ad-blockers and content based
web bots can no longer use pattern matching to identify and
manipulate DOM elements.

As mentioned before, web pages may be changed dynam-
ically on the client side. Therefore the randomization is
performed not only on the server side by the content pub-
lisher, but also on the client side through JavaScript instru-
mentation added to the page by the content publisher. In
particular, upon receiving a client side request, the publisher
prepares the page as usual. Before delivering it to the client,
WebRanz randomizes the page by randomizing the element
ids, style sheets, URLs, and so on.

The randomization is designed in such a way that it does
not change the visual effects and functionalities of the page
but rather the internal representations of the page. As such,
the changes are transparent to the end user. WebRanz also
inserts JavaScript code to the page to randomize the page
content dynamically generated on the client side.

Fig. 9 shows the overview of the web page randomization
procedure. WebRanz is deployed on the server side (pub-
lishers). The input is an HTML file and its corresponding
external CSS style-sheets. The HTML file can be a static
HTML page or the output of a dynamic server side script
before being sent out. The existing external JavaScript and
other resource files (e.g., images) are untouched. They will
be sent to the clients upon requests.

We randomize the attributes (e.g. element id or style class

name) and URLs in HTML and external CSS style-sheets.
As such, the selector-based and URL based filters used in
Ad-blockers and web bots can no longer identify the page
elements. The output is a randomized version of the input
HTML page and CSS style-sheets. In the HTML, we also
append utilities that redirect the DOM selectors in the ex-
isting JavaScript to the corresponding randomized HTML
elements and handle DOM elements dynamically inserted
in the browser. The former is to make sure the JavaScript
in the original page can work properly with the randomized
version, especially when the script accesses DOM elements.
The latter is to handle DOM elements we do not see during
the server side randomization.

For the www.much.com example, the div and iframe in red
in Fig. 6 are given random ids such that the aforementioned
Adblock Plus patterns fail to locate and suppress the Ad
image. For the Lenovo web bot example, the class name
at line 3 of Fig. 7 “button-called-out button-full” is re-
placed with a random string that changes each time the page
is loaded. As such, the web bot in Fig. 8 cannot identify the
link and fail to put the product in cart.

Besides, to resolve the randomized URLs, we leverage
transparent proxies deployed on the publisher side. In par-
ticular, all URLs (either statically embedded or dynami-
cally loaded) randomized by server-side and client-side ran-
domizer point to publisher’s transparent proxies. Note that
the proxy URL can be arbitrary and different in each load.
Or, we may just use the publisher’s top-level domain (e.g.
cnn.com) to bypass the URL filter. Once requested, the
transparent proxies recover the real URLs, fetch the resource
requested and send them to the client.

3. WEB PAGE RANDOMIZATION
In order to achieve practical web page randomization, We-

bRanz needs to handle a few technical challenges:
• Randomization causes inconsistencies between DOM

objects and their style specification, between HTML
elements and JavaScript.
• Client side randomization should be supported by in-

strumenting the page with the randomization logic (in
JavaScript) executed on the client side.
• The server side needs to be extended to resolve the

randomized URLs that change constantly.
In the following subsections, we first discuss what elements
should be randomized. We then discuss how they are ran-
domized. The discussion is divided into two parts: random-
ization performed on the (publisher) server side and that on
the client side by the JavaScript instrumentation.

3.1 What to Randomize
One of the most important design goals of WebRanz is

to retain the appearances and functionalities of web pages
while breaking the patterns used by Ad-blockers and web
bots. Hence, not all HTML elements or element attributes
are subject to randomization. For example, changing the
type of a DOM object (e.g., a radio box to a check box) or
changing the style may cause undesirable visual differences.
To identify randomization candidates, we perform the fol-
lowing two studies: First, we analyze EasyList, the blacklist
used by AdBlock Plus, to select important attributes. Sec-
ond, we visit the home pages of Alexa Top 500 websites using
different blacklist settings and evaluate the effectivenesses of
URL-based and element hiding filters.

Table 1: AdBlock Plus EasyList Filters
URL Blocking Rules Element Exception

Domain only Resource only Hiding Rules Rules

5, 054 13, 811 27, 114 3, 973

Table 2: Element Hiding Filters

Selectors id class
id and

id or class
class

General Rule 16, 037 7, 269 8, 538 23 15, 784 (98.42%)
Site Specific 11, 077 3, 979 4, 331 112 8, 198 (74.01%)
Total 27, 114 11, 248 12, 869 135 23, 982 (88.45%)

3.1.1 Interpreting Patterns in Blacklisting Rules
Adblock Plus works based on a set of rules. We classify

these rules to three categories, as shown in Table 1:
• The URL blocking rules specify URL filters for net-

work control. Any requests to blacklisted URLs are
canceled. They can be further divided into two sub-
groups: domain only patterns (e.g., http://*.much.

com) and resource patterns with both domains and re-
source paths (e.g., http://*.much.com/banner.jpg).
• The exception rules disable existing rules on particular

domains. Filters are not applied on the domains that
match the whitelist.
• The element hiding rules specify selector based filters.

The HTML elements on the page that match the rules
are prevented from rendering.

Observe that the URL blocking and element hiding rules
are dominant, and most URL blocking rules are those that
contain both the domain and the resource path.

Each element hiding rule is a selector defined by one or
more attributes. To determine the attributes that are im-
portant for randomization, we further study the 15, 701 el-
ement hiding rules in the Adblock Plus’s list. The results
are presented in Table 2. We observe that attributes id and
class are most commonly used: id is a unique identifier of
an HTML element in the document; class provides a class
name for one or more HTML elements.

Adblockers hide elements using style rules. A style rule
consists of a selector and a declaration block. The selec-
tor points to the HTML element(s) where the style declared
is applied to. The declaration block contains visual effect
specifications such as size and layout. The style rules can
be a piece of in-line script in HTML or an external style-
sheet CSS file. Examples of element hiding rules are shown
as follows. ##.googleads-container matches elements with
class googleads-container. A composite hiding rule ###re-
sultspanel > #topads is to select the element that has id
topads and is enclosed in an element with id resultpanel.

3.1.2 Evaluating Filters on Popular Websites
In the second study, we collect the number of elements

removed by the URL blocking rules and the element hiding
rules and evaluate their effectiveness on real world websites.

We first collect the data using the original full EasyList.
As the URL blocking rules and element hiding rules are not
orthogonal, we repeat the experiment using different subset
rules in EasyList. In particular, we group the rules based
on the classifications mentioned in 3.1.1: (1) URL blocking
rules that only contain domains (domain only), (2) URL
blocking rules that have both domain and resource paths
(resource only) and (3) Element hiding rules. The results
are shown in Table 3. On the one hand, the URL based rules
block more than 6 times elements than the element hiding
rules on popular web pages. On the other hand, the fact that

www.much.com
http://*.much.com
http://*.much.com
http://*.much.com/banner.jpg

Table 3: Stats of Elements Blocked on Alexa Top 500 Sites
Full EasyList Domain Resource Element Hiding
URL Hiding Only Only Rules Only

Min 0 0 0 0 0
Max 171 18 91 171 19
Average 5.3 0.8 3.8 4.2 0.9

more than half rules are element hiding rules shows that they
are important as URL blocking rules cannot handle all cases
without any overkills.

As suggested by above two studies, id and class are criti-
cal attributes used by selectors in the element hiding rules.
Besides, bypassing the URL blocking rules is crucial. There-
fore, WebRanz aims to randomize id, class and URLs. That
would allow us to counter 85.8% of all rules, which represent
the dominating majority applied in practice.

3.2 Server Side Randomization
WebRanz is deployed on the publisher server. Part of the

randomization is performed directly on the server side. In
this subsection, we discuss the server side randomization. It
mainly consists of randomizing the id and class attributes,
fixing styling rules and randomizing URLs.

3.2.1 Randomizing Element Id and Class
Before a page retrieved/generated by the publisher server

is returned to the client, WebRanz parses the page and then
traverses the DOM tree. During traversal, it replaces each
id or class name encountered with some random value. It
also maintains a one-to-one mapping between the original
id/class name and its randomized counter-part.

This mapping is the key to preserving the semantics and
functionalities and will be used in later steps. Note that it is
possible that multiple HTML elements have the same id. In
this case, WebRanz also projects them to the same random
value. We also want to point out that the server does not
need to keep the mapping in any permanent storage as it is
never reused. In other words, each page returned to some
client is randomized independently.

3.2.2 Fixing Static HTML Style Rules
Style rules determine the visual effects of a class of DOM

elements. Styles can be specified in the following ways:
• An inline attribute is defined along with the DOM el-

ement. E.g., <div style=“border: 10pt”> specifies that
the div element has a border of 10 points.
• An internal style is defined in the header. E.g., <style

type=“text/css”>.sidebar{width:100%;}</style> sets the
width of element(s) with class of “sidebar”.
• An external rule is specified in a CSS file and embed-

ded in the HTML. E.g. <link rel = “stylesheet” href =
“1.css”> includes style rules defined in 1.css.
• A style can be dynamically defined by a property setter

in JavaScript. E.g. getElementById(“x1”).style= {bor-
der:1pt} sets the border of the element with id of “x1”.
This is often used to define styles on the client side.

The inlined style is not affected by randomization. In con-
trast, the internal and external rules have to be updated
since the id/class names in those style rules need to be made
consistent with the randomized id/class names.
Example. In Fig. 10, the HTML code contains a div (lines
4-6) whose style is specified in lines 1-3. Observe that the
strings “U7n231k” and “hcd1nc” are the randomized values
for“office-sessions-widget”and“video-item”respectively. Since

the rule name and the class name of the HTML element are
updated consistently, the visual representation is preserved.

1. <style type="text/css">
2. .office‐sessions‐widget .video‐item {...}
3. </style>
4. <div class="office‐sessions‐widget">
5. <div class="video‐item">...</div>
6. </div>

11. <style type="text/css">
12. .U7n231k .hcd1nc {...}
13. </style>
14. <div class="U7n231k">
15. <div class="hcd1nc">...</div>
16. </div>

1. <style type="text/css">
2. .office‐sessions‐widget .video‐item {...}
3. </style>
4. <div class="office‐sessions‐widget">
5. <div class="video‐item">...</div>
6. </div>

11. <style type="text/css">
12. .U7n231k .hcd1nc {...}
13. </style>
14. <div class="U7n231k">
15. <div class="hcd1nc">...</div>
16. </div>

Figure 10: An Example of Class Randomization.

WebRanz only fixes static style rules on the server side.
For dynamic styles that are defined by property setters or in-
serted by in-page JavaScript, WebRanz relies on the JavaScript
instrumentation to ensure consistency (on the client side).
More details can be found in Section 3.3.

3.2.3 Randomizing Static URLs
As mentioned earlier, Ad-blockers work by blocking URLs

or hiding elements. Randomizing id/class prevents element
lookup by selectors. WebRanz also performs URL random-
ization to evade URL blocking.

WebRanz traverses the DOM tree of the page and identi-
fies all URLs in the page. For those that can be matched by
URL blocking rules, WebRanz randomizes the whole URL
including domain, resource path and all parameters. In par-
ticular, it takes the whole URL and randomize the string
using public-key cryptography. This is to make sure that
the ad-blocker on the client side cannot recover the original
URL for the randomized version, as the private key will not
be sent to the client.

 Original version:

1. <script src="http://www.googletagservices.com/tag/js/gpt.js"></script>

 Randomized version:

11. <script src="http://$proxy_url$/$proxy_script_name$.php?$para_name$=
LAhrcs229BprSLk06FyHcdnniVF1HnaVymtfv1T0ZiCY8D5FlRSl5CZ4p68nqymiRZTJ5z5d
iGJk89/8NkjmSuLBOKKjXNiIXeG5dkx3Bd2Jo0T4A0Nq4rHVwfSezYnY6aqOZnqjcVaBKOl2
dXxaTI17uk44t6HQDJ5KM879yu0="></script>

 Note: $proxy_url$, $proxy_script_name$ and $para_name$ can be different in each load

Figure 11: An Example of URL Randomization.

Fig. 11 shows an example of URL randomization. Line 1
is an external script. Line 11 is the corresponding random-
ized version. The randomized URL is sent to $proxy url$, a
URL pointing to the transparent proxy, as a request param-
eter. The original URL is replaced with this randomized
version. Please note that the proxy URL $proxy url$ and
$proxy script name$ can be arbitrary valid URL pointing to
a publisher’s proxy. We can make it a moving target or sim-
ply use the publisher’s top-level domain to host a pool of
proxy scripts. Therefore, blocking the URL to transparent
proxies is impractical. Otherwise, all content hosted by this
publisher will be blocked.

3.2.4 Transparent Proxy
The original URLs are reshaped to evade URL block-

ing rules by randomization. Since domain names are also
changed, to make sure the client can correctly load the orig-
inal resource, we use a group of transparent proxies deployed
on the publisher side to fetch the resource for the client.

In particular, when the transparent proxy receives a re-
quest, it decodes the parameter and recovers the original
URL. It then sends a request with original data from the
client (including cookies) to the original destination. Once

the response arrives, the proxy forwards it to the client.
Note that if the requested URL points to a local resource,
the proxy directly loads and returns it to the client in order
to minimize the performance overhead.

In addition, besides URL, the src of an image or script
may be a data URI that is the file content itself [2]. Data
URIs are also randomized as they can be used to deliver Ads.
When the proxy receives such data URI request, it directly
returns the decoded data with its corresponding header. For
example, if a data URI request is an image type, the proxy
decodes the image data in the request and adds an image
header to the response.

3.3 Preserving Client-side Functionalities and
Handling Dynamically Loaded Elements

Both the DOM programming interface and third-party
libraries (e.g. jQuery) provide convenient ways to access
HTML elements in JavaScript. After randomization, the
original attribute values are replaced with the random ones.
However, the DOM element selectors in existing JavaScript
still use the original values such that they cannot locate the
correct elements anymore.

In order to provide consistent accesses to randomized DOM
elements, one way is to scan the JavaScript in the page and
update all the selector values, similar to fixing the static
style rules. However, since third-party JavaScript files are
loaded dynamically on the fly, it is infeasible to update all
these files during the server side randomization. Instead, we
choose to override the relevant JavaScript APIs and map the
original attribute values to their corresponding randomized
versions at runtime whenever the attributes are accessed.

3.3.1 Overriding Element Selectors
The Document Object Model (DOM) defines a program-

ming interface to access and manipulate HTML elements
and their properties. Specifically, the reference to an HTML
element can be acquired using an id selector (getElementById)
or a class selector (getElementsByClassName).

1. var byId = document.__proto__.getElementById;
2. document.__proto__.getElementById = function(id) {
3. if (idMap[id]) {
4. return byId.call(document, idMap[id]);
5. }
6. else {return byId.call(document, id);}
7. };

 Figure 12: Override document.getElementById().

Therefore, WebRanz overrides these two methods. It projects
the original attribute value to the corresponding randomized
value as follows: if a value has been randomized, the original
selector value is replaced by the corresponding randomized
value. Otherwise, the same value is used. The overridden
version of document.getElementById() is shown in Fig. 12.
At line 1, the original document.getElementById() is saved in
variable byID. Line 3 checks if a mapping exists. If so, it calls
byID with the corresponding randomized value. Note that
idMap[] projects an original value to its randomized version.
The overridden functions and the mappings are inserted to
the page and sent over to the client. As such, the element
access redirection happens at runtime on the client side.

WebRanz uses a predefined set of obfuscations for pre-
venting the mappings from being automatically reverse en-
gineered. For example, idMap[] is encrypted differently each
time the page is loaded and the overridden element lookup
functions have the corresponding decryption methods. Even

though in theory the attackers (to our approach) can still in-
ject some exhaustive scanning JavaScript (to the page) to
repetitively call the overridden API functions to reverse en-
gineer the mappings, the cost is so high that the user expe-
rience of the page would be substantially degraded. More
discussion can be found in Section 5.

3.3.2 Overriding Third-party JavaScript Library APIs
Although third-party JavaScript libraries can provide var-

ious element access interfaces using different kinds of selec-
tors, many of them eventually need to invoke some primitive
DOM interface function. Take jQuery, one of the most pop-
ular third-party JS libraries, as an example.

JQuery provides efficient ways to access HTML elements
through web API functions. For example, $(.className) se-
lects all elements with class className. Its underlying im-
plementation is based on the primitive API getElementsBy-
ClassName(). Since WebRanz has overridden the primitive
element lookup functions, the corresponding jQuery selec-
tors can locate the correct HTML elements as well.

1. hasClass: function(a) {
2. if (classMap[a])
3. a = classMap[a];
4. // the actual HTML element look‐up
5. }

 Figure 13: Override jQuery .hasClass().

Besides the two primitive element look-up functions, We-
bRanz also overrides a set of higher-level DOM manipulation
APIs in jQuery, such as .addClass(), .attr() and .hasClass().
Fig. 13 shows the handling of .hasClass() provided by jQuery.
In lines 1-2, classMap maps a class name to its randomized
version if any. And the actual look-up is done using the
value after mapping. Obfuscation/encryption is also used
to protect classMap.

3.3.3 Randomizing Dynamically Generated Elements
Elements Dynamically generated are common on the client

side. The script manipulating them may be from the pub-
lisher or third parties such as Ad-networks. The new ele-
ments and the modified element attributes need to be ran-
domized as well otherwise Ad-blockers may block them.

1. var idSetter = idProperty(element.__proto__.__proto__).set;
2. var idGetter = idProperty(element.__proto__.__proto__).get;
3. Object.defineProperty(element.__proto__.__proto__, 'id', {
4. set: function(arg) {
5. randId = randIdGenerator(...);
6. idSetter.call(this, randId);
7. },
8. get: function() {
9. return reverseIdMap[idGetter.call(this)];
10. }
11. });

Figure 14: Override the Setter and Getter of Property id.

Overriding Property Setters and Getters. Existing
JavaScript may modify or read attribute values, such as the
values of id and class. For example, element.id = id1 sets id1
as the id of an HTML element. To make them consistent,
we also need to provide bi-directional mappings between the
original values and the corresponding randomized versions.
Fig. 14 shows an example of such wrappers. The references
to the original getter and setter are saved in lines 1-2. In
lines 4-7, the ‘id’ setter is overridden. When set, a random id
is generated at line 5 and set by the original setter at line 6.
The getter is shown in lines 8-10. Function reverseIdMap()
projects a randomized value to its original one. At line 9,
the getter function returns the original id value.

Figure 15: Top Banner Ad on www.yahoo.com is blocked
by Adblock. Left: no Adblok. Right: with Adblock. The
distance score of the two screenshots is 4.75.

Overriding DOM Elements Creating Function. We-
bRanz also intercepts a set of DOM object creation functions
that require id and/or class as part of the parameters, such
as element.setAttribute(class, class1) sets attribute class of a
newly created element to class1. It then generates random id
and class. The instrumentation is similar to that of setters
and getts and hence elided.
Randomizing URL Appended. Similarly, WebRanz in-
tercepts APIs that append elements to the web page and
rewrites enclosed URLs using the same method discussed in
Sec. 3.2.3.

4. EVALUATION
In this section, we describe our implementation and evalu-

ate the effectiveness and efficiency of WebRanz in preventing
ad blocking and web bots. Experiments are done on a ma-
chine with Intel i7 2.8GHz CPU, 16GB, and OS X Yosemite.

4.1 Implementation
We implemented WebRanz using Node.js [22]. In particu-

lar, we augment the Node.js module htmlparser2 [3] with the
ability to parse static HTML pages and randomize the at-
tribute values of its DOM elements. In addition, we extend
a CSS parser [4] to process CSS and overwrite the corre-
sponding selectors. The URL resource path randomization
is implemented with initiating ajax requests on the client.
We also implement a php program on the server side to in-
tercept the ajax requests.

4.2 Ad-blocking Evasion
To study the effects of WebRanz on preventing Ad block-

ing, we run WebRanz on real world web pages. We randomly
collected the home pages of 1426 websites from Alexa top
10,000 list. In particular, we gather HTML, JavaScript and
CSS files of each home page. We first remove duplicated
websites hosted under different country domains (53). For
example, google.de is removed because google.com is in the
dataset. We further exclude those home pages that do not
contain ads, the urls are obsolete, and those that incur con-
nection reset error (1152). Finally, 221 unique web pages are
obtained. We host these web pages on our own web server
where we run WebRanz and perform randomizations.

Ad-blocker deletes Ads and the screen area used to place
ads is taken by surrounding content. Therefore, Ad-blocker
changes visual appearances of webpage that contains Ads.
Fig.15 shows the homepage of www.yahoo.com without and
with Adblocker. On the left snapshot (without Adblocker),
the top area marked by the red circle is a banner Ad. On the
right snapshot (with Adblocker), the Ad space is removed
and all contents underneath the Ad is moving upward. To
study the effectiveness of WebRanz, we compare the visual
appearances of a web page in different settings. In partic-

Figure 16: The average distance between snapshots. The
average distance between original page and the page with
Adblock is 3.828. The average distance between the original
page and the randomized page with Adblock is 0.834. The
standard deviations are 3.258 and 1.391 respectively.

Figure 17: Distance score is affected by sliding panels on
www.u-car.com.tw. Left: no Adblok. Right: after ran-
domization with Adblock. The distance score of the two
snapshots is 0.516.

ular, we developed a program using Selenium [24]. It au-
tomatically installs Adblock Plus 1.9 on a Firefox browser
and drives the browser to visit the home pages hosted on our
server with and without WebRanz enabled. For each visit,
we took a snapshot and stored the image. To get a base-
line for visual comparison, we also captured the snapshots of
home pages with both Adblock and WebRanz disabled. In
this way, we have snapshots taken in three different settings.
For each web page, we measure the visual differences of its
snapshots. More specifically, we compute the the distance
between snapshots using an image comparison algorithm in
the Lucene Image Retrieval (LIRE) library [5].

As discussed in Section 3, web page randomization needs
to be carried out on both the web server and the client
browser. Thus, we quantify the efficiency of our WebRanz on
both ends. In particular, we measure the latency of mutat-
ing DOM elements on the web server as well as the latency
introduced by the interception of Ad rendering.

4.2.1 Effectiveness
Table 4 demonstrates 50 randomly selected web pages

(from the aforementioned 221 web pages with Ads) and the
distance measures between their snapshots. Fig. 16 shows
the average distance measures between snapshots across the
221 web pages. As is shown in the figure, we observed an
average visual deviation of 3.828 on a web page before and
after Ad blocker is enabled. Note that 3.828 suggests sub-
stantial visual differences. Fig. 15 presents two images (with
and without Adblock Plus) with the distance of 4.75.

Observe that after a web page is randomized, Table 4 and
Fig. 16 illustrate a significant drop of the visual deviation.
In Table 4, we noted many distance scores between snap-
shots drop to zero after the web pages are randomized. This
indicates that WebRanz can effectively prevent Ad-blocking,
display Ads to end users and preserve the visual layout of the
original web pages. For those non-zero distance scores af-

www.yahoo.com
google.de
google.com
www.yahoo.com
www.u-car.com.tw

Table 4: The results for 50 randomly selected web pages.

Web Page
Orig vs. Orig vs. Page Random-

OverheadOrig + Rand + Load ization
Adblock Adblock Time(s) Time(s)

www.autotrader.com 1.22 0.6 7.58 0.72 9.50%
www.capital.gr 1.15 0 8.85 0.45 5.08%
www.celebritynetworth.com 5.37 0.58 12.1 0.252 2.08%
www.christianpost.com 0.60 0 4.41 0.215 4.88%
www.classiccars.com 21.34 0.49 5.49 0.346 6.30%
www.dostor.org 1.33 0 3.91 0.222 5.68%
www.espnfc.us 2.19 0 6.63 0.765 11.54%
www.goodreads.com 0.73 0 5.31 0.433 8.15%
www.groupon.com 0.44 0 4.15 0.269 6.48%
www.haber7.com 6.97 0.61 7.27 0.306 4.21%
www.head-fi.org 4.67 0 7.34 0.589 8.02%
www.hqrevshare.com 2.00 0 4.69 0.166 3.54%
www.huffingtonpost.co.uk 2.74 0.57 11.99 0.99 8.26%
www.lotterypost.com 4.88 0 4.36 0.176 4.04%
www.marktplaats.nl 3.36 0 3.65 0.337 9.23%
www.mery.jp 0.72 0 5.18 0.445 8.59%
www.meteofrance.com 6.70 0 6.39 0.401 6.28%
www.microcenter.com 4.71 0 5.80 0.280 4.83%
www.mobile01.com 1.82 0 3.08 0.128 4.16%
www.much.com 2.53 0 7.36 0.481 6.53%
www.myanimelist.net 2.67 0 8.93 0.314 3.52%
www.niuche.com 0.59 0 8.9 0.168 1.89%
www.nk.pl 5.05 0 7.18 0.332 4.62%
www.nytimes.com 0.65 0 6.95 0.495 7.12%
www.olx.co.id 6.52 0 3.66 0.351 9.59%
www.phys.org 2.86 0 12.31 0.19 1.54%
www.popmaster.ir 3.57 0 8.48 0.243 2.87%
www.posta.com.tr 6.15 0 18.28 0.221 1.21%
www.prothom-alo.com 2.99 0 8.53 0.674 7.90%
www.qz.com 3.41 0 4.91 0.246 5.01%
www.reclameaqui.com.br 5.48 0 3.71 0.423 11.40%
www.sabq.org 7.35 0 2.5 0.198 7.92%
www.setn.com 7.32 0.51 9.64 0.196 2.03%
www.shufoo.net 1.64 0 5.57 0.214 3.83%
www.siteprice.org 6.25 0 4.85 0.195 4.03%
www.smartinf.ru 15.88 0 2.35 0.082 3.49%
www.softonic.com 3.66 0 10.14 0.424 4.18%
www.southcn.com 1.53 0 6.65 0.21 3.16%
www.stcatharinesstandard.ca 8.18 0 21.23 0.453 2.13%
www.subscene.com 1.16 0 2.03 0.109 5.37%
www.theepochtimes.com 4.75 0 13.33 0.378 2.84%
www.u-car.com.tw 4.66 0.51 6.78 0.238 3.51%
www.torrenthound.com 1.21 0 3.9 0.082 2.10%
www.trend.az 0.97 0 5.04 0.177 3.51%
www.uol.com.br 1.66 0 11.32 0.41 3.62%
www.vietq.vn 2.13 0 7.36 0.199 2.70%
www.weeb.tv 6.27 0 3.97 0.089 2.24%
www.wmaraci.com 1.36 0 2.23 0.157 7.04%
www.wral.com 4.73 0.58 12.26 0.525 4.28%
www.yahoo.com 4.75 0 4.2 0.348 8.29%

ter randomization, we manually examine the corresponding
web pages. We found their visual differences result from CSS
and JavaScript. In particular, we noted that some web pages
employ publicly available JavaScript and CSS library (e.g.,
YUI [6]) to develop animation such as sliding panels whose
dynamics introduce the slight differences between snapshots.
As a result, the non-zero distance scores do not suggest the
failure of WebRanz. Fig. 17 shows a typical example for the
differences between an original page (without Adblock) and
the randomized page (with Adblock). Observe that all Ads
are unblocked in both images. The differences are caused by
that the JavaScript in the page decided to display different
Ad contents in the two loadings. We suspect that a faithful
replay technique that can get rid of non-determinism should
be able to generate a distance score close to 0.

4.2.2 Efficiency
Fig. 19 illustrates the average latency of rendering a web-

page before and after web page randomization. For each
page, we load it 10 times and take the average. As shown in
the figure, a web browser takes longer time to render a web-
page when it is randomized because (1) page randomization
introduces additional JavaScript and the browser needs to
take extra time to parse and render the code; (2) random-
ization needs to intercept Ad rendering on the fly. As the

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3R
an

d
o

m
iz

at
io

n
 T

im
e

 (
S

ec
o

n
d

s)

Page Size ((Bytes) x 106)

Figure 18: Randomization latency vs. the size of web page.

O
rig

 P
ag

e
Ra

nd
 P

ag
e

Page Load Time (s)

0 1 2 3 4 5 6 7

1.878

1.904

Figure 19: Page load latency before (avg: 1.878, std: 4.645)
and after (avg: 1.904, std:5.149) randomization.

code size of additional JavaScript is small and the intercep-
tion is lightweight, the overhead of rendering a randomized
web page is negligible (1.38%).

Table 4 shows the randomization latency introduced on
the server side. On average, this randomization latency is
235 milliseconds. As this latency influences the response
to page requests, we compare this latency with the page re-
sponse time. Table 4 (column overhead) shows the overhead
of page response. On average, server side randomization in-
troduces negligible overhead to web page response (4.76%).

Finally, we also investigate the relation between server
side randomization and the size of web page. As shown
in Fig. 18, the randomization latency is dependent upon
the size of webpage because WebRanz needs to mutate the
attributes of DOM elements. A larger web page may contain
more DOM elements and thus WebRanz needs to take more
time to parse content.

4.3 Web Bot Prevention
Next we investigate how WebRanz benefits the defense

against web bots. From open-source projects, we selected
8 representative unwanted bots targeted at popular sites.
We summarize these bots in Table 5. Column Web Libraries
indicates the utilities that a bot relies on. Column Type
represents the way that a bot locates a DOM element. Col-
umn LOC describes the code size.

We run the bots on both the original and the randomized
versions of the target pages. Table 6 summarizes our find-
ings. Succeed? shows whether a script can accomplish its
task. To understand why a script fails on the randomized
version, we identify the shortest execution path to complete
a task. We then count the number of critical element look-
ups (i.e. that cannot be circumvented) and the number of
successful look-ups before failing along the path. We present
the numbers in Look-ups: Total means the total number of
look-ups; Passed means the number of look-ups working cor-
rectly. Finally, Reason shows why the pattern fails.

As shown in the result, all content-sensitive bots are bro-

Table 5: Characteristics of Content-sensitive Bots
Bot Target Web Libraries Type LOC

[8] Lenovo Outlet urllib, webbrowser regex matching 348
[35] Google Search Selenium element selector 517
[35] Google Search BeautifulSoup element selector 3066
[30] Yelp BeautifulSoup element selector 266
[13] Amazon — regex matching 250
[28] Twitter BeautifulSoup, Selenium element selector 277
[25] NewEgg BeautifulSoup element selector 215
[15] Groupon BeautifulSoup element selector 106

Table 6: Results on the original and randomized page

Target
Succeed? Look-ups

Reason
Orig Rand Total Passed

Lenovo Outlet
√

× 8 4 class
Google Search

√
× 2 0 class

Google Search
√

× 2 0 id
Yelp

√
× 27 0 class

Amazon
√

× 10 1 class
Twitter

√
× 18 5 class

NewEgg
√

× 9 1 class
Groupon

√
× 6 0 class

ken on the pages after randomization. Almost all failed at
a very early stage except one that finished 50% of the look-
ups. The results show that id and class are important selec-
tors. Randomizing their values is an effective countermea-
sure against web bots. Note that some look-ups succeeded
because the selectors used are very general (e.g. “url:*”).

5. DISCUSSIONS
Our experiments show the effectiveness of WebRanz. We

argue that it helps maintaining the health of web ecosystem.
However, it is merely one step towards our ultimate goal of
constituting a fair and sustainable Ad delivery mechanism
and preventing web bots. It has the following limitations.

First, WebRanz is not intended to distinguish legitimate
Ads from the unsolicited ones. For example, Adware may
leverage WebRanz to circumvent Ad-blockers. We argue this
is an orthogonal challenge beyond the scope of the paper.

Second, to preserve web page appearances and functional-
ities, WebRanz has to send the mappings (from the original
attributes to their randomized versions) and JavaScript code
that performs the runtime de-randomization to the client
side. In other words, they are accessible by the Ad-blockers
and web bots, and theoretically can be reverse engineered
and circumvented. However, we argue that reverse engineer-
ing WebRanz is impractical because the mappings and the
de-randomization logic are also randomized and encrypted
differently each time a page is loaded. As such, reverse en-
gineering can hardly be automated. Even if reverse engi-
neering may occasionally succeed, the information becomes
useless when the page is loaded another time.

Third, Ad-blockers and web bots may inject in-page script
to probe the mappings on the fly or simply reuse the instru-
mented APIs. For example, to apply an element hiding rule,
Adblock can inject in-page script to invoke the instrumented
APIs which translate the ids and classes in the rules to the
randomized versions. However, since Adblock does not know
which rules may apply for a given page, it has to test each
rule, which is prohibitively expensive (due to the sheer vol-
ume of the rules). The resulting user experience degradation
would easily force the end user to uninstall Adblock.

Fourth, WebRanz cannot block web bots if they only use
general rules, even though this does not happen in the real
world according to our experience.

6. RELATED WORK
To the best of our knowledge, the line of work most closely

related to ours is anti-adblocker solutions [14, 23, 10]. They
exploit the power of in-page JavaScript to identify ad-blocker
installers and then demand them turn off their ad-blockers
or subscribe to paywalls. Unlike existing anti-adblockers,
which aim to discover and lock down ad-blocker installers,
WebRanz helps websites deliver the originally-intended ads
by preventing ad-blockers from expunging them.

Another relevant work is PolyRef, a polymorphic defense
against automated attacks on the web [34]. PolyRef utilizes
polymorphism to dynamically reshape sensitive page content
and thus impede certain class of automated attacks. Differ-
ent from WebRanz that randomizes DOM attributes and
overwrites native JavaScript APIs for the purpose of han-
dling dependency between JavaScript and HTML, PolyRef
achieves web content randomization by directly reshaping
DOM attributes and at the same time updating correspond-
ing JavaScript because they assume there is no dependency
between third-party JavaScript and obfuscated DOM at-
tributes. Ads on webpages are tied to third-party JavaScript.
As a result, PolyRef cannot be general and applied to the
context of ad blocking. In addition, PolyRef only reshape
sensitive web content typically resistant to JavaScript dy-
namics. Thus, it could ensure partially obfuscated webpage
functional even though neglecting to deal with JavaScript
dynamics. Ads are typically rendered by dynamic JavaScript
and failure to deal with JavaScript dynamics could make ob-
fuscated webpages dysfunctional. Consequently, PolyRef is
unlikely to be effective against ad blocking.

Last but not least, our work is also relevant to the re-
search in moving target defenses in web applications [33,
31, 32]. To defend Cross-Site Scripting attacks, Portner et
al. [31] mutate JavaScript lexical rules uniquely for different
users. Taguinod et al. [32] propose to change the under-
lying language implementation of the web application with
the goal of preventing certain categories of vulnerabilities
from being effectively exploited. However, these two solu-
tions [31, 32] need system modifications which are not prac-
tical for circumventing Ad-blocking. NOMAD [33] targets
at preventing web bots from imitating a real user’s actions of
submitting an HTML form. It randomizes HTML form ele-
ment parameters in each session but does not handle HTML
loaded dynamically. Therefore, this technique does not ap-
ply to bypassing Ad-blocking.

7. CONCLUSION
In this paper, we present WebRanz, a technical approach

that allows websites to fend off Ad-blockers and serve their
originally-intended Ads. Our work is motivated by Ad-
blockers that threaten advertising-dependent Internet ser-
vices and technologies. The main idea of WebRanz is to con-
stantly reshape webpages through a randomization mecha-
nism, so that Ad-blockers never identify the pre-determined
patterns that they use to barricade Ads. Our randomization
mechanism preserves the layout of webpages as well as the
dependency between JavaScript and HTML with negligible
overhead. As a result, it has no impact on user experi-
ence and could potentially help website owners regain their
revenue lost to ad-blockers. Unwanted bot scraping share
common characteristics with Ad-blocking. Our results also
show that WebRanz helps defending against such bots.

8. REFERENCES

[1] Adblock Plus. https://adblockplus.org/.

[2] RFC 2397 - The “data” URL scheme.
http://tools.ietf.org/html/rfc2397.

[3] Htmlparser2.
https://www.npmjs.com/package/htmlparser2.

[4] CSS Parser. https://github.com/reworkcss/css.

[5] Lucene Image Retrieval.
https://github.com/dermotte/lire.

[6] YUI. http://yuilibrary.com/.

[7] A former Googler has declared war on ad blockers with
a new startup that tackles them in an unorthodox
way. http://www.businessinsider.com/former-
google-exec-launches-sourcepoint-with-10-

million-series-a-funding-2015-6.

[8] A simple python crawler for Lenovo outlet website.
https://github.com/agwlm/lenovo_crawler.

[9] Ad Blockers and the Nuisance at the Heart of the
Modern Web. http://www.nytimes.com/2015/08/20/
technology/personaltech/ad-blockers-and-the-

nuisance-at-the-heart-of-the-modern-web.html.

[10] Adblock Blocker.
https://wordpress.org/plugins/addblockblocker/.

[11] Adblock Plus Talks Content-Blocking And The Tricky
Shift To Mobile.
http://techcrunch.com/2015/07/22/adblock-plus-

talks-content-blocking-and-the-tricky-shift-

to-mobile/. Jul. 2015.

[12] Alexa: The top ranked sites in Music Videos.
http://www.alexa.com/topsites/category/Top/

Arts/Music/Music_Videos. Aug. 2015.

[13] Amazon reviews downloader and parser.
https://github.com/aesuli/Amazon-downloader.

[14] Anti Adblock Script. http://antiblock.org/.

[15] Crawling Groupon to get all Information about all
deals in America.
https://github.com/mihirkelkar/crawl_groupon.

[16] Data Theft Watch: Web Scraping Attacks Almost
Double. http://www.infosecurity-magazine.com/
news/data-theft-watch-web-scraping/. Jun, 2015.

[17] Google losing billions in adblocking devil’s deal.
http://blog.pagefair.com/2015/google-losing-

billions-adblock-devils-deal/. Jun. 2015.

[18] Growth of Ad Blocking Adds to Publishers’ Worries.
http://blogs.wsj.com/cmo/2015/04/09/growth-of-

ad-blocking-adds-to-publishers-worries/. Apr.
2015.

[19] How one tweet wiped $8bn off Twitter’s value.
http://www.bbc.com/news/technology-32511932.
Apr, 2015.

[20] IAB Internet Advertising Revenue Report, Q3 2015.
http://www.iab.com/news/q3adrevenue/. Dec. 2015.

[21] Incapsula Inc. 2014 Bot Traffic Report: Just the
Droids You were Looking for.
https://www.incapsula.com/blog/bot-traffic-

report-2014.html. Dec. 2014.

[22] Node.js. http://nodejs.org.

[23] Remove Adblock. http://removeadblock.com/.

[24] Selenium - Web Browser Automation.
http://www.seleniumhq.org.

[25] Storage Analysis - GB/$ for different sizes and media.
http://forre.st/storage.

[26] The 2015 Ad Blocking Report. http:
//blog.pagefair.com/2015/ad-blocking-report/.
Aug. 2015.

[27] The Scraping Threat Report 2015. https:
//www.scrapesentry.com/wp-content/uploads/

2015/06/2015_The_Scraping_Threat_Report.pdf.
Jun, 2015.

[28] tScrape. https://github.com/tranberg/tScrape.

[29] Twitter leak demonstrates power of scraper bots.
http://www.usatoday.com/story/tech/2015/04/28/

twitter-selerity-leak-tweets-

earnings/26528903/. Apr, 2015.

[30] YelpCrawl: Exhaustive Yelp! Scraper.
https://github.com/codelucas/yelpcrawl.

[31] Joe Portner, Joel Kerr, and Bill Chu. Moving target
defense against cross-site scripting attacks (position
paper). In Foundations and Practice of Security - 7th
International Symposium, FPS 2014, Montreal, QC,
Canada, November 3-5, 2014. Revised Selected Papers,
pages 85–91, 2014.

[32] Marthony Taguinod, Adam DoupÃl’, Ziming Zhao,
and Gail-Joon Ahn. Toward a Moving Target Defense
for Web Applications. In Proceedings of 16th IEEE
International Conference on Information Reuse and
Integration (IRI). IEEE, 2015.

[33] Shardul Vikram, Chao Yang, and Guofei Gu.
NOMAD: towards non-intrusive moving-target defense
against web bots. In IEEE Conference on
Communications and Network Security, CNS 2013,
National Harbor, MD, USA, October 14-16, 2013,
pages 55–63, 2013.

[34] Xinran Wang, Tadayoshi Kohno, and Bob Blakley.
Polymorphism as a defense for automated attack of
websites. In Ioana Boureanu, Philippe Owesarski, and
Serge Vaudenay, editors, Applied Cryptography and
Network Security, volume 8479 of Lecture Notes in
Computer Science, pages 513–530. Springer
International Publishing, 2014.

[35] Xinyu Xing, Wei Meng, Dan Doozan, Nick Feamster,
Wenke Lee, and Alex C. Snoeren. Exposing
Inconsistent Web Search Results with Bobble. In
Proceedings of the 15th International Conference on
Passive and Active Measurement - Volume 8362, PAM
2014, pages 131–140, New York, NY, USA, 2014.
Springer-Verlag New York, Inc.

https://adblockplus.org/
http://tools.ietf.org/html/rfc2397
https://www.npmjs.com/package/htmlparser2
https://github.com/reworkcss/css
https://github.com/dermotte/lire
http://yuilibrary.com/
http://www.businessinsider.com/former-google-exec-launches-sourcepoint-with-10-million-series-a-funding-2015-6
http://www.businessinsider.com/former-google-exec-launches-sourcepoint-with-10-million-series-a-funding-2015-6
http://www.businessinsider.com/former-google-exec-launches-sourcepoint-with-10-million-series-a-funding-2015-6
https://github.com/agwlm/lenovo_crawler
http://www.nytimes.com/2015/08/20/technology/personaltech/ad-blockers-and-the-nuisance-at-the-heart-of-the-modern-web.html
http://www.nytimes.com/2015/08/20/technology/personaltech/ad-blockers-and-the-nuisance-at-the-heart-of-the-modern-web.html
http://www.nytimes.com/2015/08/20/technology/personaltech/ad-blockers-and-the-nuisance-at-the-heart-of-the-modern-web.html
https://wordpress.org/plugins/addblockblocker/
http://techcrunch.com/2015/07/22/adblock-plus-talks-content-blocking-and-the-tricky-shift-to-mobile/
http://techcrunch.com/2015/07/22/adblock-plus-talks-content-blocking-and-the-tricky-shift-to-mobile/
http://techcrunch.com/2015/07/22/adblock-plus-talks-content-blocking-and-the-tricky-shift-to-mobile/
http://www.alexa.com/topsites/category/Top/Arts/Music/Music_Videos
http://www.alexa.com/topsites/category/Top/Arts/Music/Music_Videos
https://github.com/aesuli/Amazon-downloader
http://antiblock.org/
https://github.com/mihirkelkar/crawl_groupon
http://www.infosecurity-magazine.com/news/data-theft-watch-web-scraping/
http://www.infosecurity-magazine.com/news/data-theft-watch-web-scraping/
http://blog.pagefair.com/2015/google-losing-billions-adblock-devils-deal/
http://blog.pagefair.com/2015/google-losing-billions-adblock-devils-deal/
http://blogs.wsj.com/cmo/2015/04/09/growth-of-ad-blocking-adds-to-publishers-worries/
http://blogs.wsj.com/cmo/2015/04/09/growth-of-ad-blocking-adds-to-publishers-worries/
http://www.bbc.com/news/technology-32511932
http://www.iab.com/news/q3adrevenue/
https://www.incapsula.com/blog/bot-traffic-report-2014.html
https://www.incapsula.com/blog/bot-traffic-report-2014.html
http://nodejs.org
http://removeadblock.com/
http://www.seleniumhq.org
http://forre.st/storage
http://blog.pagefair.com/2015/ad-blocking-report/
http://blog.pagefair.com/2015/ad-blocking-report/
https://www.scrapesentry.com/wp-content/uploads/2015/06/2015_The_Scraping_Threat_Report.pdf
https://www.scrapesentry.com/wp-content/uploads/2015/06/2015_The_Scraping_Threat_Report.pdf
https://www.scrapesentry.com/wp-content/uploads/2015/06/2015_The_Scraping_Threat_Report.pdf
https://github.com/tranberg/tScrape
http://www.usatoday.com/story/tech/2015/04/28/twitter-selerity-leak-tweets-earnings/26528903/
http://www.usatoday.com/story/tech/2015/04/28/twitter-selerity-leak-tweets-earnings/26528903/
http://www.usatoday.com/story/tech/2015/04/28/twitter-selerity-leak-tweets-earnings/26528903/
https://github.com/codelucas/yelpcrawl

	Introduction
	Motivation
	Ad-Blocking
	How Ads are Blocked

	Content-sensitive Web bots
	Our Solution: Web Page Randomization

	Web Page Randomization
	What to Randomize
	Interpreting Patterns in Blacklisting Rules
	Evaluating Filters on Popular Websites

	Server Side Randomization
	Randomizing Element Id and Class
	Fixing Static HTML Style Rules
	Randomizing Static URLs
	Transparent Proxy

	Preserving Client-side Functionalities and Handling Dynamically Loaded Elements
	Overriding Element Selectors
	Overriding Third-party JavaScript Library APIs
	Randomizing Dynamically Generated Elements

	Evaluation
	Implementation
	Ad-blocking Evasion
	Effectiveness
	Efficiency

	Web Bot Prevention

	Discussions
	Related Work
	Conclusion
	References

