
A Longitudinal Study of Vulnerable Client-side Resources and
Web Developers’ Updating Behaviors

Kyungchan Lim
University of Tennessee

Knoxville, USA
klim7@utk.edu

Yonghwi Kwon
University of Maryland

College Park, USA
yongkwon@umd.edu

Doowon Kim
University of Tennessee

Knoxville, USA
doowon@utk.edu

ABSTRACT
Modern Websites commonly rely on various client-side web re-
sources, such as JavaScript libraries, to provide rich and interactive
end-user web experiences. Unfortunately, anecdotal evidence shows
that improperly managed client-side resources could open up attack
surfaces. However, there is still a lack of a comprehensive under-
standing of the updating practices among web developers and the
potential impact of inaccuracies in Common Vulnerabilities and
Exposures (CVE) information on the security of the web ecosystem.
In this paper, we conduct a longitudinal (four-year) measurement
study of the security practices and implications on client-side re-
sources (e.g., JavaScript libraries and Adobe Flash) across the Web.
Specifically, we collect a large-scale dataset of 157.2M webpages
of Alexa Top 1M websites for four years in the wild. We find an
average of 41.2% of websites (in each year of the four years) carry at
least one vulnerable client-side resource (e.g., JavaScript or Adobe
Flash). Worse, we observe that vulnerable JavaScript library ver-
sions are persistently observed in the wild, even after months of
the release of their security patches. On average, we observe 531.2
days with 25,337 websites of the window of vulnerability, which
can be mitigated by simply applying the released security patches
immediately. Furthermore, we manually investigate the fidelity of
CVE (Common Vulnerabilities and Exposures) reports on client-
side resources, leveraging PoC (Proof of Concept) code. We find that
13 CVE reports (out of 27) have incorrect vulnerable version infor-
mation, which may mislead security-related tasks such as security
updates.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
Web Security, JavaScript Library, Adobe Flash, CVE

ACM Reference Format:
Kyungchan Lim, Yonghwi Kwon, and Doowon Kim. 2023. A Longitudinal
Study of Vulnerable Client-side Resources and Web Developers’ Updating
Behaviors. In Proceedings of the 2023 ACM Internet Measurement Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’23, October 24–26, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0382-9/23/10. . . $15.00
https://doi.org/10.1145/3618257.3624804

(IMC ’23), October 24–26, 2023, Montreal, QC, Canada. ACM, New York, NY,
USA, 19 pages. https://doi.org/10.1145/3618257.3624804

1 INTRODUCTION
The Internet (especially the Web) has become an essential part
of our lives as the number of Internet users worldwide in 2021
was 4.9 billion, about two-thirds of the global population [42, 103].
Websites leverage various techniques, such as client-side scripting
(JavaScript) and Cascading Style Sheets (CSS), to provide rich con-
tent to users. In particular, since its release in 1997 [1], JavaScript has
been a core technique for implementing dynamic website features.
To improve the productivity of development, the community has
created various JavaScript libraries such as jQuery and Bootstrap,
which now have become an essential part of the websites [48].

Unfortunately, those libraries often cause security concerns. Vul-
nerabilities of the widely-used libraries have been revealed and
publicly reported. For example, CVE-2018-92061 (with a high base
score of 9.82) [91] was found in a jQuery plugin, called jQuery-
File-Upload where adversaries can upload malicious files (e.g.,
backdoors) on servers [118]. Worse, the vulnerable jQuery plugin
was integrated into other high-profile Web projects (with hundreds
of millions of websites), such as WordPress, Drupal, and Joomla,
resulting in a significant security impact on the Web ecosystem.

To address such security concerns, the best practice for website
developers is to update vulnerable client-side resources such as
JavaScript libraries. Specifically, developers may need to check the
CVE (Common Vulnerabilities and Exposures) database to identify
and patch vulnerable resources, as CVE is considered the most
reliable vulnerability information for the public (including web de-
velopers). A CVE report includes what and where a vulnerability is
found (e.g., which library version is vulnerable) and how it has been
addressed (e.g., which library version has patched the vulnerability),
including the timeline of the actions. Unfortunately, it is known
that CVE reports in practice are often inaccurate [68]. However, it is
less clear how the potential security impact and implication of the
quality of the CVE information for the security of client-side web
resources on the entire web ecosystem. This motivates us to raise a
research question, how does the accuracy of the CVE information
impact the security of the web ecosystem?

Prior work [62, 82–84, 90, 92, 98, 100, 105, 109, 117] has studied
security issues of the client-side web resources (e.g., JavaScript).
Notably, many technical reports [14, 18, 38] cursorily revealed that

1CVE (Common Vulnerabilities and Exposures) is a standardized system that assigns
unique identifiers to known security vulnerabilities, facilitating their tracking and
management.
2CVSS (Common Vulnerability Scoring System) score, is a numerical value that quan-
tifies the severity and potential impact of a specific vulnerability.

https://doi.org/10.1145/3618257.3624804
https://doi.org/10.1145/3618257.3624804


IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

not every website consistently maintains the latest secure client-
side resources, particularly JavaScript libraries [82]. However, the
studies provide a limited perspective as they relied on a single
snapshot of dataset collection on a certain date, not from observation
for a longer period. Without a longitudinal analysis, the scope and
depth of the studies’ findings are also limited. For example, a single
snapshot cannot answer the question of how promptly (e.g., how
many days) the vulnerable client-side resources have been updated
– i.e., a window of vulnerability.

In this paper, we design a systematic, longitudinal measurement
study on the Alexa Top 1M websites for four years (Mar. 2018 –
Feb. 2022) to understand the security practices and implications
of client-side resources in the Web ecosystem. Specifically, among
the client-side resources, we mainly focus on analyzing the two
resources (JavaScript libraries and Adobe Flash applet) because the
two resources contain more critical security vulnerabilities than
other resources (e.g., CSS, XML, Favicon, etc.) and can have a greater
impact on the security of the Web ecosystem than other resources
do. With an emphasis on two client-side resources (JavaScript li-
braries and Adobe Flash applets), we particularly measure (1) how
the two vulnerable resources impact the Web ecosystem, (2) the
updating practices of insecure websites, and (3) the accuracy of the
CVE information.

Our study reveals that numerous websites in the wild still use
outdated, discontinued, vulnerable client-side resources (see Sec-
tions 6.3, 6.5, and 8), significantly impacting the security of the
Web ecosystem.3 For instance, an outdated and vulnerable jQuery
version (v1.12.4) has been dominant for four years. In other words,
even popular vulnerable libraries are not updated in a timely man-
ner (see Section 7); specifically, on average, it takes 531.2 days (17.4
months) to update the vulnerable version. Furthermore, we find
that many CVE reports contain inaccurate information (e.g., the vul-
nerable version information), potentially misinforming the public
and making it difficult to maintain websites secure (see Section 6.4).

Our contributions are summarized as follows:
• We conduct a longitudinal study on the security implications of
client-side resources in the wild for four years (Mar. 2018 – Feb.
2022) using our collected 157.2M landing webpages of Alexa Top
1M websites.

• We study insecure websites due to the vulnerable client-side re-
sources in the wild. First, an average of 41.2% of websites have
carried at least one vulnerability for four years. Second, the vul-
nerable client-side resources in such websites are updated with
significant delays to the latest versions; an average of 531.2 days
are taken to update the vulnerable versions.

• We reveal that many CVE reports contain inaccurate version
information, which may cause significant delays in updates. On
average, it takes 701.2 days to update vulnerable versions of
JavaScript libraries with the understated inaccurate CVE infor-
mation, compared to 510 days estimated to take to update the
versions if the correct CVE information is given.

• We discuss recommendations to enhance the security of client-
side resources in the Web ecosystem and share our source code
and our four-year data collection of Alexa top 1M domains at

3Note that the severity and security impact of the vulnerabilities of outdated resources
can vary. Some vulnerabilities can be exploited only under specific conditions. Further
details will be discussed in Section 9.

157.2M 
Index Pages 

Collecting Alexa 1M 
Webpages for 4 years

(Mar. 2018 – Feb. 2022)

Security Analysis

Filtering out 
Inaccessible domains

Overview of Client-Side Resources         [Section 5]

Update of Vulnerable JS. Libraries [Section 7]

Insecure Adobe Flash [Section 8]

Landscape of JS. Lib. Usages [Section 6.1]

Known Vulnerability in CVE [Section 6.2]

Dominant & Discontinued Lib.      [Section 6.3]

Accuracy of CVE Information [Section 6.4]

Potential Sec. Threats of Ext. Lib. [Section 6.5]

Vulnerable JavaScript Libraries [Section 6]

Figure 1: Overview of Our Security Analysis Study on Client-
side Resources.

“https://moa-lab.net/measurement-client-side-resources/”, in or-
der to facilitate future research in the community.

2 BACKGROUND
This section provides a brief overview of two client-side resources
of our focus (JavaScript library and Adobe Flash) that could have
vulnerabilities and lead to security issues.

2.1 JavaScript Library
Web developers often use JavaScript libraries which are essentially
a library of pre-written code, providing common functionalities.
For example, jQuery [76] is one of the most popular JavaScript
libraries that help simplify HTML DOM tree manipulation and
traversal, CSS animation, etc.
Versioning. JavaScript library projects typically use Semantic
Versioning [108] where a version consists of MAJOR. MINOR.PATCH
(e.g., 2.1.12). The patch and minor versions increase when bugs are
fixed and new features are added, respectively; these do not change
their public APIs. The major version is for significant changes to
libraries (e.g., public API interface changes causing incompatibility).
The version information typically is observable in the library’s URL
(as a part of a file name or in a URL path).
Delivery of Externally-Hosted Library. The content delivery
network (CDN) is a common technique used to efficiently deliver
externally-hosted JavaScript libraries to clients. Essentially, it is a
geographically distributed network service that delivers content
from servers close to each end-user, speeding up web content de-
livery by reducing the physical distance between a server and an
end-user. Popular JavaScript library projects (e.g., jQuery) often
have their own CDNs, while other open source projects are hosted
on the free and public CDNs (e.g., cdnjs [65] and JSDelivr [80]).

https://moa-lab.net/measurement-client-side-resources/


A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Vulnerability Reporting and Patching. Vulnerabilities in Java-
Script libraries are typically reported to the CVE system; each vul-
nerability is assigned a unique CVE identifier and publicly released.
For example, CVE-2020-11022 [30] describes that jQuery versions
v1.2 – v3.5.0 (excluding v3.5.0), had a vulnerability that could exe-
cute untrusted code due to a buggy regular expression in its DOM
manipulation method. A new version of jQuery was released with
the fix of the vulnerability. Web developers are recommended to
update jQuery to the new version.
Security Best Practice for Web Developers. Web developers
are strongly advised to regularly update the JavaScript libraries
used in their websites. Outdated JavaScript libraries may contain
security loopholes that can be exploited by adversaries. Another
critical security threat can arise when externally hosted JavaScript
libraries are compromised to deliver malicious payloads. To prevent
such security threats, web developers are recommended to use
Subresource Integrity (SRI) [89]. Specifically, web developers specify
the hash value of JavaScript libraries in the integrity attribute
of the <script> tag. <link> tag also supports the integrity
attribute for the CSS files. Then, the web browser checks the hash
values in the integrity attribute with the downloaded client-side
resources’ hash values, to ensure the resources are not modified
(i.e., compromised).

2.2 Adobe Flash Applet
Since its introduction in 1996, Adobe Flash has become popular in
delivering dynamic multimedia web content across all browsers
and platforms [70]. Under the hood, Adobe Flash Player, a web
browser plug-in, runs Flash applet files (.swf). Unfortunately, it
has become significantly attractive to adversaries: 1,118 CVEs have
been publicly reported as of May 26, 20234 [2–6, 8, 12, 16, 19, 20].
Anecdotal evidence has shown that the Adobe Flash vulnerabili-
ties helped adversaries successfully penetrate the RSA network in
2011 [71, 81].

Adobe publicly announced that Flashwas no longer officially sup-
ported after Dec. 31, 2020 [56]. Adobe asked developers to replace it
with HTML5 and end-users to uninstall it for safety reasons. Accord-
ingly, all major web browsers officially removed the Flash Player
components in Jan. 2021 [66, 73, 88]. Windows also removed Adobe
Flash products through Windows Update in Jan. 2021 [49]. This
essentially indicates that the Web is recommended not to use Flash.

3 MOTIVATION & RESEARCH QUESTION
Modern websites intensively rely on client-side web resources such
as JavaScript libraries to provide dynamic, rich web experience and
content to clients. Unfortunately, adversaries have been able to
conduct attacks against clients by exploiting vulnerabilities of the
client-side web resources (e.g., a vulnerability, CVE-2018-9206 [91],
in jQuery enabled adversaries to install backdoors).

While there have been prior studies that analyzed the various
security issues of client-side web resources [62, 82–84, 90, 92, 98,
100, 105, 109, 117], the analysis was based on a single snapshot of
data collection (e.g., on a certain day), which limited its scope and
depth in understanding the entire client-side resource ecosystem.

4https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=adobe+flash

Particularly, there is a lack of understanding of how web develop-
ers reactively address vulnerabilities in client-side resources; for
example, how long it has taken for web developers to update the
vulnerable versions.

Moreover, we empirically observe that somewebsites continue to
employ Adobe Flash applications and a certain platform application
actively promotes the use of Adobe Flash, despite the discontinua-
tion of official support. However, the reasons behind the persistent
usage of Adobe Flash and the contributing factors in these contexts
remain relatively unexplored.

To this end, to better understand the entire ecosystem and web
developers’ security behaviors, we design a systematic, longitudinal
study of the security impact on the client-side resources with an
emphasis on the web developers’ updating behaviors, the accuracy
of CVE information, and the persistent usage of Adobe Flash.
Our Research Questions. We aim to understand the longitudinal
security issues and implications of the client-side web resource
ecosystem from various security perspectives. In particular, we aim
to answer the following research questions.
• RQ1) How prevalent are insecure websites in the wild due to
vulnerable JavaScript libraries?

• RQ2)How quickly do the insecure websites (i.e., web developers)
react to their vulnerable client-side resources and update them
upon the release of the vulnerabilities and patches?

• RQ3) How does the accuracy of the CVE report impact the secu-
rity of websites and developers’ updating behaviors of vulnerable
client-side resources as they rely on CVE information?

• RQ4) How does Adobe Flash exhibit vulnerabilities and what
factors contribute to these vulnerabilities?

Research Focus. Figure 1 provides an overview and focus of
our measurement study. Note that we focus on the two client-side
resources (JavaScript libraries and Adobe Flash applets) because
JavaScript libraries are the most used client-side resources on the
Web. Also, the two resources contain more critical security vulnera-
bilities than other resources (e.g., CSS, XML, Favicon, etc.) and can
have a greater impact on the security of the Web ecosystem than
other resources do. Note that for JavaScript libraries, we only focus
on the libraries for the client-side environment, not those for the
server-side environment such as Node.js.

4 DATASET COLLECTION
Our web crawler is written in the Go programming language. The
crawler 1) periodically accesses Alexa 1M domains, 2) downloads
the landing page (e.g., index.html) from each domain, and 3) iden-
tifies client-side resources and their versions from the downloaded
webpages. We also collect the vulnerability information of affected
resources’ versions from multiple third-party websites for cross-
reference, such as the National Vulnerability Database (NVD) [45],
CVE MITRE Corporation [40], cvedetails.com [41], and SNYK Vul.
DB [50].

4.1 Landing Page Collection
We collect the webpages of Alexa Top 1M domains5 on a weekly
basis for four years (Mar. 2018 to Feb. 2022; 207 weeks); specifically,

5We utilize the single snapshot of the Alexa Top 1M domains of Mar. 2018.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=adobe+flash


IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

our Web crawler (implemented in Go using the net/http library)
visits each Alexa 1M domain over HTTPS and collects the landing
page of each domain every week. During the four-year data col-
lection, we had very few times experienced network issues (e.g.,
unavailable network connection). We prune out 6 snapshots (out of
207 snapshots) and remove inaccessible domains from the collected
dataset.
Filtering Inaccessible Domains. As expected, for four years (our
collection period), we observe a number of inaccessible domains
due to expired domains or unstable web servers. Particularly, we ob-
serve some of the lower-ranked domains are unstable in providing
their services to clients. Moreover, we occasionally observe empty
HTML pages and anti-crawling-bots blocking techniques (e.g., ‘4xx’
error code).

As such inaccessible domains may introduce bias into our analy-
sis of the collected dataset, we conservatively remove them from our
collected dataset. Specifically, we filter out the domains responding
with error pages (e.g., with ‘4xx’ error status code) or empty pages
(less than 400 bytes) for the four consecutive weeks in the last month
of our data collection period. The reason why we consider 400
bytes as a threshold for the empty/error pages is that we manually
check all HTML pages with less than 400 bytes and observe that
all of them are either error or empty pages. Note that we manually
check all of such pages in our dataset and confirm that they do not
contain content related to the website’s original purpose (i.e., ser-
vice). Instead, they present error messages (with 200 status codes)
from anti-crawling-bots blocking techniques, saying “Not allowed
to access.” To this end, we eventually collect 157,242,243 (157.2 M)
HTML files for the 201 weeks of the four years. On average, we
consistently collect the index pages from the 782,300 domains (i.e.,
websites) every week, as shown in Figure 2(a). The proportion of
domains that we successfully collected is similar to what has been
reported in prior work [99, 104, 105].

4.2 Identifying Resources and Versions
To better understand the current Web ecosystem, we first need to
know what client-side resources (e.g., JavaScript libraries, Adobe
Flash applets, etc.) are used in each website from our collected
HTML files and identify their versions from the resources. The
identifications of client-side resources and their versions can help
answer our research questions (RQ1, RQ2, and RQ4). We utilize a
website profiling tool, called Wappalyzer [51] that is widely used
in prior work [61, 67, 69, 74, 85, 96, 106] and can identify client-
side resources and their versions on webpages. Specifically, given a
static HTML file, Wappalyzer uses regular expressions to identify
the client-side web resources such as JavaScript libraries, Adobe
Flash, CSS, and their versions in the given HTML file.

4.3 Collecting Vulnerability Information
After identifying client-side resources and their versions, we at-
tempt to identify vulnerabilities in each version of the client-side
resources and collect the vulnerability information to answer RQ1,
RQ2, RQ3, and RQ4. Since there is no centralized database for vul-
nerabilities, we manually search each client-side resource with its
versions and collect information on vulnerabilities6 from National
6We focus on only vulnerabilities in conjunction with our collection period.

N
um

be
r o

f D
om

ai
ns

0

200,000

400,000

600,000

800,000

1,000,000

Date

Jul Jan Jul Jan Jul Jan Jul Jan
2018 2019 2020 2021

(a) Our Collected Websites for Four Years.

JavaScript
CSS
Favicon

imported-HTML
XML
SVG

Flash
AXD

# 
of

 D
is

tin
ct

 D
om

ai
ns

 (%
)

0

20

40

60

80

100

Date

Jul Jan Jul Jan Jul Jan Jul Jan
2018 2019 2020 2021

(b) Top 8 Client-side Resource Usages (%).

Figure 2: OurCollectedWebsites&Top 8Client-sideResource
Usages. (a) On average, 782,300 websites are collected every
week for four years (201 weeks). (b) On average, 94.7% of
websites (740,823 out of 782,300) include JavaScript.

Vulnerability Database (NVD) [45], CVE MITRE Corporation [40],
cvedetails.com [41], and SNYK Vul. DB [50].

5 OVERVIEW OF RESOURCES
From our collected dataset, we first measure various types of client-
side resources that have been used in the web ecosystem. Figure 2(b)
shows the top 8 client-side resources. JavaScript is the most used
resource in the wild; on average, 94.7% of websites have at least
more than one embedded client-side JavaScript code in their HTML
code or URLs of external client-side JavaScript files. CSS (88.4%)
is the next most frequently used resource, followed by Favicon
(55.0%), and imported-HTML7 (31.8%). XML occupies 25.6%, and all
the remainder (i.e., SVG, Adobe Flash, and AXD) account for less
than 2.4%.
JavaScript Library. Of 94.7% (740,823 out of 782,300) websites
that use JavaScript, 97.04% (718,895 out of 740,823) websites use
JavaScript libraries, meaning that the libraries are incredibly preva-
lent in practice. We further investigate popular JavaScript libraries
in the dataset. In total, we find 79 distinct libraries in our dataset,
and Table 1 shows the top 15 of them. Specifically, 64.0% of the web-
sites (500,364 out of 782,300) use jQuery, followed by Bootstrap
(21.5%), and jQuery-Migrate (20.8%). We further discuss the lon-
gitudinal landscape of JavaScript libraries in Section 6.1.

From our observations, we raise follow-up research questions re-
garding JavaScript libraries;RQ1-1)Howmany vulnerable JavaScript
libraries are used in thewild?;RQ2-1)How the vulnerable JavaScript
libraries are patched in practice?;RQ3-1)How does the CVE report
impact the practices for securing websites? In Section 6, we aim to
answer those research questions using our dataset.

7We infer this from the file extension (.php) in HTML tags (e.g., <script> or <link>).
Note that those PHP scripts are used to dynamically generate client-side resources
such as JavaScript and CSS.



A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Inclusion Type Version

Library Avg. Usage (%) Avg. Int.1 Avg. Ext.1 Avg. CDN1,2 Found3 Total4 Avg. Dominant Latest5 # Vul.6

jQuery [76] 500,364 (64.0%) 59.2% (9.2%) 40.8% (3.9%) 96.1% (6.9%) 81 81 v1.12.4 (14.7%) v3.6.0 8
Bootstrap [63] 168,088 (21.5%) 71.6% (8.2%) 28.4% (11.8%) 70.7% (10.3%) 62 64 v3.3.7 (24.3%) v5.1.3 7
jQuery-Migrate [78] 163,386 (20.8%) 88.4% (18.1%) 11.62% (44.4%) 42.6% (60.3%) 16 16 v1.4.1 (50.4%) v3.3.2 1
jQuery-UI [79] 95,058 (12.2%) 49.7% (8.9%) 50.3% (18.9%) 91.9% (21.6%) 47 47 v1.12.1 (14.2%) v1.13.1 6
Modernizr [86] 74,129 (9.5%) 78.1% (20.1%) 21.9% (18.9%) 68.2% (27.9%) 26 43 v2.6.2 (14.8%) v3.11.8 0
JS-Cookie [44] 25,601 (3.3%) 80.5% (14.2%) 19.5% (53.3%) 86.5% (59.2%) 23 23 v2.1.4 (86.4%) v3.0.1 0
Underscore [107] 19,614 (2.5%) 83.2% (17.3%) 16.8% (47.3%) 49.7% (49.2%) 15 75 v1.8.3 (9.5%) v1.13.2 1
Isotope [75] 13,868 (1.8%) 90.8% (6.8%) 9.2% (35.1%) 24.6% (21.7%) 28 42 v3.0.4 (15.6%) v3.0.6 0
Popper [94] 13,539 (1.7%) 46.9% (79.7%) 53.1% (80.8%) 92.0% (80.2%) 46 133 v1.14.3 (24.3%) v2.11.2 0
Moment.js [87] 12,827 (1.6%) 70.4% (14.2%) 29.6% (26.8%) 71.6% (27.3%) 63 89 v2.18.1 (8.2%) v2.29.1 2
RequireJS [97] 12,541 (1.6%) 64.8% (1.9%) 35.2% (82.6%) 28.1% (21.0%) 36 37 v2.3.6 (32.3%) v2.3.6 0
SWFObject [17]7 10,096 (1.3%) 74.2% (55.5%) 25.8% (48.7%) 63.3% (69.7%) 3 3 v2.2 (46.9%) v2.2 0
Prototype [95] 7,782 (1.0%) 81.2% (54.8%) 18.8% (37.5%) 57.9% (47.8%) 11 11 v1.7.1 (43.4%) v1.7.3 2
jQuery-Cookie [77]7 7,582 (1.0%) 63.3% (14.3%) 36.7% (9.0%) 86.5% (10.6%) 7 7 v1.4.1 (64.4%) v1.4.1 0
Polyfill.io [93] 6,755 (0.9%) 14.5% (69.6%) 85.5% (40.7%) 37.8% (56.8%) 3 3 v3 (65.5%) v3 0
1: The number in parentheses indicates how much the usage has increased from our first observation date;  increase,  decrease.
2: Out of Externally-Hosted JavaScript Libraries. 3: Number of versions found in our dataset. 4: Total number of JavaScript library versions.
5: Latest version in our collected dataset. 6: Number of vulnerabilities reported during our observation period. 7: No longer maintained.

Table 1: Top 15 JavaScript Usage, Inclusion Type, Version, and Vulnerabilities.

jQuery
jQuery-Migrate

Bootstrap
jQuery-UI

Modernizr

Drop in Usage Starts

%
 o

f U
si

ng
 J

S 
lib

ra
rie

s

0%

20%

40%

60%

Date

Jul Jan Jul Jan Jul Jan Jul Jan
2018 2019 2020 2021

(a) JavaScript Library Usage (Top 5) for 4 Years
JS-Cookie
Underscore

Isotope
Popper

Moment.js
RequireJS

SWFObject
Prototype

jQuery-Cookie
Polyfill.io

%
 o

f U
si

ng
 J

S 
lib

ra
rie

s

0%

1%

2%

3%

4%

Date

Jul Jan Jul Jan Jul Jan Jul Jan
2018 2019 2020 2021

(b) JavaScript Library Usage (Top 6 to 15) for 4 Years

Figure 3: Percent of JavaScript Library Usage.

Adobe Flash. As shown in Figure 2(b), on average, 0.7% (5,678
out of 782,300) websites use Adobe Flash. We ask a follow-up ques-
tion regarding Adobe Flash; specifically, RQ4-1): What factors
contribute to the usage of Flash even after the suspension of their
official support?

6 VULNERABLE JAVASCRIPT LIBRARIES
We measure the JavaScript libraries to understand vulnerable web-
sites due to vulnerable JavaScript libraries.

6.1 Landscape of JavaScript Library Usage
We first understand the current statistics of the JavaScript libraries’
usage before we further investigate the security issues. We find an
average number of 20.9 JavaScript libraries are included in a single

website, and it is one of the dominant client-side resources in the
wild. We first study the current landscape of JavaScript libraries
such as usage trends, inclusion types, active/discontinued projects,
and insecure JavaScript library versions with a focus on the Top 15
JavaScript libraries. These Top 15 libraries account for 96.5%.
jQuery & Plugins. jQuery is one of the most popular JavaScript
libraries. It accounts for 64.0% (500,364 out of 782,300) of websites
as shown in Table 1. While the usage of jQuery has been steadily
decreasing over time from 67.2% (528,841) in Mar. 2018 to 63.1%
(502,185) in Feb. 2022, as shown in Figure 3, it is still the most
dominant library.

Observe that the thirdmost popular library is a jQuery-Migrate
[78] (used by 20.8% of websites on average), which is a jQuery plu-
gin. The plugin aims to seamlessly migrate deprecated APIs of
jQuery older than 1.9 so that the developers can use newer and
secure jQuery versions without having compatibility issues. The
plugin’s popularity suggests that the JavaScript library update is-
sues are critical in practice.
jQuery-Migrate Usage Drop in Aug 2020. Figure 3(a) shows
(marked in the red box) a noticeable trend: the usage of jQuery-
Migrate sharply dropping by approximately 10% for four months
(Aug. 2020 – Dec. 2020), and then getting back (i.e., went up by the
10%) in Dec. 2020.

Our investigation on this dropping trend reveals that WordPress
plays an important role. Specifically, WordPress versions earlier
than v5.5 have been using jQuery-Migrate to handle compati-
bility issues. Then, WordPress v5.5 disables jQuery-Migrate by
default, hoping web developers update the outdated jQuery code
themselves [113]. This results in the dropping trend. Unfortunately,
disabling the library resulted in numerous compatibility issues on
websites using plugins and themes dependent on the old version of
jQuery. As a temporary solution, WordPress introduced a new plu-
gin ‘jQuery Migrate Helper’ which essentially implements the
same functionality of jQuery-Migrate [114]. In the next version
(WordPress v5.6), WordPress officially re-includes jQuery-Migrate
as a default library on Dec. 8th, 2020, leading to jQuery-Migrate’s



IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

usage increasing from Dec. 15th, 2020. As of May 2023, the latest
WordPress 6 still includes jQuery-Migrate. One vulnerability of
the library related to ‘CWE-79: Improper Neutralization of Input
During Web Page Generation (Cross-site Scripting)’ is reported
from snyk.io [9], the GitHub issue [11] and a blog post [101], but
no CVE ID is assigned to the vulnerability.
Popular JavaScript Libraries and Trends. Among the top 15
JavaScript libraries (in Figure 3), all libraries’ popularities have
been decreasing or steady except for four libraries, JS-Cookie,
Polyfill, Underscore, and Popper. It may suggest that the secu-
rity of a few popular JavaScript libraries can have a more significant
impact than other libraries. Polyfill [93] includes polyfill code
(e.g., implementing the text shadow effect) for web browsers that
do not support it. JS-Cookie [44] is a helper library for cook-
ies. Underscore [107] provides various functional programming
helpers (e.g., map and reduce). Popper is a UI helper for tooltips
and popovers [94].
Inclusion Type: Internal vs. External. Recall that there are two
inclusion types: internal and external. Table 1 lists the percentage of
the inclusion types for the JavaScript library. During our four-year
observation period, the internal inclusion type (on average, 67.7%,
681,401) is more frequently used than the external type (on average,
32.3%, 325,520). However, external inclusion is also substantially
used in popular JavaScript libraries: jQuery-UI (50.3%), Popper
(53.1%), and Polyfill (85.5%). Note that, compared to internal in-
clusion, external inclusion has an additional attack surface because
the systems delivering the libraries can be compromised, which
will be discussed more in Section 6.5.

Table 1 shows 84.8% of the external inclusions are delivered by
CDNs. In particular, over 90% of the external inclusions of jQuery,
jQuery-UI, and Popper are delivered by CDNs. The CDN usage
has also been maintained steadily during our observation period.
Table 5 presents the top 3 CDNs for libraries: ajax.googleapi.com,
code.jquery.com, and cdnjs.cloudflare.com. Note that in the jQuery-
Migrate case, wp.com is the most used one because the plugin is
provided by WordPress [113], which is discussed more in Section 7.

6.2 Known Vulnerability using CVE Report
We utilize CVE (Common Vulnerabilities and Exposures) reports to
identify vulnerable JavaScript libraries. CVE is a de-facto standard
vulnerability reporting platform. Among the top 15 JavaScript li-
braries in Table 1, we find 27 CVE reports on seven libraries. Most
vulnerabilities (20 out of 27) are related to XSS attacks, while others
include one prototype pollution attack, one arbitrary code injection
attack, two resource exhaustion attacks, one regular expression
denial of service (ReDOS), and one missing authorization attack.
Vulnerable Websites. We find an average of 41.2% of websites
have libraries including at least one reported vulnerability (i.e., CVE)
in our dataset during our four-year observation period. This shows
that even a few vulnerabilities impact many real-world websites,
suggesting the significant security impact of vulnerable JavaScript
libraries. As shown in Figure 12, for four years, an average of 0.79
vulnerabilities are carried per website (median: 0.75, max: 15.6).
Updating the vulnerable versions is further discussed in Section 7.
jQuery & Plugins. jQuery has eight reported CVEs. In addition,
its two plugins, jQuery-Migrate and jQuery-UI, have one and

six vulnerabilities, respectively. On average, the vulnerable jQuery
versions account for 37.7% (281,144 out of 782,300) of websites.
CVE-2020-11023 [32] is the most impactful vulnerability that affects
56.2% of websites, including jQuery versions between v1.0.3 and
v3.5.0, followed by CVE-2020-11022 [31] (56.1%) and CVE-2019-
11358 [28] (54.6%). Evenworse, a vulnerability (CVE-2012-6708 [23])
still accounts for 12.5% even though the vulnerability was reported
more than a decade ago (in Jun. 2012).
Still Unpatched Library. All libraries we have analyzed in the
paper, have been fixed, and the corresponding patches have been
officially released, except for Prototype (CVE-2020-27511 [35],
Regular Expression Denial of Service, or ReDOS). The vulnerability
is critical as it affects all versions of the Prototype library. Unfor-
tunately, it seems the vulnerability does not get proper attention
from the developers. While we even find a discussion thread and
a pull request for a bug fix [72] initiated in 2021, but it is not yet
accepted and merged into the main repository.8 Such an unpatched
vulnerability published in a CVE report can be exploited by adver-
saries. Hence, the CVEs and their corresponding patches indicate
the security of JavaScript libraries in practice.

Takeaway:We observe a large number of websites (41.2%) in the
wild contain vulnerable JavaScript libraries, that can be exploited
by adversaries. The vulnerabilities are from high-profile libraries
such as jQuery.

6.3 Dominant Vulnerable Versions &
Discontinued Library

Dominant Insecure Versions. Table 1 lists the most dominant
version of each JavaScript library during our four-year observation
period. Specifically, jQuery version 1.12.4, released in May 2016,
is still dominant in the wild (accounting for 28.5% of websites).
Unfortunately, this version has four reported vulnerabilities: three
XSS (CVE-2020-11023 [32], CVE-2020-11022 [31], and CVE-2015-
9251 [24]) and one Prototype Pollution (CVE-2019-5428 [28]). While
the newer versions, jQuery 3.0 (patched CVE-2015-9251 [24]) and
3.5 (patched all four vulnerabilities) are released in Jun 2016 and
Apr. 2020, the old version (v1.12.4) is still dominant in the wild.

We further investigate various web developer communities and
identify that the compatibility issues caused by the upgrade are
a major concern [7, 27, 34, 47]. The compatibility issues are one
of the reasons that lead to the dominant usage of such outdated
JavaScript libraries. For example, to resolve compatibility issues,
jQuery-Migrate is developed and publicly released. This specific
version (v1.4.1), released in May 2016, accounts for 50.0% of the
total usage and helps resolve the compatibility issues resulting
from jQuery v3.0 major changes since v3.0 is not fully compatible
with jQuery before v1.12.3 or v2.2.3. Even though jQuery libraries
in websites are updated to v3.0, most websites still need jQuery-
Migrate v1.4.1 to use the legacy functions of jQuery before v1.12.3
or v2.2.3. This indicates that updating versions does not mean that
legacy code is no longer used because such a library helps web
developers use the legacy code of outdated libraries.

8We find that the project is not particularly active, and responses are slow. The last
commit on the official repository of this library was in Apr. 2017.



A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

CVE Vulnerable Ver. True Vulnerable Ver.

Library Ver. from CVE # of Website Ver. # of Website Patched Ver. Disclosed1 Patched2 Attack Type CVE ID

jQuery

< 1.9.0 60,956 (12.2%) < 3.6.0 291,579 (58.3%)  1.9.0 05/19/2020 01/15/2013 XSS CVE-2020-7656
1.0.3 ∼ 3.5.0 281,144 (56.2%) 1.4.0 ∼ 3.5.0 276,956 (55.4%)  3.5.0 04/10/2020 04/10/2020 XSS CVE-2020-11023
1.2.0 ∼ 3.5.0 280,968 (56.1%) 1.12.0 ∼ 3.5.0 131,284 (26.2%)  3.5.0 04/29/2020 04/10/2020 XSS CVE-2020-11022

< 3.4.0 273,092 (54.6%) – – 3.4.0 03/26/2019 04/10/2019 Prototype Pol.† CVE-2019-11358
1.12.0 ∼ 3.0.0 88,757 (17.7%) – – 3.0.0 06/26/2015 06/09/2016 XSS CVE-2015-9251
1.4.2 ∼ 1.6.2 10,414 (2.1%) 1.5.0 ∼ 2.2.4 214,078 (42.9%)  1.6.2 09/01/2014 06/30/2011 XSS CVE-2014-6071

< 1.9.1 62,431 (12.5%) < 1.9.0 60,956 (12.2%)  1.9.1 06/19/2012 02/04/2013 XSS CVE-2012-6708
< 1.6.3 16,857 (3.4%) – – 1.6.3 06/05/2011 09/01/2011 XSS CVE-2011-4969

Bootstrap

< 3.4.1, < 4.3.1 46,545 (27.7%) – – 3.4.1, 4.3.1 02/11/2019 02/13/2019 XSS CVE-2019-8331
< 3.4.0 38,827 (23.1%) 3.2.0 ∼ 3.4.0 36,019 (21.4%)  3.4.0 08/13/2018 12/13/2018 XSS CVE-2018-20676
< 3.4.0 38,827 (23.1%) 3.2.0 ∼ 3.4.0 36,019 (21.4%)  3.4.0 01/09/2019 12/13/2018 XSS CVE-2018-20677
< 4.1.2 46,529 (27.7%) 2.3.0 ∼ 4.1.2 46,287 (27.5%)  4.1.2 05/29/2018 07/12/2018 XSS CVE-2018-14042
< 4.1.2 46,529 (27.7%) – – 4.1.2 05/29/2018 07/12/2018 XSS CVE-2018-14041
< 4.1.2 46,529 (27.7%) 2.3.0 ∼ 4.1.2 46,287 (27.5%)  4.1.2 05/29/2018 07/12/2018 XSS CVE-2018-14040
< 3.4.0 38,827 (23.1%) 2.1.0 ∼ 3.4.0 38,748 (23.1%)  3.4.0 06/27/2016 12/13/2018 XSS CVE-2016-10735

jQuery-Migrate < 1.2.1 956 (0.6%) 1.0.0 ∼ 3.0.0 95,165 (62.8%)  1.2.1 04/18/2013 09/16/2007 N/A*

jQuery-UI

< 1.10.0 13,948 (14.7%) – – 1.10.0 09/02/2010 01/17/2013 XSS CVE-2010-5312
< 1.10.0 13,948 (14.7%) – – 1.10.0 11/26/2012 01/17/2013 XSS CVE-2012-6662
< 1.12.0 42,856 (45.1%) 1.10.0∼1.13.0 43,312 (45.6%)  1.12.0 07/21/2016 07/08/2016 XSS CVE-2016-7103
< 1.13.0 57,261 (60.2%) – – 1.13.0 10/27/2021 10/07/2021 XSS CVE-2021-41182
< 1.13.0 57,261 (60.2%) – – 1.13.0 10/27/2021 10/07/2021 XSS CVE-2021-41183
< 1.13.0 57,261 (60.2%) – – 1.13.0 10/27/2021 10/07/2021 XSS CVE-2021-41184

Underscore 1.3.2 ∼ 1.12.1 1,930 (9.84%) – – 1.12.1 03/02/2021 03/19/2021 Arb. Code Inj.‡ CVE-2021-23358

Moment.js < 2.19.3 4,322 (33.7%) – – 2.19.3 09/05/2017 11/29/2017 Res. Exhaust.# CVE-2017-18214
< 2.11.2 2,115 (16.5%) 2.8.1∼2.15.2 2,174 (17.0%)  2.11.2 01/26/2016 2/7/2016 Res. Exhaust.# CVE-2016-4055

Prototype ≤ 1.7.3 7,782 (100%) All versions 7,782 (100%) N/A∗∗ 06/21/2021 N/A∗∗ ReDOS CVE-2020-27511
< 1.6.0.1 4 (0.1%) – – N/A∗∗∗ 02/03/2020 N/A∗∗ Missing Auth.⋄ CVE-2020-7993

*: No CVE ID is assigned (vulnerability was found from snyk.io and GitHub issue.) ∗∗: No patched versions are available. ∗∗∗: Affected version is no longer available.
1: Disclosed Date. 2: Patched Date. †: Prototype Pollution. ‡: Arbitrary Code Injection. #: Resource Exhaustion. ⋄ : Missing Authorization.
: More versions are vulnerable than CVE’s version (understated version). : Fewer versions are vulnerable than CVE’s version (overstated version).

Table 2: Vulnerabilities of Top 15 JavaScript Library. Among the top 15 libraries in Table 1, seven libraries are publicly reported
to contain 28 vulnerabilities. The affected versions of the 12 vulnerabilities are incorrect.

Discontinued Library Projects. As shown in Table 1, we observe
two discontinued JavaScript library projects: jQuery-Cookie [77]
and SWFObject [17]. jQuery-Cookie is a jQuery plugin to help
easily manage cookies. Although this library project is no longer
maintained since 2015 (officially migrated and renamed to a new
project, JS-Cookie [44]9), we observe many websites (7,582 web-
sites) still use this discontinued library. We also measure how many
websites migrated to JS-Cookie as recommended. We find, in total,
only 7,800 websites (39% of the total 19,992 websites using jQuery-
Cookie) are migrated to JS-Cookie. Note that 61% of websites still
use the legacy library even after 7 years, meaning that updating
JavaScript libraries is extremely slow in practice. Moreover, discon-
tinued library projects typically do not address or patch the bugs if
new bugs are identified. Developers are either recommended to use
a newly migrated project [77] or use it with their own risk [17].

Another discontinued project is SWFObject, a JavaScript library
to play Adobe Flash content on a webpage. As briefly discussed
in Section 2.2, Adobe Flash is officially no longer supported by
Adobe, and major web browsers remove the Flash components.
While this library project has been no longer maintained since 2013,
it is still in use: an average usage of 1.3% (10,096 out of 782,300,

9As of May 2023, JS-Cookie is an active project; the recent commit was on Apr 24,
2023 [39].

ranked 12th) websites in our collected dataset. We find that Word-
Press plugins for SWFObject play a significant role in this Flash
ecosystem; an average of 22.3% websites use WordPress plugins
out of the total number of websites using the SWFObject library.
We also observe that 12.7% of the SWFObject is delivered by the
Google CDN (ajax.googleapis.com). We informed Google that
the project is discontinued and potentially insecure and may re-
quire further actions (e.g., warning users or finding an alternative).
We discuss the possible suggestions regarding the discontinued
projects in Section 9.

Takeaway: The dominant versions across all libraries are out-
dated and contain multiple vulnerabilities. We observe that back-
ward compatibility is a major reason for preventing the update.
Worse, 2.1% websites use discontinued libraries, exposing them
to potential vulnerabilities.

6.4 Accuracy of CVE Vulnerability Info.
CVE is critical information for understanding vulnerable programs
and websites, potentially impacting various security practices such
as updating. We aim to understand how reliable the version infor-
mation in CVE reports is. As web developers may rely on CVE
reports to measure how vulnerable the JavaScript libraries they



IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

1.0.0 3.6.0

1.0.3

1.2.0

1.4.2

3.5.0

2.2.4

CVE-2020-7656

CVE-2020-11023
1.12.0

1.9.11.9.0

1.4.0

1.9.1

1.5.0
CVE-2020-11022

CVE-2014-6071

CVE-2012-6708

3.5.0

1.6.2

1.0.0

1

2

3

4

5

Disclosed Vulnerable Versions Understated Versions Overstated Versions

Figure 4: Comparison of jQuery Disclosed Vulnerable Ver-
sions (Upper line) and Understated/Overstated Versions
(Lower line). The Understated Versions (red stripes) represent
the vulnerable versions we newly revealed. The Overstated
Versions (blue stripes) indicate the versions we revealed are
not vulnerable.

use are. Incorrectly stated versions of CVE may impact subsequent
decisions.
Setting Version Validation Experiment. We manually investi-
gate each CVE to validate the described vulnerability and affected
versions using proof of concept (PoC) code in our controlled ex-
periment environment. We set up the controlled experiment en-
vironment with each vulnerable library version and its required
dependency. Particularly, for the jQuery vulnerabilities, in total,
we set up 85 different environments for each different version from
v1.0.0 to the latest version (v3.7.0, as of May 2023).

We find and utilize the existing seven PoC codes out of 27 CVEs
(CVE-2020-7656 [29], CVE-2014-6071 [13], CVE-2018-20677 [25],
CVE-2018-14040 [26], CVE-2016-10735 [22], CVE-2016-7103 [15],
and jQuery-Migrate vulnerability [10]) For those PoCs that we
initially failed to reproduce, we manually analyze the vulnerability
and reimplement new PoC code. Particularly, for CVE-2020-7656 of
jQuery, the existing PoC [29] described in the CVE report does not
properly reproduce the vulnerability. Therefore, we reimplement
the PoC by removing the jQuery selector from the existing PoC
code (Listing 1 and Listing 2 in Appendix).
Incorrect CVE information. The version information can be
incorrect in two ways: (1) CVEmay understate the version, meaning
more versions can be affected but not known to the public. (2) CVE
may overstate the version, meaning that fewer versions are affected
by the vulnerability than what is known to be public.
• Understated versions may cause delays in vulnerable websites’
updates, as web developers do not realize that they use vulnerable
libraries. For example, while CVE-2020-7656 mentions that it only
affects 40 versions (lower than 1.9.1), from our experiments we
find out that 79 versions (higher versions than 1.9.1, such as
1.10.1) are also affected by the vulnerability. This would make
developers using version 1.10.1 believe that their websites are
not vulnerable (hence less motivated to update).

• Overstated versions may cause ill-advised updates, leading to
higher maintenance and development costs.

True Vulnerable Versions (TVV) Identified. True Vulnerable
Versions (TVV) means actually-affected versions identified from
our validation experiments. From our experiments, described in Ta-
ble 2, we find that 13 out of the 27 CVEs contain incorrect versions.
Specifically, five of them () have understated versions, meaning

that the vulnerabilities affect more versions than reported. The
remaining eight of them () have overstated versions, where the
vulnerabilities affect fewer versions than reported. Particularly, Fig-
ure 4 illustrates the impact of incorrect versions in jQuery. For
each CVE, there are two lines where the upper line represents vul-
nerable versions disclosed by the CVE and the lower line shows
understated and overstated versions revealed by our Version Val-
idation Experiment. In this jQuery case, 5 out of 8 CVEs have
incorrect versions. Particularly, CVE-2020-7656 specifies that the
only affected version is lower than 1.9.1, while we reveal that it
affects all versions until 3.6.0. Web developers who use a certain
version (> 1.9.1) can be misled that their version is not affected by
the vulnerability and do not need to update the library. We present
5 more cases (jQuery-Migrate, jQuery-UI, Bootstrap, Moment,
and Prototype) in Appendix (Figure 13).

Takeaway: We discover that 13 CVE reports (out of 27) incor-
rectly state vulnerable versions of the libraries, providing mis-
leading information. Specifically, 5 CVEs understate the impact
of the vulnerabilities, potentially downplaying the vulnerabili-
ties. 8 are understated versions.

# of Websites Affected by Incorrect Versions. We measure the
number of websites affected by these incorrect versions in CVEs.
Figure 5 shows the three cases of jQuery vulnerabilities; the red
background refers to ‘vulnerable websites not mentioned in CVEs
(i.e., websites using vulnerable libraries but were not spotted),’ and
the blue background does ‘websites using vulnerable versions men-
tioned in CVEs.’ Specifically, Figure 5(a) and Figure 5(b) show that a
large number of websites (296,818 in CVE-2020-7656 and 265,362 in
CVE-2014-6071) may not be known whether they are susceptible to
the vulnerabilities. Meanwhile, Figure 5(c) shows that CVE versions
unnecessarily include versions that are not vulnerable (i.e., over-
stated versions), potentially misleading and causing unnecessary
updates (and compatibility issues).

Takeaway: ( 337,773 websites are affected by incorrect version
information in CVEs. 316,809 websites are undisclosed in the
wild due to incorrect CVEs.

Refining Vulnerable Websites. Our previous conclusion that
41.2% are using at least one vulnerable JavaScript library in Sec-
tion 6.2 was based on the assumption that the CVEs’ versions are
correct, which we revealed that it is not true. Hence, we now measure
the number of vulnerable websites again with the true vulnerable
versions (TVV) we discover.

We find an average of 43.2% (+2%) websites (337,773 out of
782,300) are vulnerable as carrying at least one vulnerability; the
incorrect CVE information results in increasing the number of
vulnerable websites by 2%. Interestingly, in 2018, the average dif-
ference between them is only 0.1%, but in 2022, the gap increases
by 2.9%. We find that it also affects high-profile (i.e., popular) web-
sites: microsoft.com (ranked 46th) and onlinesbi.com (ranked
111th) use jQuery v3.5.1, which we reveal that it is vulnerable while
CVE does not mention (understate). Also, docusign.com (ranked
1,693rd) uses jQuery v2.2.3, which is another understated case that
we reveal it is vulnerable.



A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

True Vulnerable Ver. CVE Affected Ver.

CVE Affected Ver.: < 1.9.0
True Vulnerable Ver.: < 3.6.0# 

of
 W

eb
si

te
s

0

100,000

200,000

300,000

400,000

Date
2019 2020 2021 2022

(a) CVE-2020-7656

True Vulnerable Ver. CVE Affected Ver.

True Vulnerable Ver.: >= 1.5.0 and < 2.2.4

CVE Affected Ver.: >= 1.4.2 and < 1.6.2# 
of

 W
eb

si
te

s

0

100,000

200,000

300,000

400,000

Date
2019 2020 2021 2022

(b) CVE-2014-6071

CVE Affected Ver.: >= 1.2 and < 3.5.0
True Vulnerable Ver.: >= 1.12.0 and < 3.5.0

True Vulnerable Vers. CVE Affected Ver.

# 
of

 W
eb

si
te

s

0

100,000

200,000

300,000

400,000

Date
2019 2020 2021 2022

(c) CVE-2020-11022

Figure 5: The Total Number of Websites with True Vulnerable Versions of jQuery Vulnerability. (a) and (b) show that more
vulnerable versions are revealed, while (c) shows that it reveals a fewer number of versions are vulnerable.

Furthermore, we also refine the CDF of the average number of
vulnerabilities per website as shown in Figure 12. Compared to the
results from the CVE’s version, with the true vulnerable versions
(TVV) we reveal, the average number of vulnerabilities per website
is almost 1 (mean: 0.97 and median: 0.96), which is an alarming
result.

Takeaway: With the corrected version information in CVEs,
we observe that (337,773 websites (43.2%) are vulnerable (which
is approximately 2% more than the analysis based on existing
CVEs).

6.5 Potential Security Threats of Untrustful
External Libraries

Potential Security Threat. Section 2.1 mentions that a web-
site can include JavaScript libraries either internally (i.e., locally
hosted10) or externally (e.g., remotely hosted11). Potential security
threats could arise when a web page loads compromised external
JavaScript libraries. Compromised JavaScript libraries can obtain
full privileges on the websites unless isolated in a frame; for exam-
ple, the loaded JavaScript can modify the DOM, load other external
content, redirect the visitors to phishing websites, or deliver mal-
ware to the visitors. Particularly, if the external JavaScript libraries
are loaded from repositories of collaborative version control, such
as GitHub, GitLab, and Bitbucket, the libraries cannot be trusted
because the repositories (and the libraries) can be compromised
or malicious. In other words, we cannot fully establish trust in the
maintainers and contributors of the open-source library projects,
compared to the libraries hosted on the official CDNs. For example,
a malicious contributor of a JavaScript library project could insert
malicious payloads into the library, or an adversary could make
a malicious pull request to the library project if these are public
repositories [116].
Libraries from Untrustful Sources. We measure how many
websites could be vulnerable due to the JavaScript libraries hosted
on collaborative version control platforms, such as GitHub, GitLab,
and Bitbucket. We find that an average of 1,670 websites load
more than one external JavaScript library externally hosted on
the 57 GitHub repositories. Particularly, the most popular GitHub

10e.g., <script src="./bar.js"></script>
11e.g., <script src="https://foo.com/bar.js"></script>

repository is wp-r.github. io12 that accounts for 11.3% of the
websites. It is an individual repository that hosts ‘adsplacer’ and
‘jquery. iframetracker’. The first library is a WordPress plugin
to help place advertisements, and the latter one is a jQuery plugin
that can track users’ clicks on iframes. The tracker is added on
Adguard’s Spyware Filter [54] to block trackers. Table 6 breaks
down the GitHub repositories that are used by the top 10K websites.
Mitigation against Untrustful Sources (SRI). Subresource
Integrity (SRI) [89] can be a viable security defense mechanism
against the threat of untrustful JavaScript libraries. It ensures the
unmodified JavaScript files that contain expected data are deliv-
ered, loaded, and executed. Specifically, web developers can specify
an expected base64-encoded cryptographic hash (such as SHA256,
SHA386, and SHA512) of a JavaScript file in the integrity at-
tribute of the <script> tag. At runtime, if a specified hash value
does not match the hash value of the downloaded JavaScript file, it
is neither loaded nor executed.

We measure how the SRI is used on websites in the wild. Sur-
prisingly, as shown in Figure 10, 99.7% of websites have at least
one externally-hosted JavaScript library without the integrity
attribute, which cannot be trusted when external hosts are compro-
mised. Furthermore, we closely take a look at the libraries hosted
on the repositories of collaborative version control services such as
GitHub. Of 1,670 websites using the external libraries on GitHub,
only an average of 10.1 websites (0.6%) use the integrity param-
eter as the mitigation.

We further check how many official websites of JavaScript li-
braries explicitly mention the SRI (or the integrity attribute) in
its code snippet; for example, they may provide a code snippet
that includes an integrity attribute and hash value, which helps
web developers simply copy and paste the secure code snippet.
We find that out of the top 15 JavaScript libraries, only one library
(Bootstrap) provides a code snippet that includes an integrity
attribute and its hash value. As software developers (including
web developers) are typically known to have the copy and paste
behaviors [53], we argue that we might be losing chances to se-
cure external JavaScript libraries by not having the integrity
attributes in the example code snippets on the official websites of
JavaScript libraries.
Mitigation against Untrustful Sources (Crossorigin). We also
measure how properly developers use cross origin in the wild.

12https://github.com/wp-r/wp-r.github.io



IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

1.8.3 1.7.2 1.7.1 1.8.2 1.9.0

CVE-2020-7656 disclosed (05/19/2020)

Affected Ver.: < 1.9.0
Patched Ver.: 1.9.0

# 
of

 W
eb

si
te

s

0

5,000

10,000

15,000

Date
2019 2020 2021 2022

Figure 6: Usage Trends of Affected Versions of jQuery CVE-
2020-7656 Vulnerability (versions are ordered by popularity).

crossorigin is an attribute to provide support for Cross-Origin
Resource Sharing (CORS) and to control how to handle resources
coming from cross-origin domains [43]. The best practice for cross-
origin requests is to use the anonymous value because it prevents
sending user credentials (e.g., via cookies) to cross-origin requests
(i.e., requests from a JS library fetched from a different origin).
If ‘use-credentials’ is specified in the crossorigin attribute,
user credentials could be sent even for cross-origin requests [46,
112], leading to “cross-origin data leakage” [110].

We find 97.1% of websites use ‘anonymous’ and only 1.9% use
‘use–credentials,’ out of the total websites using crossorigin
with the integrity attribute. This indicates that while most web
developers properly follow the security best practice for this at-
tribute, a few developers misconfigure the value for crossorigin.
The small number of such websites may potentially leak credentials
for cross-origin requests.

Takeaway: The mitigation (e.g., integrity) to potential secu-
rity threats of the externally-hosted libraries are barely used in
the wild, which indicates such websites could remain vulnerable
to potential security threats.

7 UPDATE OF VULNERABLE JAVASCRIPT
LIBRARIES

When a newly disclosed vulnerability affects JavaScript libraries
used in a website and there is a patched version for the vulnerability,
it is desirable to update the vulnerable libraries promptly. This
section attempts to understand how well vulnerable JavaScript
libraries are updated in practice over time. Particularly, when a
vulnerability is publicly disclosed and assigned a CVE ID, and a
patch for the vulnerability is released, we measure how long (e.g.,
howmany days) it takes to update their affected vulnerable versions
after the patched version’s release. Note that in this section, we rely
on the versions stated in CVEs even if they might be inaccurate
(i.e., not the True Vulnerable Versions or TVVs). As a result, we aim
to measure how the developers and administrators respond to the
CVEs for security updates.
Updating jQuery. We focus on jQuery as it is dominant in the
wild – other libraries’ updating patterns are discussed in the Appen-
dix (Figure 15). Figure 6 shows a few versions’ usage trends with

the CVE disclosed dates; CVE-2020-7656 specifies that all versions
lower than (< v1.9.0) are affected, and its patched version is v1.9.0 as
described in Table 2. We observe that the usage of the patched ver-
sion (v1.9.0) has not increased, but rather slightly decreased. From
this observation, we can learn that vulnerable JavaScript libraries
are rarely updated, or worse, some websites newly start to use the
vulnerable version even after the CVEs are publicly disclosed.

Furthermore, Figure 7(a) shows the updating trends of the most
dominant version (v1.12.4), which is affected by two vulnerabilities
(CVE-2020-11022 and CVE-2020-11023). From the 1.12.4 version,
it is recommended to update to v3.5.0 or higher (≥ v3.5.0). Hence,
ideally, the usage of v1.12.4 should decrease, and the usage of the
versions higher than v3.5.0 (including v3.5.0, v3.5.1, v3.6.0, and
v3.6.1) should increase if web developers properly follow the best
practice of updating vulnerable versions.

Unfortunately, we observe different usage patterns as shown
in Figure 7(a). v3.5.0 is barely (nearly 0%) used in the wild, which
means that no update operation is performed to v3.5.0; similarly,
v3.6.1 has the same pattern. Observe that the v3.5.1 usage starts
increasing one month after the CVEs are publicly disclosed (around
July 2020). However, we do not believe that this is a potential update
from v1.12.4 because v1.12.4 does not decrease when the usages
of v3.5.0, v3.5.1, v3.6.0, and v3.6.1 start increasing. Moreover, we
observe a different update behavior from Dec. 2020. Specifically, in
Dec. 2020, the v3.5.1 usage sharply increases while v1.12.4 accord-
ingly decreases. We randomly choose 100 websites in our dataset
and manually analyze how the versions are updated. The result
shows that they are truly updated (i.e., replaced the old version
with the new version). In addition, from Aug. 2021, we observe a
sharp increase in version updates from v3.5.1 to v3.6.0.

Takeaway: We observe that it averagely takes 531.2 days (17.4
months) to update the vulnerable version. The updating trend
is also not linear, implying that there should be a particular
contributor to this radical update trend.

Main Contributor to Updating. We further investigate to un-
derstand the major actors for the updates. Specifically, from our
dataset, we notice a sharp increase in updating from Dec. 2020. We
aim to answer the question:Who or what events drove this radical
update behavior?

Interestingly, we find that WordPress has been the main con-
tributor. Figure 7(b) shows the jQuery usage of WordPress over
time. We can see the same patterns between the jQuery version
usages (Figure 7(a)) and theWordPress’ jQuery version usages (Fig-
ure 7(b)) where they have almost identical usage pattern changes
for v3.5.1, v3.6.0, and v1.12.4. We further analyze howWordPress be-
comes the main contributor, and find the WordPress Auto-Updating
feature [115] helps automatically update the old and vulnerable
jQuery libraries at almost the same time, which leads the Web
ecosystem to be more secure. From this observation, we can learn
that automated mechanisms (e.g., auto-updating) are effective in
securing websites by updating JavaScript libraries.

Takeaway:WordPress’s Auto-Updating feature contributes to
the major update of jQuery. The Web security community may



A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

1.12.4 3.5.0 3.5.1 3.6.0 3.6.1 1.11.3

CVE-2020-7656

CVE-2018-18405
CVE-2020-11022,CVE-2020-11023

CVE-2019-11358

Dec. 2020

# 
of

 W
eb

si
te

s

0

50,000

100,000

150,000

Date

Jul Jan Jul Jan Jul Jan Jul Jan
2018 2019 2020 2021

(a) jQuery v1.12.4 Usage & Patched Version (> v3.5.0) Usage

1.12.4 WP 3.5.1 WP 3.6.0 WP

CVE-2020-7656

CVE-2018-18405

CVE-2020-11022,CVE-2020-11023

CVE-2019-11358

# 
of

 W
eb

si
te

s

0

50,000

100,000

150,000

Date

Jul Jan Jul Jan Jul Jan Jul Jan
2018 2019 2020 2021

(b) WordPress Versions Associated with jQuery Update

Figure 7: Trends of Vulnerable jQuery v1.12.4 Usage and Patched Version (> v3.5.0) Usage &WordPress Versions Associated
with the jQuery Update.

suggest a new auto-updating feature for the client-side resources
to secure the Web ecosystem.

Update Delays with True Vulnerable Versions. We measure
the updating delays with the True Vulnerable Versions we revealed
in Section 6.4.13 We find that the understated CVE reports lead to
more significant delays; on average, it takes 701.2 days (23 months,
1.9 years), compared to 510 days calculated with the versions from
CVEs.

Takeaway: Due to the understated versions in CVEs, we find
that the true delay in the update of vulnerable JS libraries is
substantially more severe, +191.2 days, than our initial estimate.

8 INSECURE ADOBE FLASH
Flash Usage & Case Study. As mentioned in Section 2.2, the
support for Adobe Flash is officially terminated (Jan. 2021), meaning
that Adobe will not fix security vulnerabilities anymore. As a result,
all major web browsers claim that Adobe Flash components are
removed from the browsers as of Jan 2021, and Flash can no longer
be played on the browsers [21, 33, 36, 37]. Also, web developers are
strongly recommended to replace Adobe FlashwithHTML5 [58, 59];
Adobe even released a conversion tool for developers from Flash to
HTML5 [57].

We empirically observe some websites using Adobe Flash appli-
cations and a new platform application promoting the use of Adobe
Flash applications, even though Flash was officially no longer sup-
ported. This observation motivates us to raise the research question;
If so, how many websites still use Flash? and what websites and func-
tionalities still depend on the Flash in the wild? To answer these
research questions, we measure the usage of Adobe Flash in the
wild. Note that compared to Section 6.3 where we aimed to measure
the discontinued project, SWFObject (e.g., how many websites use
the discontinued project), in this section, we better understand how
many Flash contents (i.e., .swf files) are embedded and played in
websites.14

135 CVEs understate affected versions as shown in Table 2, which means that there are
more undisclosed vulnerable versions in the wild.
14Note that .swf file can be embedded using the embed HTML tag, without the
SWFObject JavaScript library.

As shown in Figure 8, the Flash usage has steadily decreased
during our observation period (from 9,880 websites in Feb. 2018 to
4,218 and 3,195 websites in Dec. 2020 and Feb. 2022, respectively).
However, an average of 3,553 websites still use Adobe Flash after
its end of life.
Case Study of Top 10KWebsites. We take a closer look at the top
10K websites that still use Adobe Flash after the end of life (Jan. 1st,
2021). Among the top 10K websites, we find thirteen websites still
use Adobe Flash as of May 2023. Six out of thirteen domains use
Flash for visible, dynamic content on the webpages (e.g., a banner,
a dynamic image application, and a media player). The remaining
seven cases include .swf files or links in the HTML code of the web-
pages, but the Flash files are neither visually displayed nor played on
the web browser. In invisible cases, as .swf objects are positioned
outside of the page or behind certain images, end-users cannot
recognize Adobe Flash is being played on their web browsers.

We further analyze who manages and operates the websites and
which country the websites are from. It turns out that four out of
thirteen domains are managed and operated by Chinese companies;
other countries are Hungary, Iran, Japan, Portugal, Spain, Russia,
and Taiwan. This result motivates us to raise a follow-up research
question, “why do Chinese websites still use Adobe Flash more than
other countries do even after the official support is no longer available,
and all major browsers are no longer supporting Flash?”
Flash-Support Browsers & Ecosystem. To answer the follow-up
question, we manually examine the top 10 desktopWeb browsers in
the world, focusing on how they support Flash. We test them both
on macOS 12.4 and Windows 10. Our results are summarized in Ta-
ble 3. We find that all Web browsers no longer support Flash except
for 360 Browser [52]. This browser is based on Google Chrome
and developed by a Chinese internet security company, Qihoo 360.
The browser has two versions: Secure and Extreme. Particularly,
360 Extreme v12.2.1662.0 for macOS15 (based on Chrome v78.0.
3904.108 was released in Nov. 2019) still supports Flash as of May. 26,
2023. Moreover, when end-users access the Flash-embedded web-
pages, they are recommended to visit www. flash.cn to play the
Flash contents. This website provides its own, customized version of
the old Adobe Flash player components for end-users who still want
to use Adobe Flash contents [119]. We can learn from these two

15This version is available at https://browser.360.cn/ee/mac/index.html



IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

Top 1M Domains
Top 10K Domains
Top 1K Domains

Flash End of LIfe

To
p 

10
k 

D
om

ai
ns

0

10

20

30

40

50

Total N
um

ber of D
om

ains

0

2,000

4,000

6,000

8,000

10,000

Date

Jul Jan Jul Jan Jul Jan Jul Jan
2018 2019 2020 2021

Figure 8: Adobe Flash Usages. The left y-axis indicates the
number of domains for the top 1K and 10K domains, and
the right y-axis is the number of domains for the top 1M
domains.

cases (360 Extreme browser and flash.cn), this unique Flash
ecosystem could play an important role in maintaining a number of
Chinese websites using insecure Flash. This eventually leads users
to remain exposed to the security threats of Flash.

Takeaway: An average of 3,553 websites still use Adobe Flash
even after the end of the life of Flash. We find that a certain web
browser and platform (www.flash.cn) still facilitate the use of
Adobe Flash for end-users.

Insecure AllowScriptAccess Parameter. In the HTML code, the
AllowScriptAccess parameter is to control if a .swf file (specif-
ically, ActionScript) is allowed to call/access JavaScript and HTML
DOM in the HTML page where the .swf is loaded. The param-
eter has three options; always, sameDomain, and never [55]. The
sameDomain option allows a .swf file to call/access JavaScript and
HTML DOM only when the .swf and HTML page are from the
same domain. The never option never permits the JavaScript calls
and the HTML DOM accesses. If no value is specified to this param-
eter, the sameDomain option is by default applied. However, the
always option permits a .swf file to always call/access JavaScript
and HTML DOM even though the domain of the .swf file is dif-
ferent from the one of the HTML page. A potential security threat
could arise when external and untrustful .swf files are embedded
and loaded. Then, they can maliciously access, call, and manipulate
JavaScript and HTML DOM. For example, in a web forum where
anyone can include an external .swf, an adversary can upload or
link a malicious .swf to the target forum. Therefore, web devel-
opers are strongly recommended not to use the always option for
the parameter by Web Hypertext Application Technology Working
Group (WHATWG) [111].

We measure if web developers properly follow the best practice
(not to use AllowScriptAccess parameter) in the wild. We find
that an average of 24.7% websites (out of the total number of web-
sites using Flash) use insecure parameters. Specifically, the insecure
usage has increased by approximately 9% (from 21% to 30%). This
indicates that 24.7% of websites are vulnerable to malicious .swf
files loaded from cross-origin sources.

9 DISCUSSION
Suggestions. Based on our observation, we discuss potential sug-
gestions that can help improve the Web ecosystem.

• Discontinued JavaScript library Projects.As observed in Section 6.3,
Google CDNs and WordPress plugins are believed to be one of
the main factors to facilitate the use of the outdated library for
developers. We suggest that the official WordPress plugins web-
site and Google CDN website, where web developers download
plugins or utilize CDN URLs, may need to provide them with a
warning icon or indicator saying that they are potentially vul-
nerable. We believe these interventions would help reduce the
usage of discontinued libraries.

• Inaccurate CVEs Information. One of the main reasons why CVEs
have incorrect version information would be that the web se-
curity community barely has the experiment environment that
we have set up for this study. The community is in needs to
have such experiment settings to accurately know the affected
versions by validating each vulnerability using PoC code.

• Our Large-Scale Dataset.We publicly share our large-scale dataset
(157.2M pages) collected for four years (Mar. 2018 – Feb. 2022) at
“https://moa-lab.net/measurement-client-side-resources/”. The
security community can utilize our datasets to better understand
the Web ecosystem from another perspective. We believe future
measurement studies using our dataset can help secure the Web
ecosystem.

Limitations. We discuss the limitations of our work.
• Various Security Impacts. The severity and security impact of
vulnerabilities introduced in outdated or vulnerable JavaScript
libraries can vary. Some vulnerabilities could be exploitable only
under specific conditions. For example, CVE-2020-11022 [30]
and CVE-2020-11023 [32], both vulnerabilities are only triggered
under a certain condition where attackers can pass HTML to
one of jQuery’s DOM manipulation methods. Thus, using out-
dated or vulnerable JavaScript libraries in the websites does not
necessarily mean that attackers would be able to exploit the vul-
nerabilities. However, we would like to highlight that the use of
outdated or vulnerable JavaScript libraries potentially may lead
to security vulnerabilities in websites under certain conditions
unless the vulnerabilities are updated.

• Validity Concern. Our analysis may contain false positives due to
the inherent errors of Wappalyzer (e.g., we may not catch cases
where administrators manually patched vulnerabilities instead of
using the officially updated version’s files). However, we empiri-
cally observe that it may happen rarely in practice. Specifically,
we conduct an extra experiment with a newly collected dataset
of Alexa 100K domains’ client-side resources on June 7th, 2023.
We compare all the downloaded JavaScript library files in the
dataset with the official unmodified JavaScript library files (us-
ing file hashes) to understand whether manual modifications (or
patches) are prevalent. We find that 1,521 JavaScript libraries
do not match the original hash values of the official JavaScript
libraries. We randomly select 100 samples and manually investi-
gate the mismatched libraries. We find that all cases are caused
by extra newlines or spaces and modified comments. We do not
observe any cases that are manually patched in the dataset.

• Representativeness of the entire Web ecosystem.We utilize Alexa
top 1M domains to understand the entire Web ecosystem as we
assume that all websites in Alexa top 1M are representative of
the entire Web ecosystem. This may provide a limited viewpoint

https://moa-lab.net/measurement-client-side-resources/


A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

and could potentially skew the results. However, it’s worth not-
ing that previous studies [64, 67, 82, 105] attempting to better
understand the Web ecosystem have predominantly examined
and measured the ecosystem using Alexa top 1M domains.

Ethics. Our work identified several security issues. Accordingly,
we responsibly disclosed the issue with Google CDN that supports
the discontinued libraries.
FutureWork.Asmentioned in the limitation (Section 9), wemainly
focus on the landing pages (e.g., index.html). The future work is
needed to further explore other pages within websites, such as
interactive features, which could potentially introduce additional
vulnerabilities. Furthermore, as part of future work, it would be valu-
able to examine cases in which websites have updated to patched
versions but subsequently experienced regressions, potentially due
to compatibility concerns, and to analyze the resultant implications
for the overall security of the web ecosystem. Lastly, it would be
also highly beneficial to evaluate the exploitability of the websites
that have potentially vulnerable library versions; in other words,
we need to measure how many websites (or JavaScript libraries)
are actually vulnerable and exploitable. This is because the known
vulnerabilities can be exploitable only under specific conditions as
mentioned in Section 9.

10 RELATEDWORK
Client-side Resource Measurement. There have been a number
of measurement studies that attempted to better understand the
Web ecosystem, especially the security practices of client-side re-
sources [60, 67, 82, 84, 90, 92, 98, 105, 117]. Since JavaScript libraries
have held a dominant position as client-side resources, prior mea-
surement studies have focused on JavaScript libraries. Specifically,
Demir et al. [67] performed a longitudinal study of the updating
behaviors (e.g., JavaScript library updates) and found that (even
vulnerable) JavaScript libraries were barely updated. While this
study offers an overview of the general trends in JavaScript library
updates, our research delves deeper into the updating patterns of
individual JavaScript libraries (and its versions) and Adobe Flash
vulnerabilities. In particular, we identify the factor that contributes
to the sharp increase in updates, which is the auto-updating feature
provided by WordPress. Based on this finding, we offer a valuable
recommendation that this auto-updating feature would be provided
for JavaScript library users. Moreover, we further study the po-
tential security threats of the discontinued JavaScript libraries and
untrustful externally-hosted libraries. Finally, studying Adobe Flash
(e.g., a 3rd-party software dedicated to running Flash) and the ac-
curacy of CVE information (e.g., how inaccurate CVE information
impacts the web ecosystem) are our unique contributions.

Furthermore, Nikiforakis et al. [90] and Lauinger et al. [82]
worked on JavaScript library inclusions and identified that some
JavaScript libraries used in the wild were vulnerable or could be
compromised. Particularly, while Lauinger et al. [82] is more fo-
cused on vulnerable JavaScript library usage statistics with a single
snapshot dataset of 2016 (seven years ago), our study uses a four-
year longitudinal dataset (2018 – 2022) of Alexa’s top 1M domains.
Our security insight and implication of web developers’ (or ad-
ministrators’) updating behaviors require the longitudinal dataset
and analysis; such updating behaviors cannot be measured and

observed with a single snapshot of domains. Moreover, we mea-
sure the inaccuracy of CVE reports by testing the Proof of Concept
exploit of each report, if available. We find that 337,773 websites
are affected by inaccurate CVE reports (e.g., failed to realize and
update vulnerable JavaScript libraries).

A few measurement studies, particularly on web trackers [84]
and general client-side resources [105], were conducted using a
longitudinal dataset collected from the Internet Archive’s Wayback
Machine (archive.org). Specifically, Lerner et al. [84] mainly focused
on the trackers, not the security issues of JavaScript libraries. Com-
pared to this study, our work presents a measurement study on
the top 15 most used JavaScript libraries and how developers have
updated the libraries over 4 years of period.
CVE Information. Ocariza et al. [92] empirically measured and
classified the root causes of the vulnerabilities of JavaScript libraries
using 317 bug reports from 12 bug repositories. Compared to this
study, we measure the accuracy of CVE information and the impact
of incorrect CVE information in the wild. Moreover, a recent study
conducted by Dong et al. [68] examined the quality and consistency
of CVE. While their work was solely focused on assessing the
quality and consistency of CVE, our research takes a more holistic
approach by looking deeper into our dataset. Since we collected
a large-scale dataset of Alexa 1M domains for four years (157.2M
webpages) that can provide a longitudinal, comprehensive view
of the entire Web ecosystem and a general trend of Web security
practices. Specifically, for each client-side resource (such as each
JavaScript library), we longitudinally provide the trend of each
library usage, updating behaviors of web developers for each library,
how incorrect CVE descriptions of each library affected the Web
ecosystem, and new security threats.

11 CONCLUSION
We conduct a longitudinal, large-scale study of the security prac-
tice and implications on client-side resources using our collected
157.2M webpages of Alexa Top 1M websites. From our findings,
we answered each research question we developed: RQ1) 41.2%
websites carry at least one vulnerability during our four-year obser-
vation period;RQ2) The dominant versions of vulnerable JavaScript
libraries lag behind in updating to the latest versions: on average
531.2 days with 25,337 websites have delays; RQ3) Our CVE val-
idation experiments reveal that 13 CVEs contain incorrect version
information, resulting in updating delays or ill-advised updates;
RQ4) We also identify security issues with outdated techniques,
Flash. Our results highlight the importance of necessity on system-
atic understanding of security on client-side resources.

ACKNOWLEDGMENTS
We thank the anonymous referees and our shepherd, Michael Siri-
vianos, for their constructive feedback. The authors gratefully ac-
knowledge the support of NSF (2210137, 2335798, 1908021, 1916499,
and 2145616). This research was also supported by Science Al-
liance’s StART program and gifts from Google exploreCSR and
TensorFlow. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsors.



IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

REFERENCES
[1] 1997. ECMA-262, 1st edition, June 1997. https://www.ecma-international.org/

wp-content/uploads/ECMA-262_1st_edition_june_1997.pdf. (Accessed on
05/26/2023).

[2] 2008. CVE-2008-4401 : ActionScript in Adobe Flash Player 9.0.124.0 and ear-
lier does not require user interaction in conjunction with (1) the F. https:
//www.cvedetails.com/cve/CVE-2008-4401/. (Accessed on 05/26/2023).

[3] 2011. CVE-2011-0577 : Unspecified vulnerability in Adobe Flash Player be-
fore 10.2.152.26 allows remote attackers to execute arbitrary code. https:
//www.cvedetails.com/cve/CVE-2011-0577/. (Accessed on 05/26/2023).

[4] 2011. CVE-2011-0578 : Adobe Flash Player before 10.2.152.26 allows attackers
to execute arbitrary code or cause a denial of service (memory co. https://
www.cvedetails.com/cve/CVE-2011-0578/. (Accessed on 05/26/2023).

[5] 2011. CVE-2011-0607 : Adobe Flash Player before 10.2.152.26 allows attackers to
execute arbitrary code or cause a denial of service. https://www.cvedetails.com/
cve/CVE-2011-0607/. (Accessed on 05/26/2023).

[6] 2011. CVE-2011-0608 : Adobe Flash Player before 10.2.152.26 allows attackers to
execute arbitrary code or cause a denial of service. https://www.cvedetails.com/
cve/CVE-2011-0608/. (Accessed on 05/26/2023).

[7] 2011. jQuery 1.2 Released | Official jQuery Blog. https://blog.jquery.com/2007/
09/10/jquery-1-2-released/#jQuery_1.1_Compatibility_Plugin. (Accessed on
05/26/2023).

[8] 2012. CVE-2012-5054 : Integer overflow in the copyRawDataTo method in
the Matrix3D class in Adobe Flash Player before 11.4.402.265 allows remo.
https://www.cvedetails.com/cve/CVE-2012-5054/. (Accessed on 05/26/2023).

[9] 2013. Cross-site Scripting (XSS) in jquery-migrate | Snyk. https://
security.snyk.io/vuln/npm:jquery-migrate:20130419. (Accessed on 05/26/2023).

[10] 2013. JS Bin - Collaborative JavaScript Debugging. https://jsbin.com/UQEgAsO/
3/edit?html,output. (Accessed on 05/26/2023).

[11] 2013. XSS · Issue #36 · jquery/jquery-migrate. https://github.com/jquery/jquery-
migrate/issues/36. (Accessed on 05/26/2023).

[12] 2014. CVE-2014-0510 : Heap-based buffer overflow in Adobe Flash Player
12.0.0.77 allows remote attackers to execute arbitrary code and bypass. https:
//www.cvedetails.com/cve/CVE-2014-0510/. (Accessed on 05/26/2023).

[13] 2014. Full Disclosure: XSS Reflected JQuery 1.4.2 - Create object option in
runtime client-side. https://seclists.org/fulldisclosure/2014/Sep/10. (Accessed
on 05/26/2023).

[14] 2014. Scanning Alexa Top 100,000 for JavaScript libraries with known vulerabil-
ities. https://erlend.oftedal.no/blog/static-142.html. (Accessed on 05/26/2023).

[15] 2015. XSS Vulnerability on closeText option of Dialog jQuery UI · Issue #281 ·
jquery/api.jqueryui.com. https://github.com/jquery/api.jqueryui.com/issues/
281. (Accessed on 05/26/2023).

[16] 2016. CVE-2016-1019 : Adobe Flash Player 21.0.0.197 and earlier allows re-
mote attackers to cause a denial of service (application crash) or po. https:
//www.cvedetails.com/cve/CVE-2016-1019/. (Accessed on 05/26/2023).

[17] 2016. swfobject/swfobject: An open source Javascript framework for detect-
ing the Adobe Flash Player plugin and embedding Flash (swf) files. https:
//github.com/swfobject/swfobject. (Accessed on 05/26/2023).

[18] 2017. 77% of 433,000 Sites Use Vulnerable JavaScript Libraries. https://snyk.io/
blog/77-percent-of-sites-still-vulnerable/. (Accessed on 05/26/2023).

[19] 2017. CVE-2017-3083 : Adobe Flash Player versions 25.0.0.171 and earlier
have an exploitable use after free vulnerability in the Primetime SDK. https:
//www.cvedetails.com/cve/CVE-2017-3083/. (Accessed on 05/26/2023).

[20] 2017. CVE-2017-3084 : Adobe Flash Player versions 25.0.0.171 and earlier
have an exploitable use after free vulnerability in the advertising m. https:
//www.cvedetails.com/cve/CVE-2017-3084/. (Accessed on 05/26/2023).

[21] 2017. Flash Player is no longer available - Google Chrome Help. https://
support.google.com/chrome/answer/6258784?hl=en. (Accessed on 05/26/2023).

[22] 2017. JS Bin - Collaborative JavaScript Debugging. https://jsbin.com/qalekeroke/
edit?html,output. (Accessed on 05/26/2023).

[23] 2018. CVE-2012-6708 : jQuery before 1.9.0 is vulnerable to Cross-site Script-
ing (XSS) attacks. The jQuery(strInput) function does not differen. https:
//www.cvedetails.com/cve/CVE-2012-6708/?q=CVE-2012-6708. (Accessed
on 05/26/2023).

[24] 2018. CVE-2015-9251 : jQuery before 3.0.0 is vulnerable to Cross-site Scripting
(XSS) attacks when a cross-domain Ajax request is performed wi. https://
www.cvedetails.com/cve/CVE-2015-9251/. (Accessed on 05/26/2023).

[25] 2018. JS Bin - Collaborative JavaScript Debugging. https://jsbin.com/palokaxina/
edit?html,output. (Accessed on 05/26/2023).

[26] 2018. JS Bin - Collaborative JavaScript Debugging. https://jsbin.com/
xeminoniku/edit?html,output. (Accessed on 05/26/2023).

[27] 2019. Compatibility Issue with JQuery 3.4.x | WebDataRocks.
https://www.webdatarocks.com/question/compatibility-issue-with-jquery-3-
4-x-2/. (Accessed on 05/26/2023).

[28] 2019. CVE-2019-11358 : jQuery before 3.4.0, as used in Drupal, Backdrop
CMS, and other products, mishandles jQuery.extend(true, {}, ...) becaus. https:
//www.cvedetails.com/cve/CVE-2019-11358/. (Accessed on 05/26/2023).

[29] 2020. Cross-site Scripting (XSS) in jquery | CVE-2020-7656 | Snyk. https:
//security.snyk.io/vuln/SNYK-JS-JQUERY-569619. (Accessed on 05/26/2023).

[30] 2020. CVE-2020-11022 : In jQuery versions greater than or equal to 1.2 and
before 3.5.0, passing HTML from untrusted sources - even after sanit. https:
//www.cvedetails.com/cve/CVE-2020-11022/. (Accessed on 05/26/2023).

[31] 2020. CVE-2020-11022 : In jQuery versions greater than or equal to 1.2 and
before 3.5.0, passing HTML from untrusted sources - even after sanit. https:
//www.cvedetails.com/cve/CVE-2020-11022/. (Accessed on 05/26/2023).

[32] 2020. CVE-2020-11023 : In jQuery versions greater than or equal to 1.0.3
and before 3.5.0, passing HTML containing <option> elements from. https:
//www.cvedetails.com/cve/CVE-2020-11023/. (Accessed on 05/26/2023).

[33] 2020. Safari 14 and flash player - Apple Community. https://
discussions.apple.com/thread/251900220. (Accessed on 05/26/2023).

[34] 2021. Compatibility issues with latest jQuery 3.5.1. https://datatables.net/
forums/discussion/67375/compatibility-issues-with-latest-jquery-3-5-1. (Ac-
cessed on 05/26/2023).

[35] 2021. CVE-2020-27511 : An issue was discovered in the stripTags and un-
escapeHTML components in Prototype 1.7.3 where an attacker can cause a
Re. https://www.cvedetails.com/cve/CVE-2020-27511/?q=CVE-2020-27511.
(Accessed on 05/26/2023).

[36] 2021. End of support for Adobe Flash | Firefox Help. https://support.mozilla.org/
en-US/kb/end-support-adobe-flash. (Accessed on 05/26/2023).

[37] 2021. Update on Adobe Flash Player End of Support - Microsoft Edge
Blog. https://blogs.windows.com/msedgedev/2020/09/04/update-adobe-flash-
end-support/. (Accessed on 05/26/2023).

[38] 2021. Vulnerable Javascript Library. https://beaglesecurity.com/blog/
vulnerability/vulnerable-javascript-library.html. (Accessed on 05/26/2023).

[39] 2022. Commits · js-cookie/js-cookie. https://github.com/js-cookie/js-cookie/
commits/main. (Accessed on 05/26/2023).

[40] 2022. CVE - CVE. https://cve.mitre.org/index.html. (Accessed on 05/26/2023).
[41] 2022. CVE security vulnerability database. Security vulnerabilities, exploits,

references and more. https://www.cvedetails.com/index.php. (Accessed on
05/26/2023).

[42] 2022. Digital 2022: Global Overview Report - DataReportal - Global Digital
Insights. https://datareportal.com/reports/digital-2022-global-overview-report.
(Accessed on 05/26/2023).

[43] 2022. HTML attribute: crossorigin - HTML: HyperText Markup Language
| MDN. https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/
crossorigin. (Accessed on 05/26/2023).

[44] 2022. js-cookie/js-cookie: A simple, lightweight JavaScript API for handling
browser cookies. https://github.com/js-cookie/js-cookie. (Accessed on
05/26/2023).

[45] 2022. NVD - Vulnerabilities. https://nvd.nist.gov/vuln. (Accessed on
05/26/2023).

[46] 2022. Request.credentials - Web APIs | MDN. https://developer.mozilla.org/en-
US/docs/Web/API/Request/credentials. (Accessed on 05/26/2023).

[47] 2023. Browser Support | jQuery. https://jquery.com/browser-support/. (Ac-
cessed on 05/26/2023).

[48] 2023. jQuery vs Bootstrap – What Is The Difference? – Remarkable Coder.
https://remarkablecoder.com/jquery-vs-bootstrap. (Accessed on 05/26/2023).

[49] 2023. UPDATE: Adobe Flash Player end of support on December 31, 2020 - Mi-
crosoft Lifecycle | Microsoft Learn. https://learn.microsoft.com/en-us/lifecycle/
announcements/update-adobe-flash-support. (Accessed on 05/26/2023).

[50] 2023. Vulnerability DB | Snyk. https://security.snyk.io/vuln. (Accessed on
05/26/2023).

[51] 2023. wappalyzer/wappalyzer: Identify technology on websites. (Accessed on
05/26/2023).

[52] 360. 2023. 360 Browser. https://browser.360.cn/ee/mac/index.html. (Accessed
on 05/26/2023).

[53] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,
and Christian Stransky. 2016. You get where you’re looking for: The impact of
information sources on code security. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 289–305.

[54] Adguard. 2023. AdguardFilters/specific.txt at master · AdguardTeam/Ad-
guardFilters. https://github.com/AdguardTeam/AdguardFilters/blob/master/
SpywareFilter/sections/specific.txt. (Accessed on 05/26/2023).

[55] Adobe. 2017. Control access to scripts | Host web page. https://helpx.adobe.com/
flash/kb/control-access-scripts-host-web.html. (Accessed on 05/26/2023).

[56] Adobe. 2021. Adobe Flash Player End of Life. https://www.adobe.com/products/
flashplayer/end-of-life.html. (Accessed on 05/26/2023).

[57] Adobe. 2021. Create HTML5 Canvas documents in Animate.
https://helpx.adobe.com/animate/using/creating-publishing-html5-canvas-
document.html. (Accessed on 05/26/2023).

[58] Adobe. 2022. Best practices to convert/publish existing Flash-based projects
to HTML5 in Captivate. https://helpx.adobe.com/captivate/kb/best-practices-
convert-flash-html5-captivate.html. (Accessed on 05/26/2023).

[59] National Security Agency. 2019. CSA - CONTINUED USE OF ADOBE
FLASH INVITES COMPROMISE.PDF. https://media.defense.gov/2019/Sep/25/
2002186834/-1/-1/0/CSA%20-%20CONTINUED%20USE%20OF%20ADOBE%

https://www.ecma-international.org/wp-content/uploads/ECMA-262_1st_edition_june_1997.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-262_1st_edition_june_1997.pdf
https://www.cvedetails.com/cve/CVE-2008-4401/
https://www.cvedetails.com/cve/CVE-2008-4401/
https://www.cvedetails.com/cve/CVE-2011-0577/
https://www.cvedetails.com/cve/CVE-2011-0577/
https://www.cvedetails.com/cve/CVE-2011-0578/
https://www.cvedetails.com/cve/CVE-2011-0578/
https://www.cvedetails.com/cve/CVE-2011-0607/
https://www.cvedetails.com/cve/CVE-2011-0607/
https://www.cvedetails.com/cve/CVE-2011-0608/
https://www.cvedetails.com/cve/CVE-2011-0608/
https://blog.jquery.com/2007/09/10/jquery-1-2-released/#jQuery_1.1_Compatibility_Plugin
https://blog.jquery.com/2007/09/10/jquery-1-2-released/#jQuery_1.1_Compatibility_Plugin
https://www.cvedetails.com/cve/CVE-2012-5054/
https://security.snyk.io/vuln/npm:jquery-migrate:20130419
https://security.snyk.io/vuln/npm:jquery-migrate:20130419
https://jsbin.com/UQEgAsO/3/edit?html,output
https://jsbin.com/UQEgAsO/3/edit?html,output
https://github.com/jquery/jquery-migrate/issues/36
https://github.com/jquery/jquery-migrate/issues/36
https://www.cvedetails.com/cve/CVE-2014-0510/
https://www.cvedetails.com/cve/CVE-2014-0510/
https://seclists.org/fulldisclosure/2014/Sep/10
https://erlend.oftedal.no/blog/static-142.html
https://github.com/jquery/api.jqueryui.com/issues/281
https://github.com/jquery/api.jqueryui.com/issues/281
https://www.cvedetails.com/cve/CVE-2016-1019/
https://www.cvedetails.com/cve/CVE-2016-1019/
https://github.com/swfobject/swfobject
https://github.com/swfobject/swfobject
https://snyk.io/blog/77-percent-of-sites-still-vulnerable/
https://snyk.io/blog/77-percent-of-sites-still-vulnerable/
https://www.cvedetails.com/cve/CVE-2017-3083/
https://www.cvedetails.com/cve/CVE-2017-3083/
https://www.cvedetails.com/cve/CVE-2017-3084/
https://www.cvedetails.com/cve/CVE-2017-3084/
https://support.google.com/chrome/answer/6258784?hl=en
https://support.google.com/chrome/answer/6258784?hl=en
https://jsbin.com/qalekeroke/edit?html,output
https://jsbin.com/qalekeroke/edit?html,output
https://www.cvedetails.com/cve/CVE-2012-6708/?q=CVE-2012-6708
https://www.cvedetails.com/cve/CVE-2012-6708/?q=CVE-2012-6708
https://www.cvedetails.com/cve/CVE-2015-9251/
https://www.cvedetails.com/cve/CVE-2015-9251/
https://jsbin.com/palokaxina/edit?html,output
https://jsbin.com/palokaxina/edit?html,output
https://jsbin.com/xeminoniku/edit?html,output
https://jsbin.com/xeminoniku/edit?html,output
https://www.webdatarocks.com/question/compatibility-issue-with-jquery-3-4-x-2/
https://www.webdatarocks.com/question/compatibility-issue-with-jquery-3-4-x-2/
https://www.cvedetails.com/cve/CVE-2019-11358/
https://www.cvedetails.com/cve/CVE-2019-11358/
https://security.snyk.io/vuln/SNYK-JS-JQUERY-569619
https://security.snyk.io/vuln/SNYK-JS-JQUERY-569619
https://www.cvedetails.com/cve/CVE-2020-11022/
https://www.cvedetails.com/cve/CVE-2020-11022/
https://www.cvedetails.com/cve/CVE-2020-11022/
https://www.cvedetails.com/cve/CVE-2020-11022/
https://www.cvedetails.com/cve/CVE-2020-11023/
https://www.cvedetails.com/cve/CVE-2020-11023/
https://discussions.apple.com/thread/251900220
https://discussions.apple.com/thread/251900220
https://datatables.net/forums/discussion/67375/compatibility-issues-with-latest-jquery-3-5-1
https://datatables.net/forums/discussion/67375/compatibility-issues-with-latest-jquery-3-5-1
https://www.cvedetails.com/cve/CVE-2020-27511/?q=CVE-2020-27511
https://support.mozilla.org/en-US/kb/end-support-adobe-flash
https://support.mozilla.org/en-US/kb/end-support-adobe-flash
https://blogs.windows.com/msedgedev/2020/09/04/update-adobe-flash-end-support/
https://blogs.windows.com/msedgedev/2020/09/04/update-adobe-flash-end-support/
https://beaglesecurity.com/blog/vulnerability/vulnerable-javascript-library.html
https://beaglesecurity.com/blog/vulnerability/vulnerable-javascript-library.html
https://github.com/js-cookie/js-cookie/commits/main
https://github.com/js-cookie/js-cookie/commits/main
https://cve.mitre.org/index.html
https://www.cvedetails.com/index.php
https://datareportal.com/reports/digital-2022-global-overview-report
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/crossorigin
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/crossorigin
https://github.com/js-cookie/js-cookie
https://nvd.nist.gov/vuln
https://developer.mozilla.org/en-US/docs/Web/API/Request/credentials
https://developer.mozilla.org/en-US/docs/Web/API/Request/credentials
https://jquery.com/browser-support/
https://remarkablecoder.com/jquery-vs-bootstrap
https://learn.microsoft.com/en-us/lifecycle/announcements/update-adobe-flash-support
https://learn.microsoft.com/en-us/lifecycle/announcements/update-adobe-flash-support
https://security.snyk.io/vuln
https://browser.360.cn/ee/mac/index.html
https://github.com/AdguardTeam/AdguardFilters/blob/master/SpywareFilter/sections/specific.txt
https://github.com/AdguardTeam/AdguardFilters/blob/master/SpywareFilter/sections/specific.txt
https://helpx.adobe.com/flash/kb/control-access-scripts-host-web.html
https://helpx.adobe.com/flash/kb/control-access-scripts-host-web.html
https://www.adobe.com/products/flashplayer/end-of-life.html
https://www.adobe.com/products/flashplayer/end-of-life.html
https://helpx.adobe.com/animate/using/creating-publishing-html5-canvas-document.html
https://helpx.adobe.com/animate/using/creating-publishing-html5-canvas-document.html
https://helpx.adobe.com/captivate/kb/best-practices-convert-flash-html5-captivate.html
https://helpx.adobe.com/captivate/kb/best-practices-convert-flash-html5-captivate.html
https://media.defense.gov/2019/Sep/25/2002186834/-1/-1/0/CSA%20-%20CONTINUED%20USE%20OF%20ADOBE%20FLASH%20INVITES%20COMPROMISE.PDF
https://media.defense.gov/2019/Sep/25/2002186834/-1/-1/0/CSA%20-%20CONTINUED%20USE%20OF%20ADOBE%20FLASH%20INVITES%20COMPROMISE.PDF
https://media.defense.gov/2019/Sep/25/2002186834/-1/-1/0/CSA%20-%20CONTINUED%20USE%20OF%20ADOBE%20FLASH%20INVITES%20COMPROMISE.PDF


A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

20FLASH%20INVITES%20COMPROMISE.PDF. (Accessed on 05/26/2023).
[60] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven

Desmet, and Frank Piessens. 2012. JSand: Complete Client-Side Sandboxing
of Third-Party JavaScript without Browser Modifications. In Proceedings of the
28th Annual Computer Security Applications Conference (Orlando, Florida, USA)
(ACSAC ’12). Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/2420950.2420952

[61] Danny E. Alvarez, Daniel B. Correa, and Fernando I. Arango. 2016. An analysis of
XSS, CSRF and SQL injection in colombian software and web site development.
In 2016 8th Euro American Conference on Telematics and Information Systems
(EATIS). 1–5. https://doi.org/10.1109/EATIS.2016.7520140

[62] Adam Barth, Collin Jackson, and John C Mitchell. 2008. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM conference on Computer
and communications security. 75–88.

[63] Bootstrap. 2023. Bootstrap · The most popular HTML, CSS, and JS library in
the world. https://getbootstrap.com/. (Accessed on 05/26/2023).

[64] William J Buchanan, Scott Helme, and Alan Woodward. 2018. Analysis of the
adoption of security headers in HTTP. IET Information Security 12, 2 (2018),
118–126.

[65] cdnjs. 2023. cdnjs - The #1 free and open source CDN built to make life easier
for developers. https://cdnjs.com/. (Accessed on 05/26/2023).

[66] Chromium. 2021. Flash Roadmap. https://www.chromium.org/flash-
roadmap/#TOC-Flash-Support-Removed-from-Chromium-Target:-Chrome-
87---Dec-2020-. (Accessed on 05/26/2023).

[67] Nurullah Demir, Tobias Urban, Kevin Wittek, and Norbert Pohlmann. 2021. Our
(in)Secure Web: Understanding Update Behavior of Websites and Its Impact on
Security. In Passive and Active Measurement. Springer International Publishing,
Cham, 76–92.

[68] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and Gang
Wang. 2019. Towards the Detection of Inconsistencies in Public Security Vul-
nerability Reports.. In USENIX Security Symposium. 869–885.

[69] Carlos Duarte, Inês Matos, João Vicente, Ana Salvado, Carlos M. Duarte, and
Luís Carriço. 2016. Development Technologies Impact in Web Accessibility. In
Proceedings of the 13th International Web for All Conference (Montreal, Canada)
(W4A ’16). Association for Computing Machinery, New York, NY, USA, Article
6, 4 pages. https://doi.org/10.1145/2899475.2899498

[70] J. Emigh. 2006. New Flash player rises in the Web-video market. Computer 39,
2 (2006), 14–16. https://doi.org/10.1109/MC.2006.66

[71] F-Secure. 2011. News from the Lab Archive : January 2004 to September 2015.
https://archive.f-secure.com/weblog/archives/00002226.html. (Accessed on
05/26/2023).

[72] GitHub. 2021. Update regex for striptags method to prevent regex dos by
jwestbrook · Pull Request #349 · prototypejs/prototype. https://github.com/
prototypejs/prototype/pull/349. (Accessed on 05/26/2023).

[73] Google. 2017. Saying goodbye to Flash in Chrome. https://www.blog.google/
products/chrome/saying-goodbye-flash-chrome/. (Accessed on 05/26/2023).

[74] Hao He, Lulu Chen, and Wenpu Guo. 2017/03. Research on Web Applica-
tion Vulnerability Scanning System based on Fingerprint Feature. In Proceed-
ings of the 2017 International Conference on Mechanical, Electronic, Control
and Automation Engineering (MECAE 2017). Atlantis Press, 150–155. https:
//doi.org/10.2991/mecae-17.2017.27

[75] Isotope. 2023. Isotope - Filter & sort magical layouts. https://
isotope.metafizzy.co/. (Accessed on 05/26/2023).

[76] jQuery. 2023. jQuery. https://jquery.com/. (Accessed on 05/26/2023).
[77] jquery cookie. 2015. carhartl/jquery-cookie: No longer maintained, super-

seded by JS Cookie:. https://github.com/carhartl/jquery-cookie. (Accessed on
05/26/2023).

[78] jquerymigrate. 2023. jquery/jquery-migrate: A development tool to helpmigrate
away from APIs and features that have been or will be removed from jQuery
core. https://github.com/jquery/jquery-migrate. (Accessed on 05/26/2023).

[79] jQuery UI. 2023. jQuery UI. https://jqueryui.com/. (Accessed on 05/26/2023).
[80] jsDelivr. 2023. jsDelivr - A free, fast, and reliable CDN for open source. https:

//www.jsdelivr.com/. (Accessed on 05/26/2023).
[81] Gregg Keizer. 2011. RSA hackers exploited Flash zero-day bug | Com-

puterworld. https://www.computerworld.com/article/2507619/rsa-hackers-
exploited-flash-zero-day-bug.html. (Accessed on 05/26/2023).

[82] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad,WilliamRobertson, Christo
Wilson, and Engin Kirda. 2018. Thou shalt not depend on me: Analysing the
use of outdated javascript libraries on the web. arXiv preprint arXiv:1811.00918
(2018).

[83] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 Million Flows Later:
Large-Scale Detection of DOM-Based XSS. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security (Berlin, Germany)
(CCS ’13). Association for ComputingMachinery, NewYork, NY, USA, 1193–1204.
https://doi.org/10.1145/2508859.2516703

[84] Ada Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.
2016. Internet Jones and the Raiders of the Lost Trackers: An Archaeological

Study of Web Tracking from 1996 to 2016. In 25th USENIX Security Symposium
(USENIX Security 16). USENIXAssociation, Austin, TX. https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/lerner

[85] Fabian Marquardt and Lennart Buhl. 2021. Déjà Vu? Client-Side Fingerprinting
and Version Detection of Web Application Software. In 2021 IEEE 46th Con-
ference on Local Computer Networks (LCN). 81–89. https://doi.org/10.1109/
LCN52139.2021.9524885

[86] Modernizr. 2023. Modernizr: the feature detection library for HTML5/CSS3.
https://modernizr.com/. (Accessed on 05/26/2023).

[87] Moment. 2023. Moment.js | Home. https://momentjs.com/. (Accessed on
05/26/2023).

[88] Mozilla. 2021. End of support for Adobe Flash | Firefox Help. https:
//support.mozilla.org/en-US/kb/end-support-adobe-flash. (Accessed on
05/26/2023).

[89] Mozilla. 2022. Subresource Integrity - Web security | MDN. https://
developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity. (Ac-
cessed on 05/26/2023).

[90] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In Proceedings of the 2012 ACM conference on Computer and communications
security. 736–747.

[91] NIST. 2018. NVD - CVE-2018-9206. https://nvd.nist.gov/vuln/detail/CVE-2018-
9206. (Accessed on 05/26/2023).

[92] Frolin Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2013. An
Empirical Study of Client-Side JavaScript Bugs. In 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement. 55–64. https:
//doi.org/10.1109/ESEM.2013.18

[93] Polyfill. 2023. Polyfill.io. https://polyfill.io/v3/. (Accessed on 05/26/2023).
[94] Popper. 2023. Tooltip & Popover Positioning Engine. https://popper.js.org/.

(Accessed on 05/26/2023).
[95] Prototype. 2015. Prototype JavaScript framework: a foundation for ambitious

web applications. http://prototypejs.org/. (Accessed on 05/26/2023).
[96] Nur Aini Rakhmawati, Sayekti Harits, Deny Hermansyah, and Muhammad Ar-

iful Furqon. 2018. A Survey of Web Technologies Used in Indonesia Local
Governments. SISFO Vol 7 No 3 7 (2018).

[97] RequireJS. 2018. RequireJS. https://requirejs.org/. (Accessed on 05/26/2023).
[98] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. 2010. An Analysis

of the Dynamic Behavior of JavaScript Programs. SIGPLAN Not. 45, 6 (jun 2010),
1–12. https://doi.org/10.1145/1809028.1806598

[99] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. 2020. Complex security policy? a longitudinal analysis of deployed
content security policies. In Proceedings of the 27th Network and Distributed
System Security Symposium (NDSS).

[100] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. 2010. FLAX:
Systematic Discovery of Client-side Validation Vulnerabilities in Rich Web
Applications.. In NDSS.

[101] IMQ Minded Security. 2013. IMQ Minded Security Blog: “jQuery Migrate”’ is a
Sink, too?! https://blog.mindedsecurity.com/2013/04/jquery-migrate-is-sink-
too.html. (Accessed on 09/05/2023).

[102] Statcounter. 2023. Browser Market Share Worldwide. https:
//gs.statcounter.com/browser-market-share/desktop/worldwide. (Accessed on
05/26/2023).

[103] statista. 2023. Internet usage worldwide – statistics & facts. https://
www.statista.com/topics/1145/internet-usage-worldwide/. (Accessed on
05/26/2023).

[104] Marius Steffens, Marius Musch, Martin Johns, and Ben Stock. 2021. Who’s
hosting the block party? studying third-party blockage of csp and sri. In Network
and Distributed Systems Security (NDSS) Symposium 2021.

[105] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. 2017. How the
Web Tangled Itself: Uncovering the History of Client-Side Web (In)Security.
In 26th USENIX Security Symposium (USENIX Security 17). USENIX As-
sociation, Vancouver, BC, 971–987. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/stock

[106] Yuta Takata, Hiroshi Kumagai, and Masaki Kamizono. 2021. The Uncontrolled
Web: Measuring Security Governance on the Web. IEICE Transactions on Infor-
mation and Systems 104, 11 (2021), 1828–1838.

[107] Underscore. 2022. Underscore.js. https://underscorejs.org/. (Accessed on
05/26/2023).

[108] Semantic Versioning. 2023. Semantic Versioning 2.0.0. https://semver.org/.
(Accessed on 05/26/2023).

[109] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. 2007. Cross site scripting preventionwith dynamic
data tainting and static analysis.. In NDSS, Vol. 2007. 12.

[110] W3. 2016. Subresource Integrity. https://www.w3.org/TR/SRI/#cross-origin-
data-leakage. (Accessed on 05/26/2023).

[111] W3.org. 2023. HTML Standard. https://html.spec.whatwg.org/multipage/
iframe-embed-object.html#the-object-element. (Accessed on 05/26/2023).

https://media.defense.gov/2019/Sep/25/2002186834/-1/-1/0/CSA%20-%20CONTINUED%20USE%20OF%20ADOBE%20FLASH%20INVITES%20COMPROMISE.PDF
https://doi.org/10.1145/2420950.2420952
https://doi.org/10.1109/EATIS.2016.7520140
https://getbootstrap.com/
https://cdnjs.com/
https://www.chromium.org/flash-roadmap/#TOC-Flash-Support-Removed-from-Chromium-Target:-Chrome-87---Dec-2020-
https://www.chromium.org/flash-roadmap/#TOC-Flash-Support-Removed-from-Chromium-Target:-Chrome-87---Dec-2020-
https://www.chromium.org/flash-roadmap/#TOC-Flash-Support-Removed-from-Chromium-Target:-Chrome-87---Dec-2020-
https://doi.org/10.1145/2899475.2899498
https://doi.org/10.1109/MC.2006.66
https://archive.f-secure.com/weblog/archives/00002226.html
https://github.com/prototypejs/prototype/pull/349
https://github.com/prototypejs/prototype/pull/349
https://www.blog.google/products/chrome/saying-goodbye-flash-chrome/
https://www.blog.google/products/chrome/saying-goodbye-flash-chrome/
https://doi.org/10.2991/mecae-17.2017.27
https://doi.org/10.2991/mecae-17.2017.27
https://isotope.metafizzy.co/
https://isotope.metafizzy.co/
https://jquery.com/
https://github.com/carhartl/jquery-cookie
https://github.com/jquery/jquery-migrate
https://jqueryui.com/
https://www.jsdelivr.com/
https://www.jsdelivr.com/
https://www.computerworld.com/article/2507619/rsa-hackers-exploited-flash-zero-day-bug.html
https://www.computerworld.com/article/2507619/rsa-hackers-exploited-flash-zero-day-bug.html
https://doi.org/10.1145/2508859.2516703
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lerner
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lerner
https://doi.org/10.1109/LCN52139.2021.9524885
https://doi.org/10.1109/LCN52139.2021.9524885
https://modernizr.com/
https://momentjs.com/
https://support.mozilla.org/en-US/kb/end-support-adobe-flash
https://support.mozilla.org/en-US/kb/end-support-adobe-flash
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://nvd.nist.gov/vuln/detail/CVE-2018-9206
https://nvd.nist.gov/vuln/detail/CVE-2018-9206
https://doi.org/10.1109/ESEM.2013.18
https://doi.org/10.1109/ESEM.2013.18
https://polyfill.io/v3/
https://popper.js.org/
http://prototypejs.org/
https://requirejs.org/
https://doi.org/10.1145/1809028.1806598
https://blog.mindedsecurity.com/2013/04/jquery-migrate-is-sink-too.html
https://blog.mindedsecurity.com/2013/04/jquery-migrate-is-sink-too.html
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://www.statista.com/topics/1145/internet-usage-worldwide/
https://www.statista.com/topics/1145/internet-usage-worldwide/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/stock
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/stock
https://underscorejs.org/
https://semver.org/
https://www.w3.org/TR/SRI/#cross-origin-data-leakage
https://www.w3.org/TR/SRI/#cross-origin-data-leakage
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#the-object-element
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#the-object-element


IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

[112] Whatwg. 2023. HTML Standard. https://html.spec.whatwg.org/multipage/urls-
and-fetching.html#cors-settings-attributes. (Accessed on 05/26/2023).

[113] WordPress. 2022. Enable jQuery Migrate Helper – WordPress plugin.
https://wordpress.org/plugins/enable-jquery-migrate-helper/. (Accessed on
05/26/2023).

[114] WordPress. 2022. Enable jQuery Migrate Helper – WordPress plugin. https:
//wordpress.org/plugins/enable-jquery-migrate-helper/#description. (Accessed
on 05/26/2023).

[115] WordPress. 2023. Configuring Automatic Background Updates. https:
//wordpress.org/support/article/configuring-automatic-background-updates/.
(Accessed on 05/26/2023).

[116] Qiushi Wu and Kangjie Lu. 2021. On the feasibility of stealthily introducing
vulnerabilities in open-source software via hypocrite commits. In Proc. Oakland.

[117] Chuan Yue and Haining Wang. 2009. Characterizing Insecure Javascript Prac-
tices on the Web. In Proceedings of the 18th International Conference on World
Wide Web (Madrid, Spain) (WWW ’09). Association for Computing Machinery,
New York, NY, USA, 961–970. https://doi.org/10.1145/1526709.1526838

[118] ZDNET. 2018. Zero-day in popular jQuery plugin actively exploited for at least
three years | ZDNET. https://www.zdnet.com/article/zero-day-in-popular-
jquery-plugin-actively-exploited-for-at-least-three-years/. (Accessed on
05/26/2023).

[119] ZDNET. 2021. Flash version distributed in China after EOL is installing adware
| ZDNET. https://www.zdnet.com/article/flash-version-distributed-in-china-
after-eol-is-installing-adware/. (Accessed on 05/26/2023).

APPENDIX
Revealed Vulnerabilities. As we have seen in Figure 5, we
showed the number of websites affected by incorrect CVE informa-
tion. Figure 14(a) shows that jQuery-Migrate has a CVE stating
that the versions before 1.2.1 are vulnerable. However, we revealed
that the vulnerability expands from 1.0.0 to 3.0.0 (an understated
version case). The red region in the graph shows the domains us-
ing newly revealed vulnerable versions. For Figure 14(d), and Fig-
ure 14(e) same principle applies to Figure 14(a). For Figure 14(b)
and Figure 14(c), the CVE states that more versions are vulnerable
than the versions that are truly vulnerable (an overstated version
case).
Top 5 Affected Versions. Figure 15 shows the top 5 affected
versions for Bootstrap, jQuery-UI, and Prototype. Figure 15(a)
has version 3.3.7 as the dominant version as shown in Table 1.
However, it is affected by all of the CVEs we have discovered. From
Figure 15(a), version 3.3.7 is decreasing. However, it is difficult to say
it is caused by the disclosed vulnerability. Similarly, for Figure 15(b),
version 1.7.1 is the most dominant version, and it decreases slightly.
A similar result is shown but more pronounced because this clearly
shows that the decrease is not affected by disclosed CVEs. For
Figure 15(c), the dominant version is also in the top 5 affected
versions. This figure also shows that there is no effect on updating
behavior with disclosed CVEs.
Comparison of Overstated Versions and Understated Ver-
sions. As we have seen in Figure 4, a similar analysis is conducted.
For Moment, jQuery-Migrate, jQuery-UI, and Prototype, all
have understated versions indicated in red. As we can see with
jQuery-Migrate and Prototype, more than half of the existing
versions are understated versions. This indicates how inaccurate
CVE information is. The Bootstrap only does not have under-
stated versions, it only has revealed overstated versions. This is
understated but has drawbacks explained in Section 6.4.
Top 10 Disclosed CVEs for WordPress. Table 4 shows the top
10 disclosed CVEs for WordPress (the most recent 5 CVEs and the
most critical CVEs). WordPress is one of the interesting factors in
our observation of JavaScript library updates. WordPress is one
of the most popular content management systems. In our dataset,

26.9% of websites use WordPress as shown in Figure 9. WordPress
has released a total number of 606 versions, excluding beta and RC
(Release Candidate) versions. In our dataset, we found 521 versions
(excluding the last two patches of each version from v3.7 to v5.9,
and the 6.0 branch because they are released after our collection pe-
riod). We further look into disclosed vulnerabilities for WordPress,
and we found a total of 6,155 disclosed CVEs as of May. 2023. From
6,155 disclosed CVEs, we looked at the five most severe vulnera-
bilities (highest ranked in CVSS score) and five most recent CVEs
(recent CVEs only have medium severity score). From what we
have found, an average of 97.7% of websites is vulnerable according
to the top 5 recently disclosed CVEs and 0.36% of websites are vul-
nerable according to the top 5 most severe CVEs. This indicates that
WordPress tries to fix vulnerabilities as version updates and most
websites are using relatively recent versions of WordPress. This
implies in Section 7 that WordPress has an Auto-Update function
which helps administrators/developers to keep up with the most
recent version of the software.
CVE PoC code. We reimplemented this PoC code from CVE-2020-
7656 to see which version of jquery was truly affected.

1 <html>
2 <head>
3 <script src="https://cdnjs.cloudflare.com/ajax/libs/

jquery/1.8.3/jquery.js">
4 </script>
5 </head>
6 <body>
7 <h1>CVE-2020-7656</h1>
8 <div id="CVE-2020-7656"></div>
9 <script>
10 $("#CVE-2020-7656").load('inject.html');
11 </script>
12 </div>
13 </body>
14 </html>

Listing 1: Modified PoC for CVE-2020-7656 [29]

1 <div id="CVE-2020-7656">
2 <script>alert('Arbitrary Code Execution');
3 </script></div>

Listing 2: Modified PoC for CVE-2020-7656 (inject.html) [29]

All Websites
Websites using WordPress

N
um

be
r o

f D
om

ai
ns

0

200,000

400,000

600,000

800,000

1,000,000

Date

Jul Jan Jul Jan Jul Jan Jul Jan
2018 2019 2020 2021

Figure 9: WordPress Usage. Of our collected websites (on
average, 782,300), 26.9% websites are built with WordPress.

https://html.spec.whatwg.org/multipage/urls-and-fetching.html#cors-settings-attributes
https://html.spec.whatwg.org/multipage/urls-and-fetching.html#cors-settings-attributes
https://wordpress.org/plugins/enable-jquery-migrate-helper/
https://wordpress.org/plugins/enable-jquery-migrate-helper/#description
https://wordpress.org/plugins/enable-jquery-migrate-helper/#description
https://wordpress.org/support/article/configuring-automatic-background-updates/
https://wordpress.org/support/article/configuring-automatic-background-updates/
https://doi.org/10.1145/1526709.1526838
https://www.zdnet.com/article/zero-day-in-popular-jquery-plugin-actively-exploited-for-at-least-three-years/
https://www.zdnet.com/article/zero-day-in-popular-jquery-plugin-actively-exploited-for-at-least-three-years/
https://www.zdnet.com/article/flash-version-distributed-in-china-after-eol-is-installing-adware/
https://www.zdnet.com/article/flash-version-distributed-in-china-after-eol-is-installing-adware/


A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Browser Market share* Flash Support**

Chrome 66.45% N
Edge 10.8% N
Safari 9.59% N
Firefox 7.16% N
Opera 3.09% N
IE 0.81% N
360 Browser 0.66% Y
Yandex Browser 0.39% N
QQ Browser 0.20% N
Edge Legacy 0.16% N
*: Desktop Browser Market Share Worldwide
(Apr. 2022 – Apr. 2023) [102]
**: Manually tested on May 26, 2023.

Table 3: Top 10Web Browser Market share and Flash Support.
360 Browser still supports Adobe Flash even though it is
officially no longer supported and major browsers such as
Chrome completely removed the Flash components.

CVE ID Disclosed Date Ver Patched Ver Patched Date #Websites

CVE-2022-21664 01/06/2022 4.1.34 ∼ 5.8.3 5.8.3 01/06/2022 124,556
CVE-2022-21663 01/06/2022 3.7.37 ∼ 5.8.3 5.8.3 01/06/2022 127,440
CVE-2022-21662 01/06/2022 3.7.37 ∼ 5.8.3 5.8.3 01/06/2022 127,440
CVE-2022-21661 01/06/2022 3.7.37 ∼ 5.8.3 5.8.3 01/06/2022 127,440
CVE-2021-44223 11/25/2021 < 5.8 5.8 07/20/2021 121,214

CVE-2012-2400 04/21/2012 < 3.3.2 3.3.2 04/20/2012 545
CVE-2012-2399 04/21/2012 < 3.5.2 3.5.2 06/21/2013∗ 913
CVE-2011-3125 08/10/2011 < 3.1.3 3.1.3 05/25/2011 380
CVE-2011-3122 08/10/2011 < 3.1.3 3.1.3 05/25/2011 380
CVE-2009-2853 08/18/2009 < 2.8.3 2.8.3 08/03/2009 30
*: the vulnerability was disclosed more than a year before the patched version was released

Table 4: Top 10 disclosed CVEs for WordPress The first 5
are the most recent CVEs, and the last 5 are the most severe
CVEs.

Lib. Hostname % Lib. Hostname %

jQuery
ajax.googleapi.com 26.0%

isotope
secureservercdn.net 3.3%

code.jquery.com 10.0% cdn.shopify.com 2.1%
cdnjs.cloudflare.com 7.1% cdn.jsdelivr.net 0.8%

jQuery-Migrate
c0.wp.com 22.1%

popper
cdnjs.cloudflare.com 77.3%

cdnjs.cloudflare.com 4.5% cdn.jsdelivr.net 9.0%
secureservercdn.net 2.3% unpkg.com 2.1%

Bootstrap
maxcdn.bootstrapcdn.com 33.6%

polyfill
polyfill.io 45.4%

widget.trustpilot.com 10.0% cdn.polyfill.io 30.8%
stackpath.bootstrapcdn.com 9.7% static.parastorage.com 4.1%

jQuery-UI
ajax.googleapis.com 49.6%

moment
cdnjs.cloudflare.com 51.8%

code.jquery.com 30.7% cdn.jsdelivr.net 6.1%
cdnjs.cloudflare.com 4.2% momentjs.com 1.7%

Modernizr
cdnjs.cloudflare.com 32.4%

swfobject
ajax.googleapis.com 49.1%

cdn.shopify.com 21.8% cdnjs.cloudflare.com 3.0%
cdn.prestosports.com 1.0% s0.wp.com 2.6%

JS-Cookie
cdn.jsdelivr.net 21.1%

jquery-cookie
cdnjs.cloudflare.com 62.6%

c0.wp.com 12.3% cdn.shopify.com 8.4%
cdnjs.cloudflare.com 11.5% c0.wp.com 0.9%

Underscore
c0.wp.com 20.5%

prototype
ajax.googleapis.com 27.7%

cdnjs.cloudflare.com 13.3% strato-editor.com 3.7%
secureservercdn.net 1.5% cdnjs.cloudflare.com 2.2%

Table 5: Top 3 CDNs for JavaScript Library.

Integrity No Integrity

# 
of

 W
eb

si
te

s

0

200,000

400,000

600,000

800,000

Date

Jul Jan Jul Jan Jul Jan Jul Jan
2018 2019 2020 2021

Figure 10: Subresource Integrity (SRI). 99.7% websites have at
least one externally-hosted JS library without integrity.

Total 1M Domain using Flash
"AllowScriptAccess" Parameter Used
Always Option Specified

Flash End of LIfe

N
um

be
r o

f D
om

ai
ns

0

2,000

4,000

6,000

8,000

10,000

Date

Jul Jan Jul Jan Jul Jan Jul Jan
2018 2019 2020 2021

Figure 11: AllowScriptAccess Parameter and Insecure
Always Option.

# of Vulnerabilities

CVE Vulnerable Ver.
True Vulnerable Ver.C

D
F

0%

50%

100%

0 1 2 3 4 5 10 20

Figure 12: CDF of the Avg. Number of Vulnerabilities per
Website. The average number of True Vulnerable Versions
(mean: 0.97, median: 0.96) is higher than the one of CVE
vulnerable versions (mean: 0.79, median: 0.75). This indicates
that a significant number of True Vulnerable Versions are
not disclosed due to incorrect CVE descriptions.



IMC ’23, October 24–26, 2023, Montreal, QC, Canada Kyungchan Lim, Yonghwi Kwon, and Doowon Kim

1

2.15.22.11.22.8.1

CVE-2016-4055

1.0.0

Disclosed Vulnerable Versions Understated Versions Overstated Versions

(a) Moment

3.0.01.9.1

jQuery-Migrate

1.0.0

1

Disclosed Vulnerable Versions Understated Versions Overstated Versions

(b) jQuery-Migrate

1

3.0.01.12.01.10.0

CVE-2016-7103

1.0.0

Disclosed Vulnerable Versions Understated Versions Overstated Versions

(c) jQuery-UI

1

2

3

1.0.0

1.0.0

3.2.0

3.4.02.1.0

CVE-2018-20676/7

CVE-2018-14040/2

CVE-2016-10735

3.4.0

2.3.0

1.0.0

3.4.0

Disclosed Vulnerable Versions Understated Versions Overstated Versions

(d) Bootstrap

1

2

1.0.0

1.7.1

CVE-2020-27511

CVE-2020-7993
1.0.0

1.7.1

1.6.0.1

Disclosed Vulnerable Versions Understated Versions Overstated Versions

(e) Prototype

Figure 13: Comparison of Disclosed CVE Vulnerable Version and Understated/Overstated Versions (Moment, jQuery-Migrate,
jQuery-UI, Bootstrap, and Prototype).

True Vulnerable Ver. Disclosed Affected Ver.

Disclosed Affected Ver.: < 1.2.1

True Vulnerable Ver.: >= 1.0.0 and < 3.0.0

# 
of

 W
eb

si
te

s

0

50,000

100,000

150,000

Date
2019 2020 2021 2022

(a) jQuery-Migrate: NO CVE ID Assigned

Affected Ver.: < 3.4.0

True Vulnerable Ver. CVE Affected Ver.

CVE-2016-10735 disclosed 6/27/2016

Affected Ver.: < 3.4.0Affected Ver.: < 3.4.0

True Vulnerable Ver.: >= 2.1.0 and < 3.4.0

# 
of

 W
eb

si
te

s

0

5,000

10,000

15,000

20,000

25,000

Date
2019 2020 2021 2022

(b) Bootstrap: CVE-2016-10735

Affected Ver.: < 3.4.0

True Vulnerable Ver. CVE Affected Ver.

CVE-2018-20676

Affected Ver.: < 3.4.0Affected Ver.: < 3.4.0

True Vulnerable Ver.: >= 3.2.0 and < 3.4.0

# 
of

 W
eb

si
te

s

0

5,000

10,000

15,000

20,000

25,000

Date
2019 2020 2021 2022

(c) Bootstrap: CVE-2018-20676

Affected Ver.: < 3.4.0

True Vulnerable Ver. CVE Affected Ver.

CVE-2016-7103

Affected Ver.: < 3.4.0Affected Ver.: < 1.12.0

True Vulnerable Ver.: >= 1.10.0 and < 1.13.0

# 
of

 W
eb

si
te

s

0

5,000

10,000

15,000

20,000

Date
2019 2020 2021 2022

(d) jQuery-UI: CVE-2016-7103

Affected Ver.: < 3.4.0

True Vulnerable Ver. CVE Affected Ver.

Affected Ver.: < 3.4.0Affected Ver.: < 2.11.2

True Vulnerable Ver.: >= 2.8.1 and < 2.15.2

CVE-2016-4055

# 
of

 W
eb

si
te

s

0

200

400

600

800

1,000

Date
2019 2020 2021 2022

(e) Moment: CVE-2016-4055

Affected Ver.: < 3.4.0

True Vulnerable Ver. CVE Affected Ver.

Affected Ver.: < 1.7.3
True Vulnerable Ver.: All versions

CVE-2020-27511

# 
of

 W
eb

si
te

s

0

100

200

300

400

Date
2019 2020 2021 2022

(f) Prototype: CVE-2020-27511

Figure 14: CVV and TVV of jQuery-Migrate, jQuery-UI, Bootstrap, Moment, and Prototype.

3.3.7 3.3.6 3.3.5 4.0.0 4.3.1

CVE-2016-10735

CVE-2019-8331

CVE-2018-20676
CVE-2018-20677

CVE-2018-14042,CVE-2018-14040
CVE-2018-14041

# 
of

 W
eb

si
te

s

0

2,000

4,000

6,000

8,000

Date
2019 2020 2021 2022

(a) Bootstrap

1.7.1 1.6.1 1.7.3 1.7.2 1.7.0

CVE-2020-27511

CVE-2020-7993

# 
of

 W
eb

si
te

s

0

100

200

300

Date

2019 2020 2021 2022

(b) Prototype

1.12.1 1.11.4 1.10.3 1.10.4

CVE-2012-6662

CVE-2021-41182CVE-2021-41183, CVE-2021-41182CVE-2021-41184,

# 
of

 W
eb

si
te

s

0

2,000

4,000

6,000

8,000

Date
2019 2020 2021 2022

(c) jQuery-UI

Figure 15: Top 5 Affected Versions of Bootstrap, Prototype, and jQuery-UI.



A Longitudinal Study of Vulnerable Client-side Resources and Web Developers’ Updating Behaviors IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Top 10K Domains using GitHub URL Stats for GitHub

Website Ranking GitHub URL Most Used Repository #Websites

kinogo.cc 594 kodir2.github.io/.../actualize.js partnercoll.github.io/actualize.js 4
uptobox.com 744 blueimp.github.io/.../jquery.ui.widget.js malsup.github.com/jquery.form.js 2
cnnindonesia.com 985 malsup.github.com/jquery.form.js afarkas.github.io/.../lazysizes.min.js 2
wittyfeed.com 1639 hammerjs.github.io/.../hammer.min.js blueimp.github.io/.../jquery.ui.widget.js 2
baskino.me 1,680 partnercoll.github.io/actualize.js gitcdn.github.io/.../bootstrap-toggle.min.js 2

the-star.co.ke 2,029 radioafricagroup.github.io/.../cookiestrip.min.js kodir2.github.io/actualize.js 2
radioafricagroup.github.io/.../jquery.popup.js owlcarousel2.github.io/.../owl.carousel.js 2

colourpop.com 2,551 klevron.github.io/.../OrbitControls.js weblion777.github.io/hdvb.js 2
canalrcn.com 3,274 afarkas.github.io/.../lazysizes.min.js hammerjs.github.io/.../hammer.min.js 1
dostor.org 3,329 owlcarousel2.github.io/.../owl.carousel.js malihu.github.io/.../jquery.mCustomScrollbar.concat.min.js 1
morningstar.com 3,976 jonathantneal.github.io/.../svg4everybody.min.js kenwheeler.github.io/.../slick.js 1
raw.githubusercontent.com 4,087 assets-cdn.github.com/.../compat-432e5...a3c.js actlz.github.io/actualize.js 1
bintjbeil.org 4,518 malihu.github.io/.../jquery.mCustomScrollbar.concat.min.js assets-cdn.github.com/.../compat-432e5...a3c.js 1
vkmag.com 5,772 owlcarousel2.github.io/.../owl.carousel.js blueimp.github.io/.../jquery.blueimp-gallery.min.js 1
atresplayer.com 6,455 malsup.github.com/jquery.form.js blueimp.github.io/.../canvas-to-blob.min.js 1

kinoserv.net 6,714 weblion777.github.io/hdvb.js blueimp.github.io/.../load-image.all.min.js 1
partnercoll.github.io/actualize.js blueimp.github.io/.../tmpl.min.js 1

hdkinoteatr.com 6,820 weblion777.github.io/hdvb.js blueimp.github.io/.../jquery.fileupload-audio.js 1
partnercoll.github.io/actualize.js blueimp.github.io/.../jquery.fileupload-image.js 1

ohmynews.com 6,997 kenwheeler.github.io/.../slick.js blueimp.github.io/.../jquery.fileupload-process.js 1
orangebookvalue.com 7,029 gitcdn.github.io/.../bootstrap-toggle.min.js blueimp.github.io/.../jquery.fileupload-ui.js 1
bddatabase.net 7,971 hayageek.github.io/.../jquery.uploadfile.min.js blueimp.github.io/.../jquery.fileupload-validate.js 1
noticiasrcn.com 8,008 afarkas.github.io/.../lazysizes.min.js blueimp.github.io/.../jquery.fileupload-video.js 1

kinoplen.ru 8,018 "partnercoll.github.io/replace.js blueimp.github.io/.../jquery.fileupload.js 1
partnercoll.github.io/actualize.js blueimp.github.io/.../jquery.iframe-transport.js 1

english-films.com 8,242 actlz.github.io/actualize.js hayageek.github.io/.../jquery.uploadfile.min.js 1

uptostream.com 8,796

blueimp.github.io/.../jquery.ui.widget.js jonathantneal.github.io/.../svg4everybody.min.js 1
blueimp.github.io/.../tmpl.min.js klevron.github.io/.../OrbitControls.js 1
blueimp.github.io/.../load-image.all.min.js partnercoll.github.io/replace.js 1
blueimp.github.io/.../canvas-to-blob.min.js radioafricagroup.github.io/.../jquery.popup.js 1
blueimp.github.io/.../jquery.blueimp-gallery.min.js radioafricagroup.github.io/.../cookiestrip.min.js 1
blueimp.github.io/.../jquery.iframe-transport.js
blueimp.github.io/.../jquery.fileupload.js
blueimp.github.io/.../jquery.fileupload-process.js
blueimp.github.io/.../jquery.fileupload-image.js
blueimp.github.io/.../jquery.fileupload-audio.js
blueimp.github.io/.../jquery.fileupload-video.js
blueimp.github.io/.../jquery.fileupload-validate.js
blueimp.github.io/.../jquery.fileupload-ui.js

mega-mult.ru 9,165 kodir2.github.io/actualize.js
rstudio.com 9,610 gitcdn.github.io/.../bootstrap-toggle.min.js

Table 6: Top 10k Websites using JS Library directly from GitHub Repository. The left half of the table indicates domains
representing libraries. The right half of the table indicates the number of domains using the same repositories


	Abstract
	1 INTRODUCTION
	2 Background
	2.1 JavaScript Library
	2.2 Adobe Flash Applet

	3 Motivation & Research Question
	4 Dataset Collection
	4.1 Landing Page Collection
	4.2 Identifying Resources and Versions
	4.3 Collecting Vulnerability Information

	5 Overview of Resources
	6 Vulnerable JavaScript Libraries
	6.1 Landscape of JavaScript Library Usage
	6.2 Known Vulnerability using CVE Report
	6.3 Dominant Vulnerable Versions & Discontinued Library
	6.4 Accuracy of CVE Vulnerability Info.
	6.5 Potential Security Threats of Untrustful External Libraries

	7 Update of Vulnerable JavaScript Libraries
	8 Insecure Adobe Flash
	9 Discussion
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

