When Does Wasm Malware Detection Fail? A
Systematic Analysis of Their Robustness to Evasion

Taeyoung Kim*, Sanghak Oh*, Kiho Lee!, Weihang Wang?,
Yonghwi Kwon®, Sanghyun Hong¥, Hyoungshick Kim*
*Department of Electrical and Computer Engineering, Sungkyunkwan University, Republic of Korea,
{tykim0402, sanghak, hyoung} @skku.edu
TElectronics and Telecommunications Research Institute (ETRI), Republic of Korea, kiho@etri.re.kr
iDepartment of Computer Science, University of Southern California, USA, weihangw @usc.edu
§’Department of Electrical and Computer Engineering, University of Maryland, USA, yongkwon@umd.edu
qIDepartment of Computer Science, Oregon State University, USA, sanghyung.hong@oregonstate.edu

Abstract—WebAssembly (Wasm) provides a language-agnostic
compilation target that delivers near-native performance for web
applications, yet it also attracts adversaries who exploit Wasm
to effectively steal someone else’s computer resources such as
cryptojackers. While several detection tools have been proposed,
their robustness against perturbations remains largely unknown.

In this paper, we introduce SWAMPED (Systematic WebAssem-
bly Module Perturbation Evaluation of Detectors), a framework
that incorporates 22 semantics-preserving perturbation methods.
SWAMPED generates a total of 48,840 perturbed variants from
43 cryptojacker samples and 31 additional Wasm malware
binaries from real-world. We assess detection performance of
six detectors: three Wasm-specific ones and three deep neural
network (DNN) detectors. We find that DNN-based detectors are
vulnerable to perturbations that shift the instruction distribution;
profiling-based methods are disrupted by changes in instruction
frequency; and semantic-aware approaches are highly sensitive
to function-level dependency modifications. DNN-based detectors,
which lack Wasm-specific modeling, are particularly susceptible
to changes in the spatial layout of Wasm binaries. These findings
highlight fundamental limitations in current Wasm malware
detection approaches, relying on overly specific detection heuris-
tics and inadequately trained or designed models. We offer
suggestions to improve the robustness against perturbations.

I. INTRODUCTION

WebAssembly (Wasm) [1] is a language-agnostic compila-
tion target that enables languages like C/C++ and Rust to exe-
cute efficiently on the web. It enhances the performance of web
applications, making it possible to run computationally inten-
sive tasks such as video editing and cryptographic operations.
For instance, small programs in PolyBench C benchmarks [2]
run over 8§ x faster in Wasm than JavaScript [3].

Unfortunately, this capability has also attracted adversaries
who create malicious web programs (e.g., malicious adver-
tisements, keyloggers, and cryptomining) [4]. Wasm’s superior
performance over JavaScript has made it particularly popular
for cryptojacking, where adversaries exploit victims’ comput-
ing resources to mine cryptocurrencies without consent. Wasm
is also appealing for malicious use because it complicates
program analysis and detection [5] as binaries are distributed
in compiled form, unlike JavaScript [6], which is deployed as
human-readable source code.

In response, researchers have proposed detection methods
for Wasm-based malware [7]-[13], leveraging techniques from
traditional program analysis to machine learning. While ef-
fective against known malware samples, their preparedness
for real-world deployment with diversified malware variants
remains unknown. Recent work demonstrates that adversaries
can use automated diversification techniques [14], [15] to gen-
erate numerous malware variants at negligible cost, potentially
undermining existing detection tools. While a few studies have
examined perturbation impacts on malware detectors [16],
[17], a systematic study of detection method limitations
under automated diversification is still missing. Moreover,
Wasm’s unique structure and environment (e.g., stack-based
execution model, structured control flow, and inter-section
dependencies) [18] affect the feasibility and effectiveness of
the perturbations, making prior findings on binary obfuscation
difficult to apply to Wasm [19]-[22] (see Section V).

In this paper, we systematically study how perturbation-
based malware diversification in the Wasm context impacts
various Wasm malware detection approaches. Specifically, we
analyze the underlying causes of detection failures and offer
insights into potential improvements. To this end, we develop
a framework, SWAMPED (Systematic WebAssembly Module
Perturbation Evaluation of Detectors), which incorporates 22
semantic-preserving perturbation strategies for Wasm binaries.
SWAMPED assesses the impact of each perturbation on 43 real-
world cryptojacker samples against three state-of-the-art detec-
tors: Minos [7], MineSweeper [8], and MinerRay [9], as well
as 31 real-world malware samples against three DNN-based
detectors: WasmGuard [12], MalConv [23], and AvastNet [24].

Our evaluation reveals key weaknesses in these detec-
tors. Minos [7] fails under distribution-shifting instruc-
tion insertions, revealing sensitivity to structural patterns.
MineSweeper [8] is evaded by small changes to cryptographic
opcode frequencies, showing reliance on static thresholds.
MinerRay [9] breaks under control/data-flow perturbations that
fragment semantic paths. Even among DNN-based techniques,
specialized/tuned techniques such as WasmGuard [12] are
prone to fail on instruction-level perturbations, while Mal-

Conv [23] and AvastNet [24] fail on both code and non-
code perturbations. More importantly, while detectors may
perform similarly in flagging malware, their reactions to
perturbed samples vary, often reflecting their subtle underlying
system or model constructions, demonstrating the importance
of understanding their performance under perturbation.

Our contributions are summarized as follows:

o We develop 22 perturbation methods applicable to Wasm-
based malware according to Wasm’s binary structure.

« We analyze the impact of the perturbation methods on
state-of-the-art Wasm malware detection tools, evaluating
detection performance across 48,840 perturbed variants.

« We have released our framework as open-source:
https://github.com/SKKU-SecL.ab/SWAMPED.

II. BACKGROUND
A. WebAssembly (Wasm)

WebAssembly is a W3C standard offering a high-

performance, language-agnostic compilation target with en-
hanced security. Programs written in C, C++, and Rust compile
into Wasm binaries that execute at near-native speeds within a
browser’s virtual machine. A Wasm module consists of func-
tions, global variables, linear memory, and an optional table
for indirect function calls, all identified by integer indices.
Stack-based Virtual Machine. WebAssembly operates on
a stack-based virtual machine where instructions implicitly
manipulate the values on the stack. Besides the stack, there are
local and global variables; locals are scoped to their declaring
function, while globals are accessible throughout the module.
Data Types. Variables and function signatures in Wasm are
strictly typed, using 4 primitive data types: 32/64-bit integers
and floating-point numbers (132, 164, 32, and f64). Complex
data structures are compiled down to these primitives [25].
Control Flow. Wasm uses a block-based control flow mech-
anism. A block contains instructions that do not change the
control flow. Branching occurs only at block ends, and no
inter-procedure branching or mid-block jumps are allowed.
Multi-way branching uses branch tables (br table) with
predefined targets. Indirect function calls use call indirect,
retrieving a function index from the stack to look up the target.
This structure prohibits arbitrary jumps and data execution as
code, limiting control flow manipulation.
Memory Management. Memory in WebAssembly is linear
and unmanaged—a contiguous array of bytes accessible via
load and store instructions. Programs can request additional
memory at runtime [18] and memory management functions
are typically implemented within the Wasm module itself.

B. Wasm Malware

In this section, we discuss Wasm’s binary format and execu-
tion environment, which significantly impact the development
of web malware as well as malware detection techniques.
Efficient Execution Environment. Before Wasm, JavaScript
was the primary language for implementing complex logic
on the web. While widely supported, JavaScript suffers from
performance limitations, particularly for computation-intensive

tasks. This posed challenges for implementing operations like
encryption, decryption, or hashing efficiently in the browser.
One notable case is cryptomining. As cryptojacking emerged
as a profitable malware tactic, attackers initially turned to
JavaScript to implement cryptominers in websites. However,
due to JavaScript’s limited performance, they often failed to
generate meaningful profit [8], [26].

The introduction of Wasm significantly changed this
landscape. Wasm enables near-native execution speed for
computation-heavy tasks while maintaining compatibility with
modern browsers. This performance enhancement made it
feasible to implement efficient, browser-based cryptominers.
Wasm Binary Format. Wasm programs are deployed as
compiled Wasm binaries, unlike JavaScript programs, which
are deployed as their source code. This imposes multiple chal-
lenges in analysis. First, the binary format itself is designed
for efficient execution, not readability, making it harder to
interpret manually compared to JavaScript source code. It
requires analysis techniques that can handle binaries. Second,
during the compilation, high-level semantics in the source code
(e.g., data structures, data types, and control structures) are
significantly changed or stripped away. Third, Wasm binaries
can be generated from various languages, such as C and Rust,
where compiler optimizations and instrumentation methods are
available, making the analysis of the compiled binary more
challenging. Fourth, the binary format makes automated code
obfuscation/perturbation [15], [27], [28] applicable, imposing
an additional challenge.

Challenges in Wasm Analysis and Malware. Wasm’s binary
format and compilation process strip high-level semantics,
hindering manual program analysis and making it attractive
for malware deployment compared to JavaScript. The limited
availability of mature Wasm-specific analysis tools leaves
security systems vulnerable to malicious behavior inside Wasm
modules. Unlike JavaScript, which has established linters, de-
obfuscators, and static analyzers, Wasm lacks comprehensive
tooling support. This gap enables malicious actors to use
Wasm for delivering payloads and executing malicious logic,
with many malicious binaries going undetected. Furthermore,
since Wasm binaries are generated from languages like C/C++
that support various obfuscation and encryption techniques, at-
tackers can easily apply these methods to complicate analysis.

C. Wasm Malware Detectors

There is a line of research focusing on detecting malicious
Wasm binaries and programs [7]-[9], [11], [12], [29]-[35].
These approaches span a range of techniques, including in-
struction frequency analysis [8], [30], [33], behavior model-
ing [9], [11], [34], dynamic profiling [29], [31], [32], [35], and
deep learning-based classification [7], [12].

Among the twelve relevant techniques [7]-[9], [11], [12],
[29]-[35], six techniques [11], [31]-[35] do not provide open-
source systems, hence are excluded. Outguard [29] is excluded
as it does not analyze the Wasm binary’s content. Instead,
it only checks the presence of Wasm modules, making any
perturbation on them irrelevant. MineThrottle [30] requires

https://github.com/SKKU-SecLab/SWAMPED

Identified Perturbation ! ; . :
S — Methods | Placement | Iterate for the perturbation |
[C—— - Distribution | ratio fulfillment
‘ Type @ ‘ i
Wasm Import . B Signal
Binary Funcion | Q@ (Fff‘ib_“fk) 3
| e @@ . [Ef =
/ Global QDO -0 B
Export @ Perturbed | Analysis/ Result ‘ Result
T i Element Q00 Wasm Detection Interpretation Report
Wasm Data (Missing) Binaries Tools
Text < J
Section Parsing for Perturbation Perturbation Placement and Execution and Interpretation
(Section III-A and III-B) Deployment (Section I1I-C) (Section III-D)
Fig. 1. SWAMPED workflow: It perturbs WebAssembly binaries and evaluates the robustness of malware detection tools.

JavaScript modules for its analysis and is unable to analyze
Wasm modules independently; hence, it is also excluded.

We identify four open-source Wasm malware detectors that
directly analyze Wasm binaries: Minos [7], MineSweeper [8],
MinerRay [9], and WasmGuard [12]. Additionally, to broaden
our evaluation scope, we adapt two widely-studied DNN-
based malware detectors originally designed for Windows
PE files—MalConv [23] and AvastNet [24]—to work with
Wasm binaries. These general-purpose detectors have been
extensively used in static malware classification and adver-
sarial malware generation [14], [36], [37], and their inclusion
allows us to assess the broader applicability of our perturbation
techniques beyond Wasm-specific detectors. We train binary
classifiers using their architectures to distinguish between
benign and malicious Wasm binaries. Table I summarizes the
characteristics of all six detectors.

TABLE 1
COMPARISON OF DETECTION STRATEGIES EMPLOYED BY THE MOST
RECENT WASM-BASED CRYPTOJACKER DETECTORS.

Detector Base Technique Detection Method Granularity

Minos [7] 2D CNN classifier Image recognition Program
MineSweeper [8] Operation profiling Instruction frequency Function
MinerRay [9] Semantic-aware analysis IR & CFG analysis Function
WasmGuard [12] Adversarial training Adversarial classification Program
MalConv [23] Gated CNN classifier Byte-level pattern learning Program
AvastNet [24] Deep CNN classifier Byte-level hierarchical features ~ Program

o Minos [7] converts Wasm binaries into grayscale images
and trains a convolutional neural network (CNN) clas-
sifier to identify static patterns. A Wasm binary is first
converted into an array of integers, where each integer
represents a pixel in the grayscale image.

+ MineSweeper [8] analyzes CryptoNight-based mining
algorithms by profiling Wasm operations in cryptographic
functions (e.g., BLAKE, Keccak, and AES). It generates
fingerprints based on the operation frequency per function
to identify characteristics of cryptomining.

« MinerRay [9] is a semantic-aware static analysis-based
technique. It analyzes the semantics of cryptomining
algorithms across both Wasm and JavaScript contexts.
Specifically, it converts JavaScript into Wasm and then
combines it with the original Wasm binary. The binary

is abstracted into an intermediate representation (IR) to
construct a control flow graph (CFG), which is used to
identify the semantics.

« WasmGuard [12] is a detector against malicious Wasm
binaries designed to be resilient to adversarial attacks. It
leverages adversarial training based on the Fast Gradient
Sign Method (FGSM) [38] and incorporates adversarial
contrastive learning. It creates adversarial samples by
inserting values from the FGSM model. The values are
injected into newly created custom sections. In the exist-
ing sections (e.g., type and function), dummy elements
are also injected.

« MalConv [23] is a shallow CNN that processes byte
sequences through dual parallel convolution paths for
feature extraction and gating. The outputs are fused via
element-wise multiplication and followed by temporal
max-pooling and a fully connected classifier.

o AvastNet [24] is a deeper CNN classifier with four
stacked convolutional layers with increasing strides and
interleaved max-pooling layers to downsample long byte
sequences, followed by global average pooling and mul-
tiple fully connected layers.

III. OUR ANALYSIS FRAMEWORK: SWAMPED

We introduce SWAMPED (Systematic WebAssembly Mod-

ule Perturbation Evaluation of Detectors), a framework for as-
sessing the robustness of Wasm-based malware detection tools.
SWAMPED automatically applies fine-grained perturbations to
Wasm binaries and evaluates their impact on detection per-
formance. The framework generates a comprehensive report,
highlighting the most effective perturbations against each tool
and identifying related evasion techniques.
Workflow Overview. Figure 1 illustrates the overall workflow
of SWAMPED. First, it converts a Wasm binary into the
Wasm text format using the wasm2wat [39] tool with the
--generate-names flag, which generates symbolic names for
section entries to serve as identifiers during parsing. This
conversion enables parsing of different Wasm binary sections,
such as Type, Import, Function, Table, Global, Export, Element,
and Data sections. Note that these generated names are tem-
porary and are not preserved in the final perturbed binary.

Then, for each section, SWAMPED identifies the applicable
perturbation methods for the target. For each applicable pertur-

bation, if there are multiple targets (e.g., multiple instructions
that can be perturbed), we further select which elements to
be perturbed. To make a statistically meaningful placement of
perturbations, SWAMPED uses the beta distribution to select
perturbation positions (i.e., what to perturb). SWAMPED then
applies the perturbation to create a perturbed Wasm binary.

All the perturbed binaries are then fed into various Wasm
analysis and detection tools, including Minos, MineSweeper,
MinerRay, WasmGuard, MalConv, and AvastNet. These tools
classify the perturbed binary as Benign, Malign, Bad, Suspect,
Exact, Unlikely, Probable, or Certain, depending on their
detection algorithms, often accompanied by a confidence
score. The entire process is iteratively repeated for a range
of perturbation ratios (from 10% to 100%), until the desired
perturbation intensity is fulfilled. SWAMPED summarizes the
detection outcomes across all perturbation types and ratios,
generating metrics such as evaded sample rate and average
perturbation ratio among evasive samples.

A. Section Parsing

SWAMPED first parses the target binary to identify all sec-
tions. As shown in Figure 2, Wasm binaries have a hierarchical
structure with eight main sections: Type, Import, Function,
Global, Export, Element, Data, and Custom. For each identified
section, SWAMPED determines the applicable perturbation
methods (third column of Figure 2), which are detailed in
Section III-B.

Section ‘WebAssembly Code Our Perturbation

type @0: func (param i32) (result i32)
Se?i){g: type 1: func (param i64) @
Import | "import_func" (func_0 (type 0))
Section @

Eupeia | W71 (0 11 (poron 60 0020222
ecton ' 2222222
Table lobal 0: (mut i32) (i32.const @)

Section | °. Qe
Global lobal @: (mut i32) (i32.const @)

Section g 5 e @@
Export | export "export_func" (func_1)

Section | ... e

Element | element 0: (i32.const 0) —> 100
Section | ... @ @@

Data | data 0: (i32.const 1024) "\010203"
Section e @ @

Custom | \010203” (optional info) (P,

Fig. 2. Wasm binary’s section structure.

The Type section defines function signatures, such as ‘func
(param i132) (result i32).” The Import section declares im-
ported functions. The Function section contains function bod-
ies (i.e., functions’ code blocks). The Table section defines
function reference tables. The Global section declares global
variables. The Export section specifies functions to be exported
by referring to those in the Function section. The Element and
Data sections contain initial data/constant values for variables
(e.g., table entries) and memory. The Custom section holds
optional metadata such as debugging information. Each of
these sections comprises a sequence of entries.

B. Perturbation Methods

Given the target binary’s sections identified in Section III-A,
all associated (and thus applicable) perturbations to the iden-
tified sections (shown in the third column of Figure 2) are
selected and applied later. All 22 perturbations of SWAMPED
are semantics-preserving and grouped into two categories:
Structural Perturbation and Code Perturbation. Structural
Perturbation modifies non-code (or non-instruction) elements
of the binary, such as data types or function definitions. Code
Perturbation, by contrast, transforms the program code/logic
of the target program into another form with the same se-
mantics. Both types of perturbations preserve the program’s
original semantics and do not alter its behavior.

These perturbations are systematically derived from three
complementary sources: i) 11 Wasm-specific techniques
adapted from prior literature [12], [15], [28] with refined im-
plementations (@~@. @~ D. @ @, @, @), ii) 8 cross-
platform techniques from C/LLVM [40]-[42] and PE [14],
[43]-[45] contexts reinterpreted for Wasm’s strict stack-based
model (@. @. @ @ @ @ @ @) and iii) 3 new
Wasm-specific transformations exploiting syntactic flexibility
(@, @, @). We aim for broad coverage, ensuring at least one
perturbation per major Wasm section and instruction category.
We excluded binary obfuscations that are not compatible with
Wasm’s execution and validation model, such as virtualization,
packing, signature removal, and overlay injection.

1) Structural Perturbation (Non-code): SWAMPED has 10
perturbations methods that perturb structural data/elements of
the target binary file such as function definitions or initial
values of variables.

Type Section. This section contains function signatures that
are essentially the definitions of functions.

@ Function Signature Insertion: SWAMPED inserts a new
function signature in the type section. Specifically, SWAMPED
creates the new function signature by picking an existing
function signature (based on our selection criteria, i.e., a beta
distribution, described in Section III-C) and randomly adding
a local or parameter variable. The type of added variable is
also randomly chosen. Note that if the resulting signature is
identical to one of the existing function signatures, we repeat
the process until a unique function signature is generated.
Import Section. This section contains elements representing
items (e.g., functions and variables) that it imports from others.
@ Import Insertion: SWAMPED inserts a new import entry
by sampling function names from a curated pool of 4,125
candidates. This pool comprises 80% entries extracted from
benign Wasm binaries [8], [46], [47] and 20% synthetically
generated entries to ensure diversity. To maintain runtime
compatibility, we ensure that the corresponding function name
is defined in the external environment (e.g., JavaScript) to
prevent linking errors due to unresolved imports.

Function Section. This section contains each function’s code.
@ Function Insertion: SWAMPED inserts a new function
with its corresponding code implementation. The function
code is randomly selected from a dataset of benign Wasm
binaries [8], [46], [47], ensuring semantic preservation by

avoiding perturbation of the inserted function’s logic.! To
maintain binary consistency, we select only functions whose
signatures match existing entries in the target binary’s Type
section, thereby reusing established function signatures and
avoiding the need for additional type definitions.

@ Function Body Cloning: SWAMPED clones an existing
function f to create a functionally equivalent duplicate fjone
with a distinct function identifier. SWAMPED then redirects a
subset of f’s call sites to invoke f.;one, distributing the call
graph while preserving program semantics. This perturbation
targets detectors that rely on function body patterns or call
graph analysis for malware identification.

Global Section. An entry in the global section represents the
name and value of a global variable.

@ Global Insertion: SWAMPED inserts a new global entry by
randomly selecting a data type from the four primitive Wasm
types (i32, i64, f32, f64) and generating an associated random
initial value within the type’s valid range.

Element Section. An entry in the element section specifies
function references used to initialize a table, which are subse-
quently used for indirect function calls.

@ Element Insertion: SWAMPED creates a new element entry
containing a valid function reference index (e.g., i32.const 9)
paired with a corresponding function identifier (e.g., F56)°.
To maintain isolation from the existing table structure in
the target binary, we define a separate table specifically for
these newly inserted entries, preventing interference with the
original table’s functionality.

Export Section. This section defines the items (e.g., functions
and variables) that the module makes available for others.
@ Export Insertion: SWAMPED inserts a new export entry
by sampling function names from a curated pool of 26,000
candidates, consisting of 80% entries extracted from benign
Wasm binaries [8], [46], [47] and 20% synthetically gener-
ated entries. To preserve semantic consistency, we ensure the
selected export function references an already-defined function
in the target binary, maintaining consistent function visibility
without introducing undefined references.

Data Section. An entry in the Data section provides initial
values for regions of Wasm linear memory, with each entry
initializing memory sequentially in the order it appears.

@ Data Insertion: SWAMPED employs a systematic approach
to data insertion by first scanning existing data entries to
construct a shadow memory map that reflects the final memory
layout after initialization. SWAMPED then samples a memory
slice with a randomized offset and length from this map, using
it as the foundation for a new data entry. This method ensures
the initialized memory state remains intact and that no existing
data is corrupted during insertion.

@ Data Encryption: SWAMPED implements data obfuscation
by replacing the data value of an existing entry with its
XOR-encrypted form. To maintain runtime correctness, a

I'we pruned out 60,636 functions (out of 66,378) that have dependencies
(e.g., ones calling another user-defined function) and replaced all global
variable accesses with local variables of the same data type.

2An inserted entry would be ‘elem (table T2) (i32.const 9) F56.

corresponding decryption function is automatically inserted
into the binary and registered in the Start section, ensuring
immediate execution upon Wasm module instantiation and
transparent restoration of original values.
Custom Section. This section provides a flexible mechanism
to embed additional, non-standard data within a Wasm binary.
Custom Section Insertion: SWAMPED inserts new custom

sections by leveraging the wasm-objdump [39] tool to identify
section boundaries within the raw binary, since custom sec-
tions are not preserved during Wasm text format conversion.
The insertion process selects a random location between
existing sections and populates the new section with byte
content sampled from raw bytes of benign Wasm binaries [8],
[46], [47], maintaining structural integrity while introducing
benign variations.

2) Code Perturbation: SWAMPED provides 12 semantic-
preserving code transformations on function code.
No Operation Instruction. WebAssembly supports No-
operation (NOP) instruction, which performs no computation
and hence does not affect any program semantics.

NOP Insertion: SWAMPED inserts a NOP instruction at

a chosen location (see Section III-C). Since NOP has no
dependencies, it has no constraints for the insertion location.
Stack Operation Instruction. Stack operation instructions
consume values from the stack and push the result onto the
stack. They are fundamental in Wasm as it runs a stack-based
virtual machine. As those instructions change the stack, when
perturbing stack operation instructions, we often add additional
instructions to prevent undesirable changes in the stack.
@ Stack Operation Insertion: To insert a stack operation,
SWAMPED adds a pair of instructions that push values to
the stack (e.g., defining constant values) and instructions that
pop values from the stack (e.g., shl pops its arguments from
the stack). As some instructions push the results back to the
stack, SWAMPED adds additional instructions to discard them
(e.g., drop discards a value from the stack). For example, the
shift-left (shl) instruction is paired with two constant value
definitions for the instruction’s arguments as well as a drop
instruction to clean up the result pushed by the shl instruction.

SWAMPED excludes instructions such as store that operate
memory space outside of the stack, as they require SWAMPED
to change the memory layout of the target program (i.e.,
adding a new memory buffer). Instructions making irreversible
changes to the memory state, such as grow (increasing the
allocated buffer’s size)’, are also excluded.
Opaque Predicate. Opaque predicates [48], [49] are predi-
cates whose conditions are known to developers but difficult
for analysis techniques to infer at runtime. They are widely
used in software obfuscation [50], [51] to hinder static analysis
by obscuring predicate conditions.
@ Opaque Predicate Insertion: SWAMPED uses the Collatz
conjecture [52] to generate opaque predicates. When choosing
locations to insert the opaque predicates, Note that SWAMPED

3The change is irreversible; no instruction can shrink the expanded memory.

L

-

©

makes it configurable to disable inserting opaque predicates in
loops* due to its impact on performance.
Function Call Instruction. Wasm supports two types of func-
tion calls: Direct (call) and indirect (indirect call). call
directly takes a callee function’s identifier as an operand, while
indirect call takes a callee function’s signature (i.e., the type
identifier of the callee) and a target function’s reference index
that is resolved through the Element section’s function table.
Proxy Function Insertion: A proxy function is a wrapper
function that calls its original function. For example, given a
function f, its proxy function is a function f},,4y calling f
and returning the return values from the call.

To implement this perturbation, SWAMPED picks an existing
function f and creates a proxy function fprozy. SWAMPED
then changes the call targets of all the callers of f to fprozy-
This perturbation may affect analysis techniques/systems with
improper (or incomplete) inter-procedure analysis.

@ Direct to Indirect Call Transformation: SWAMPED converts
a direct call into an indirect call. Given a call, SWAMPED
extracts the call target’s type and inserts an identifier of
the function in the Element section. SWAMPED then adds

instructions setting up the arguments for the indirect call and |

call indirect with the extracted type.
Listing 1 shows an example. call at line 3 is replaced with

call indirect at line 5. It takes the function’s identifier F75 |

by pushing a constant number O (at line 4), which means the
first function element in the Element section at line 9 (F75 in
NEW_TABLE for funcref). It also takes the type of the function,
which is type T5 at line 5. Observe that we define a new
funcref table at line 7 to avoid modifying the original table.
The function index list size (i.e., 1 at line 7) is adjusted to
match the number of functions listed in the Element section.
This perturbation imposes challenges to the systems that do
not properly handle indirect calls.

i32.const 100

i32.const 200

call F75

i32.const @
call_indirect (type T5)

[-]
[+]
[+]
[+](table NEW_TABLE 1 funcref)

[+](elem NEW_ELEM (table NEW_TABLE) func F75)

Listing 1. Converting a call operation into an indirect call operation.

Instruction Substitution. SWAMPED includes four types of
instructions that can be replaced with a set of semantically
equivalent instructions.

@ Add/Sub Operation Transformation: An addition (add)
operation can be replaced with a subtraction (sub) by negat-
ing its operand. The reverse transformation also holds. For
instance, ‘i32.add (local.get x) (i32.const 20)’ becomes
‘i32.sub (local.get z) (i32.const -20)’

@ Shift Operation Transformation: Shift-left and -right (shl
and shr) operations can be converted to multiplication (mul)
and division (div) operations, respectively. Specifically, the
operand of a shift operation is converted to the exponent of 2
in mul or div (e.g., ‘shl with 3> — ‘mul with 2%°).

4In this work, it is disabled, meaning that it avoids loops.

@ Eqz Operation Transformation: eqz can be converted into
an explicit equality check: ‘i32.eq (i32.const @).

Offset Expansion: Offsets of memory operations (e.g.,

load offset=X) are expanded into a set of instructions com-
puting the offset. For example, ‘i32.load offset=10" can
become ‘i32.const 10; i32.add; i32.load.
Instruction Expansion via Mixed-boolean Arithmetic. In-
structions such as xor and or can be expanded into longer
expressions using Mixed-boolean Arithmetic (MBA) expres-
sions, which are often used in software obfuscation [53], [54].
@ Transforming XOR/OR to MBA: For example, an xor
operation can be transformed using the MBA expression
x®y=2-(z|ly) y— z, as described in previous work [55].
Instead of xor (&), the MBA expression uses multiplication
(%), or (|), and subtraction (—).

i64.const 10
i64.const 20
i64.xor
global.set X
global.set Y
i64.const 2
global.get X
global.get Y
i64.or
i64.mul

[-]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+] i64.sub

(global X (mut i64) (i64.const 0))
(global Y (mut i64) (i64.const 0))

[+]
[+]

Listing 2. Converting an Xor into mixed-boolean arithmetic operations.

Listing 2 shows how this transformation is implemented.
First, the original operands = and y of the xor operation are
stored to global variables ($x and $y in lines 15-16) and
fetched accordingly (lines 5-6). Second, the substituted MBA
expression’s operations are sequentially executed, referring to
the added global variables as required (lines 8-9).

Constant Transformation. Constant values are often served
as a signature to fingerprint a particular algorithm or im-
plementation [56]. Hence, perturbing them can impact the
systems that rely on such known signatures.
@ Constant Value Splitting: A constant value N can be
converted into two constant values x and y which satisfy
x+y=N. For example, ‘i32.const 16" is transformed into
‘i32.const 10; i32.const 6; i32.add.” The result of the ‘add’
is the original constant value ‘16’ and it is stored on the stack.
Constant Value Transformation: For an instruction in
a function’s body that uses a constant value such as
‘i32.const N, we replace it with a statement using a global
variable ‘global.get X’ after inserting an entry for global X
in the global section.

C. Perturbation Placement and Deployment

For each applicable perturbation, SWAMPED aims to allow
users to configure how many (i.e., frequency) and where
(i.e., distribution) to be perturbed. However, due to a large
number of targets (i.e., elements in sections and instructions),
configuring (or specifying) the targets individually is not
practical. On the other hand, letting the system choose the
targets randomly would lead to biased analysis results. To this

end, SWAMPED employs a concept of perturbation distribution
and ratio to decide perturbation targets systematically. By
choosing different distributions and ratios, SWAMPED can sim-
ulate various perturbation deployment strategies (e.g., applying
perturbations more or less on certain areas) in the binary.

1) Perturbation Distribution: Perturbation distribution is
designed for selecting targets from a set of available elements
or instructions. For example, a uniform distribution selects
each element or instruction with equal probability, ensuring
even coverage across the section or binary. In contrast, a
Gaussian distribution favors elements near a central location,
selecting them more frequently while gradually reducing the
likelihood of choosing elements farther from the center.

In this work, we implement a beta distribution [57] to
determine positions for perturbing binary operations. This
distribution is controlled by parameters alpha (o) and beta
(B), adjustable to customize the perturbation pattern. By
varying these parameters, we can influence the likelihood of
selecting positions towards the start, middle, or end of the
binary sequence, enabling diverse perturbation methods. This
approach provides a flexible mechanism to explore the effects
of perturbations across the entire binary structure.

2) Perturbation Ratio: Perturbation ratio is defined as the
proportion (i.e., frequency) of perturbed instructions relative
to the total number of applicable perturbation targets (i.e.,
instructions or elements). Let C, be the total number of
perturbation targets and C), be the number of perturbed targets.
The perturbation ratio is calculated as C,/C,,.

For perturbation methods that insert dummy/dead instruc-
tions, C, includes all instructions in the relevant target section.
As these insertion methods can add an arbitrary number of
instructions, the perturbation ratio can exceed 100% (e.g.,
inserting 50 instructions into a section with 50 instructions re-
sults in a 100% perturbation ratio). We limited our experiments
to a maximum perturbation ratio of 100% to establish a reason-
able upper bound. Note that even with this limit, SWAMPED
still ends up adding a significant number of instructions (e.g.,
31,499 added instructions on average).

D. Execution and Interpretation

Given the perturbed samples, SWAMPED runs each analysis
tool (e.g., malware detection tool) and obtains the result. As
each analysis tool’s results have a slightly different format, we
normalize the results into Detected, Suspected, and Benign.
Specifically, MineSweeper’s output Positive and Negative are
mapped to Detected and Benign, respectively. Minos, Was-
mGuard, MalConv, and AvastNet return Malicious or Benign
with a confidence score. Malicious maps to Detected. Benign
with confidence less than 80%, which is configurable, maps
to Suspected; otherwise, Benign. MinerRay outputs Unlikely,
Probable, or Certain. If all functions are Unlikely or unmarked,
we assign Benign. Otherwise, we assign Detected.

After SWAMPED runs each perturbed sample, it signals the
system with the interpreted result so that it can decide whether
to proceed to the next round of the execution or not. SWAMPED
aims to identify perturbation conditions (method, distribution,

ratio) that flip the detection result from malicious to benign,
revealing detector weaknesses. Once such a condition is found,
it halts further perturbation for that sample.

IV. EVALUATION

We demonstrate the effectiveness of SWAMPED by evaluat-
ing Wasm malware detectors against perturbations.
Implementation Details. We implement our framework in
Python v3.9. For MineSweeper and MinerRay, we use the
publicly available source code from the original studies. For
Minos, as the original authors do not publicly release the
source code, we use a reimplemented version from the pre-
vious work [15], which follows the same training data ratio
and model architecture described in the original paper. For
WasmGuard, we use the trained model shared by the authors.
For the general-purpose detectors MalConv and AvastNet, we
train both models using WasmGuard’s dataset [58], which
consists of 12,018 training samples and 3,006 test samples.
Our trained models achieve strong baseline performance on the
test set: MalConv and AvastNet achieve 99.87% and 99.93%
accuracies and 99.83% and 99.93% Fl-scores, respectively,
confirming their effectiveness for Wasm malware detection.

When applying the perturbations, we randomly select the
code lines using positions sampled from a beta distribution
(with o and B set to 1) described in Section III-C. This
same sampling approach is consistently applied when select-
ing artifacts (e.g., functions, import/export names, or custom
bytes) for insertion from the benign dataset, ensuring uniform
randomness across all perturbation methods. The sampling was
performed using Numpy’s default rng() random generator,
specifically via the rng.beta(a, 3) function.

Wasm Malware Binary Samples. We use two datasets of

malicious Wasm binaries, totaling 74 samples’.

o Wasm-Cryptojacker: We obtain 43 unique cryptojacker sam-
ples from prior work [8], [9], [46], each of which is detected
by Minos, MineSweeper, and MinerRay. The average size
of the samples is 80 KB (62~134 KB). We use this dataset
to evaluate the robustness of Minos, MineSweeper, and
MinerRay against our perturbations.

o WasmBench-Malware: We extract 31 Wasm malware sam-
ples from the 1,503-sample evaluation dataset of Wasm-
Guard [12]. Since the dataset was constructed by augment-
ing a small set of binaries using wasm-mutate [27], we
identify the original samples by matching hash values with
the original source [47]. These 31 samples, consisting of
Wasm binaries with an average size of 77 KB (26 KB~122
KB), are used to evaluate the robustness of WasmGuard,
MalConv, and AvastNet against our perturbations.

A. Experimental Setup

Creating Variants via Perturbation. We apply SWAMPED
to our 74 cryptojacker sample binaries to create 48,840 vari-
ants where each of which has different perturbation methods

SWe compare structural properties (e.g., # of sections, instruction cate-
gories) of our 74 malware samples with a baseline of 1,482 benign binaries
from top-1M websites (Oct 2023-Mar 2024). We find that our malware
samples are representative, as the properties between the two sets are similar.

and ratios. Specifically, from 74 samples, we have applied
22 perturbations with different instruction cases resulting in
48,840 samples. For each of the perturbations, we generate 10
variants covering different ratios ranging from 10 to 100 in
increments of 10. To ensure robustness, each ratio is tested
across three rounds, leading to the final 48,840 variants.
We then evaluated the robustness of the six Wasm detectors
(Minos, MineSweeper, MinerRay, WasmGuard, MalConv, and
AvastNet) against these perturbed binaries.

TABLE 11
CLASSIFICATION OF WASM INSTRUCTIONS BY OPERATION CATEGORY.

Category Ops

Memory (Data) Access load, size, get, tee

Numeric Arithmetic add, sub, mul, div, rem

Bitwise Operation shift, rotate, and, or, xor, clz, ctz, popcnt

Comparison eq, eqz, ne, 1t, gt, le, ge

Integer/FP* Conversion wrap, extend, trunc, convert

FP* Reinterpretation promote, demote, reinterpret

FP* Utility abs, neg, ceil, floor, nearest, sqrt, min,

max, copysign

* FP: Floating Point.

Stack Operations. Given the large number of stack-based
instructions, we systematically classify Wasm opcodes into
six semantic groups, as shown in Table II. Due to the space,
it includes only representative opcodes (e.g., div), excluding
variants that arise from operand data types (e.g., div_s).
Perturbation experiments are performed separately for each
category to evaluate detector robustness in a fine-grained
manner. For each insertion, a specific instruction and its appli-
cable operands are selected at random. This design allows for
controlled and interpretable evaluation across a comprehensive
opcode space, rather than focusing only on a small subset such
as cryptographic instructions.
Measuring Impact of Perturbations. SWAMPED runs detec-
tors on perturbed samples and checks if their detection deci-
sions differ from those on the original samples. Specifically,
we follow the interpretation rules defined in Section III-D. For
each pair of a detector and sample, we consider a perturbation
to be effective if a decision of a sample is changed from
Detected or Suspected to Benign.

The detection timeout for both original and perturbed sam-
ples is set to 1 hour. We follow the common practice in the
community [59], testing each perturbation 3 times for validity.

B. Perturbation Impacts on Wasm Malware Detectors

We evaluate the impact of our perturbation methods on the
decisions (with varying perturbation ratios) of the detectors.®
Structural Perturbation. Figure 3 shows how many samples
are successfully evaded by the structural perturbations (@) to
@). For MineSweeper and MinerRay, none of the perturbation
methods were effective, because they analyze only the function
code section and ignore structural metadata outside the code.

6Statistical summaries (average, std, median, and IQR) for the impact of our
perturbations are available on https://github.com/SKKU-SecLab/SWAMPED.

Minos’s detection is susceptible to perturbations targeting the
Function (@, @). Data (@. @). and Custom (@) sections,
suggesting that Minos may assign significant visual salience to
these sections in its grayscale image representation, focusing
on them in its classification decisions.

Figure 3 (b) shows the perturbation ratio required to evade
the detection of the evaded samples reported in Figure 3
(a). Function Signature Insertion (@) leads to the evasion
on MalConv for 15 (out of 31) samples. The average ratio
of 41.33% (4+30.91%) means that it required around half of
the functions to be cloned. Since the Type section is located
toward the beginning of the binary, the inserted entries are
likely to fall within the receptive field of MalConv’s filters,
disrupting its learned byte-level patterns. In contrast, AvastNet
is evaded by Data Encryption (@) perturbation in all samples
at a perturbation ratio of 54.84% (420.11%). The high-
entropy transformation introduced by data encryption may
significantly alter the statistical characteristics of the Data
section, affecting AvastNet’s internal embedding distribution.
WasmGuard demonstrates robustness against structural pertur-
bations, which may be attributed to its adversarial training
strategy. The smallest samples (26-38 KB) show consistently
low evasion ratios (i.e., <10%), which may be because fixed-
size perturbations are too large relative to the sample size.
Code Perturbation (Instruction Insertion). Figure 4 shows
the effective code perturbation methods among those inserting
additional instructions (@)~@). for each detector.

For MineSweeper, Stack Operation Insertion (@), which
inserts bitwise operations, is the only one that is effective. This
reflects the MineSweeper’s design, which focuses on the fre-
quency of cryptographic instructions profiled in its fingerprint.
MinerRay is highly susceptible (30~36 samples out of 43 are
evaded by the perturbations) by the NOP Insertion (@) and
various Stack Operation Insertions (@; including numeric,
conversion, reinterpretation, and floating-point instructions).
This suggests that while MinerRay leverages semantic-aware
analysis, which should not be affected by semantic-preserving
perturbations, our perturbations (i.e., instruction insertion)
may have impacted their analysis. Besides, Proxy Function
Insertion (@) and Opaque Predicate Insertion (@) result in
the evasion of 5 and 2 samples, respectively.

For all four CNN-based detectors (Minos, WasmGuard,
MalConv, and AvastNet), the Stack Operation Insertion (@)
was effective in evading the detection. In particular, Minos,
WasmGuard, AvastNet are evaded in every sample under every
@ variant. Regarding the perturbation ratios required to evade,
as shown in Figure 4 (b), AvastNet requires comparatively
higher perturbation ratios (40%=+7.75%~78.28%=+16.35%)
before evasion occurs. MalConv and WasmGuard are bypassed
at slightly lower (10.47%=+2.13%~53.33%+24.44%).

Notably, in contrast to WasmGuard and MalConv, Minos
and AvastNet remain robust against NOP Insertion (@) with
only 4 and 2 samples evaded despite high perturbation ratios
of 95% (£5.77%) and 70% (£14.14%), respectively. This
robustness stems from the low-entropy nature of the nop byte
(i.e., 2x00). In Minos, such low-contrast pixels are almost

https://github.com/SKKU-SecLab/SWAMPED

A1 Func. Sig. Ins.@ K3 Import ln&@

Func. Ins. @
KX Element lns.@ ™ Export Ins.e 3 Data Ins.@ [Data Encryp(ion@ E> Custom ln&@

E=3 Func. Body Cloning @ [ZXJ Global Ins. @

=
o
S

100

3
7 | _
H 3 H
~ 804 - N ~ 807 U
g 1C g I
\5 T + 2 0
= 607 i T 604 %
=" H H
: it F ¢
n (] 5 S il
g 40 Db S 40 i
3 i 3 k= K
g il E i
= 204 0ok & 204 ﬁE i
Y
By 1 N H
N1 N Y ' - | T)
Minos MineSweeper MinerRay WasmGuard MalConv ~ AvastNet Minos MineSweeper MinerRay WasmGuard MalConv AvastNet
(n=43) (n=43) (n=43) (n=31) (n=31) (n=31) (n=43) (n=43) (n=43) (n=31) (n=31) (n=31)

(a) Perturbed Samples Evaded Detection

(b) Perturbation Ratio Required to Evade Detectors

Fig. 3. Effects of Structural Perturbations.

[Z1 NOP Ins. @ X1 Stack OP Inst._Memory @

Stack OP Inst._Numeric @ E=3 Stack OP Inst._Bit @
Stack OP Inst._Conv e XX Stack OP Inst._Reinterpret @ [Stack OP Inst._Floating @ P9 Opaque Pred. Ins. @ [Proxy Func. Ins. @

D| ok M
y

o

XX

PR
o

ax
o
E

X

ST SIS,
o U U U U U U

PR

Evaded Samples (%)
=2}
D

| I N S 0 B S O O §
I N N D)) A A
| N Y) A B

X

S)) S S A)
7

I}
f
S)) A A i i
b4 1
- S Wl W - Wit |

100

80+

Perturbation Ratio (%)

7

fiiik

S

i
i

:
.
il

2
% s 4
1| kP (o] 1 D89 o q
)2 | : x (Agal | A ,
Minos MineSweeper MinerRay WasmGuard MalConv AvastNet Minos MineSweeper MinerRay WasmGuard MalConv AvastNet
(n=43) (n=43) (n=43) (n=31) (n=31) (n=31) (n=43) (n=43) (n=43) (n=31) (n=31) (n=31)

(a) Perturbed Samples Evaded Detection

(b) Perturbation Ratio Required to Evade Detectors

Fig. 4. Effects of Code Perturbations involving instruction insertion.

invisible in the grayscale image and therefore leave the learned
visual features intact. In AvastNet, down-sampling and global
average pooling can dilute the influence of distributed oxee
bytes. As a result, Minos and AvastNet may ignore them.

Code Perturbation (Instruction/Value Transformation).
Figure 5 shows code transformation perturbations (@N@)
and value transformation perturbations (@, @) effectively
impacting the detectors. For MineSweeper, as it relies on
the frequency of cryptographic instructions (i.e., shl, shr, or,
and xor), it is highly susceptible to the transformation of
those instructions (@ and @), with less than 20% of the
perturbations as shown in Figure 5 (b).

Interestingly, MinerRay is susceptible to every instruction
and value transformation perturbation, with the most pro-
nounced evasions—74.42%~95% of samples misclassified—
arising from Instruction Substitution (N@) and Direct
Call to Indirect Call Transformation (@B), suggesting that
MinerRay’s semantic-aware analysis may not handle diverse
instructions/semantics as well as indirect calls. Another notice-
able trend is that MalConv and AvastNet are not susceptible to
any code transformation perturbations (@N@). We further
investigate the reason behind it and find that all the code
transformation perturbations are applied to small areas of
the binary (less than 7% on average). This means that the
impact of those perturbations might be insufficient to affect the

model’s performance. However, we observe that Minos and
WasmGuard are susceptible to certain code transformations,
which may suggest that their models have a greater focus
on specific instructions (e.g., sub, add, shl, shr, or, and xor),
which might be caused by their fine-tuning process for Wasm
malware samples, such as cryptojackers. Value transformation
perturbations (@, @) are often effective, as we find that such
transformation can impact up to 29% of the binary.

C. Insights from the Experiment Results

We make a few observations based on our evaluation results.
First, fine-tuned and specialized detectors (MineSweeper and
MinerRay) are less susceptible to non-code perturbations while
overly sensitive to perturbations on certain instructions they
focus on. As a result, those are easy to evade if perturbing
specific instructions. Second, CNN-based detectors (Minos,
WasmGuard, MalConv, and AvastNet) are susceptible to the
perturbations that affect the overall layout (e.g., the distribution
of instructions or data). In general, as long as the binary’s data
distribution is altered, it is often affected. Third, there exists
a level of specialization among CNN-based techniques. While
WasmGuard does not include code or data targeting specific
instructions in its adversarial training, it is substantially af-
fected by shift and bitwise instructions. This might be caused
by either overfitting [60] or shortcut feature [61] behaviors.

[Z1 Indirect-call Trans.@ N Sub-Add Trans. @

Add-Sub Trans. @ E=3 shift Trans. @ [ZX Eqz Trans. @
XXX Offset Expansion@ =] XOR MBA Trans.@ [©Y] OR MBA Trans. @ 1 Const. Splitling@ > Const. Trans.@

=
o
S

9
7

T

9

=)
S
L
T

T
o)

=2}
S
I
T _ O
8o

T

o)
o200 20"002020

N
1<)
L

o 9

o (e

Evaded Samples (%)

N
o
L

o 9

0
0
)
)
)
o]
0
O
O

L R R N L L T T TN N

S) S

| S) S S S S

E

Vi

0 T

o) 9

Perturbation Ratio (%)

100

80+

60

40

204

e e 7 W 7 . 7 s ™)

i

B E

T
AvastNet

Minos MineSweeper MinerRay WasmGuard MalConv s
n=31

(n=43) (n=43) (n=43) (n=31) (n=31)

(a) Perturbed Samples Evaded Detection

T
AvastNet

Minos MineSweeper MinerRay WasmGuard MalConv Ay
n=

(n=43) (n=43) (n=43) (n=31) (n=31)

(b) Perturbation Ratio Required to Evade Detectors

Fig. 5. Effects of Code Perturbations involving instruction and constant transformations.

Fourth, we observe that while the performance of those
detectors in detecting malware is relatively stable and similar,
their reactions to the perturbed samples are more diverse. This
is even true for relatively similar techniques, such as MalConv
and AvastNet, meaning that under an adversary capable of
perturbations, their real-world performance would vary signif-
icantly. This echoes this paper’s motivation: understanding the
resilience of detectors against perturbation is crucial.

D. Overhead

We evaluate SWAMPED'’s overhead in two aspects: i) Pertur-
bation Overhead: the time and memory required to generate
perturbed binaries, and ii) Execution Overhead: the slowdown
when executing perturbed binaries relative to their originals.
All experiments were conducted on Ubuntu 18.04.5 equipped
with an Intel Xeon Gold 6230 (2.10GHz) and 566 GB RAM.
Perturbation Overhead. Across all perturbation methods and
perturbation ratios, the overhead remains stable and primarily
scales with binary size. For example, perturbing a 62 KB
binary took 1.32s with 120 MB memory, while a 131 KB bi-
nary required 2.04s and 140 MB memory. Overall, SWAMPED
perturbed most samples within seconds using modest memory.
Execution Overhead. We instantiated each of the 74 malware
samples in Node.js 22.19.0 (V8 12.4.254), disabling tier-up
and lazy compilation to enforce baseline Liftoff JIT execution.
As the samples lack JavaScript artifacts, we supplied minimal
runtime resources (memory, table, and globals) and replaced
import functions with no-op stubs. To measure execution time,
each exported function was first executed 1,000 times for
warm-up, and we took the median of the next 100 runs.

Table III shows the median ACPU time and relative over-
head for each perturbation method. For most perturbations,
the overhead is statistically negligible. @, @, @, @, and
@ yield slight speed ups, which we attribute to measurement
noise at the nanosecond scale rather than genuine performance
gains. Notably, while @ inserts a large number of stack
operations, enlarging binary sizes by almost threefold, the
inserted operations are optimized by the V8 engine at runtime,
leading to virtually no overhead. @ and @ (Instruction sub-

10

stitution and lightweight control-flow change) incur negligible
slowdowns, with median overheads of a few nanoseconds.
In contrast, @, @, @, and @ showed more noticeable
slowdowns, ranging from several tens to a few hundred
nanoseconds, due to added control-flow checks, expanded bit-
wise expressions, indirect calls, or global constant accesses. To
assess statistical significance, we performed a Mann-Whitney
U test [62], which revealed that only @ and produced
statistically significant differences (p < 0.05), while the other
perturbations did not deviate significantly from the baseline.

TABLE III
EXECUTION OVERHEAD OF CODE PERTURBATIONS ON 74 SAMPLES.

ACPU Time (ns)*

ID Perturbation Method Overhead
Median IQR
XOR/OR to MBA 225.86 253.82 98%
Opaque Predicate Insertion 102.54 143.39 73%
Constant Value Transformation 53.05 20.11 16%
Direct — Indirect Call 43.75 51.98 15%
eqz Transformation 2.50 20.12 19%
Add/Sub Transformation 2.00 10.79 5%
Proxy Function Insertion 1.50 9.98 7%

* (perturbed execution time — original execution time) (ns).
T (perturbed execution time / original execution time — 1) * 100 (%).

V. DISCUSSION

Threats to Validity. For external validity, our evaluation
set is dominated by cryptojacker samples (43 out of 74),
reflecting trends in Wasm malware research. While this may
bias the results, the inclusion of 31 non-cryptojacker samples
and general-purpose detectors broadens the applicability of
our findings beyond cryptojacking. For construct validity,
SWAMPED applies semantics-preserving perturbations without
prioritizing semantically critical regions. This may not fully
reflect real-world adversaries who often target logic-intensive
code, potentially reducing the effectiveness of the perturba-
tions. For internal validity, our dataset may contain hidden
correlations (e.g., compiler toolchains, obfuscation patterns)
that could confound the relationship between perturbations
and detector failures. While we deduplicated identical binaries,

such correlations are difficult to fully eliminate and may still
influence the results.

Uniqueness of Wasm Perturbation. Wasm and its binary
have unique constraints compared to other binaries (e.g., x86),
which distinguish Wasm perturbations and their impact. First,
Wasm’s underlying stack-based virtual machine results in a
unique focus on stack operations. In particular, due to its
versatile stack operations, insertion and manipulation of the
stack operations are both feasible and effective, as shown
in our evaluation. Second, Wasm’s structured control flows
and validation rules prohibit perturbations relying on arbitrary
jumps [19], self-modifying code [20], and instruction over-
lapping [21], [22]. Also, control-flow obfuscations effective
in other binaries become less impactful (e.g., @ affects only
Minos in our evaluation). Third, Wasm’s strong inter-section
dependencies affect implementations of existing perturbations
and their impact. Specifically, a perturbation in one section
often requires coordinated changes in others (e.g., spans
Function-Table-Element; @ and touch Function-Global).
For instance, modifies both instructions and the Global
section, whereas its x86 counterpart would only alter the
memory location of a mov instruction. We further observe that
multi-section perturbations often yield more evasive effects
than single-section ones (e.g., @ vs. @)

Extensibility and Modularity. While we focus on Wasm
malware detectors due to the need for understanding real-
world malware evasion, SWAMPED’s semantics-preserving
perturbations apply to any Wasm binary analyzer, making it
a general robustness testing framework. To demonstrate this
versatility, we evaluated SWAMPED against VetEOS [63], a
Wasm smart contract vulnerability detector. All 24 vulnera-
ble binaries shipped with VetEOS became undetected after
applying NOP Insertion and Stack Operation Insertion with
only 10% perturbation ratio, revealing significant brittleness in
the analyzer. SWAMPED uses a modular design with separate
components for parsing, perturbation, and output interpreta-
tion. New transformations require minimal code changes, and
transformation rules can be added easily. This design supports
robustness evaluation across diverse Wasm analyzers.

Resilience of Perturbations. Some of our perturbations can
be reversed or eliminated—particularly insertion-based ones
(e.g., NOP, Stack Operation, Opaque Predicate)—though it
is often challenging to determine whether a given instruction
is inserted or not in the first place. In addition, some per-
turbations creating one-to-many transformation relationships
are challenging to reverse. MBA and Shift-transformations are
such examples, as multiple original forms can be obfuscated
into the same form. Defenses trained on specific perturbations
(e.g., WasmGuard) gain robustness for those seen in training,
but have limited or negative impact on other perturbations.
For example, retraining MalConv with 1,000 Stack Operation
Insertion samples improved detection for the samples while
weakening it against Shift Operation Transformation, suggest-
ing the risk of local gains at the cost of broader resilience.

11

VI. RELATED WORK

C Source- and LLVM-Level Perturbations. Several studies
have explored evasion techniques for Wasm malware detectors
at C source-level and LLVM-level. Bhansali et al. [41] applied
Tigress obfuscations [64] and CROW [42] introduced an
LLVM-based diversification tool that substitutes instruction
sequences. Harnes et al. [40] conducted a large-scale study
of multi-level obfuscation using Tigress and emcc-obf. In
contrast, we directly perturb Wasm binaries, independent of
source languages and compilers, adapting and extending prior
transformations into binary-level forms (e.g., Function Body
Cloning, Add/Sub Operation Transformation).

Wasm Binary-Level Perturbations. In addition to source-
level and LLVM-level approaches, recent work has explored
Wasm binary-level perturbations. Javier et al. [15] used
wasm-mutate [27] to build a binary diversification pipeline
including peephole mutations, structural changes, and control-
flow edits. While peephole mutation was most effective against
Minos and VirusTotal, it applied random, coarse-grained rules
(e.g., identity, commutativity), requiring hundreds of attempts
per sample or previously applied strategies being nullified
by subsequent ones. Cao et al. [28] introduced WASMixer,
an obfuscator applying direct call transformation, opaque
predicates, and memory encryption to evade analysis tools.
Madvex [65] applied adversarial gadgets like const-drop se-
quences and opaque loops to Wasm binaries. Chmiel er al. [66]
conceptually discussed evading MineSweeper by breaking
loop analysis using nop insertion, though our experiments
show this technique alone is ineffective. Unlike prior work,
we construct a comprehensive and fine-grained set of Wasm
binary perturbations—including both structural and code-level
transformations, enabling systematic, controlled experiments.
Our large-scale evaluation not only integrates and refines pre-
vious methods but also quantifies how specific perturbations
affect detector performance under varying perturbation ratios.

VII. CONCLUSION

This work presents SWAMPED, a framework for systemati-
cally evaluating Wasm malware detector robustness through 22
semantics-preserving perturbation methods targeting section
entries and function code. Using SWAMPED, we evaluate six
detectors: four Wasm-specific models (Minos, MineSweeper,
MinerRay, WasmGuard) and two bytecode classifiers (Mal-
Conv, AvastNet). Our experiments on 48,840 perturbed vari-
ants reveal systematic evasion: stack operation insertions dis-
rupt DNN-based models, instruction frequency changes mis-
lead profiling-based methods, and control-flow modifications
break rule-based analyzers, highlighting fundamental weak-
nesses in current Wasm malware detection.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments.
Hyoungshick Kim is the corresponding author. This work was
supported by the NSF (2443487 and 2426653), the KISA grant
(2780000017), and the IITP grants (RS-2024-00419073, RS-
2024-00436936, RS-2024-00439762).

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the Web up
to Speed with WebAssembly,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2017.

L.-N. Pouchet and T. Yuki, “PolyBenchC-4.2.1,” 2016. [Online].
Available: https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1.git
Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang, “Understanding the
Performance of WebAssembly Applications,” in Proceedings of the ACM
Internet Measurement Conference (IMC), 2021.

A. Lonkar and S. Chandrayan, “The Dark Side of WebAssembly,”
2018. [Online]. Available: https://www.virusbulletin.com/virusbulletin/
2018/10/dark-side- webassembly

M. Maganu, “WebAssembly is Abused by eCriminals to Hide Malware,”
2021. [Online]. Available: https://www.crowdstrike.com/en-us/blog/ecr
iminals-increasingly-use-webassembly-to-hide-malware

J. Whitehorn, “JsMiner,” 2011. [Online]. Available: https://github.com
/jwhitehorn/jsMiner

F. N. Naseem, A. Aris, L. Babun, E. Tekiner, and A. S. Uluagac, “MI-
NOS: A Lightweight Real-Time Cryptojacking Detection System,” in
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2021.

R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel,
H. Bos, and G. Vigna, “MineSweeper: An In-depth Look into Drive-
by Cryptocurrency Mining and Its Defense,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2018.

A. Romano, Y. Zheng, and W. Wang, “MinerRay: Semantics-Aware
Analysis for Ever-Evolving Cryptojacking Detection,” in Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2020.

C. Komiya, N. Yanai, K. Yamashita, and S. Okamura, “JABBERWOCK:
A Tool for WebAssembly Dataset Generation towards Malicious Website
Detection,” in Proceedings of the IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), 2023.

W. Bian, W. Meng, and Y. Wang, “Poster: Detecting WebAssembly-
Based Cryptocurrency Mining,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2019.
Y. Sun, H. Chen, Z. Fu, W. Lv, Z. Liu, and H. Liu, “WasmGuard:
Enhancing Web Security through Robust Raw-Binary Detection of
WebAssembly Malware,” in Proceedings of the ACM on Web Conference
(WWW), 2025.

Y. Xia, P. He, X. Zhang, P. Liu, S. Ji, and W. Wang, “Static Semantics
Reconstruction for Enhancing JavaScript-WebAssembly Multilingual
Malware Detection,” in Proceedings of the European Symposium on
Research in Computer Security (ESORICS), 2023.

K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and S. Shintre, “Malware
Makeover: Breaking ML-based Static Analysis by Modifying Executable
Bytes,” in Proceedings of the ACM Asia Conference on Computer and
Communications Security (ASIACCS), 2021.

J. Cabrera-Arteaga, M. Monperrus, T. Toady, and B. Baudry, “We-
bAssembly Diversification for Malware Evasion,” Computers & Secu-
rity, 2023.

L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando, and
F. Roli, “Adversarial EXEmples: A Survey and Experimental Evalua-
tion of Practical Attacks on Machine Learning for Windows Malware
Detection,” ACM Transactions on Privacy and Security, 2021.

B. Jin, J. Choi, J. B. Hong, and H. Kim, “On the Effectiveness of
Perturbations in Generating Evasive Malware Variants,” IEEE Access,
2023.

D. Lehmann, J. Kinder, and M. Pradel, “Everything Old is New Again:
Binary Security of WebAssembly,” in Proceedings of the USENIX
Security Symposium (Security), 2020.

V. Balachandran and S. Emmanuel, “Potent and Stealthy Control Flow
Obfuscation by Stack Based Self-Modifying Code,” IEEE Transactions
on Information Forensics and Security, vol. 8, no. 4, 2013.

C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2003.

P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “PolyUn-
pack: Automating the Hidden-Code Extraction of Unpack-Executing

12

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Malware,” in Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2006.

M. G. Kang, P. Poosankam, and H. Yin, “Renovo: a hidden code
extractor for packed executables,” in Proceedings of the ACM Workshop
on Recurring Malcode (WoRM), 2007.

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware Detection by Eating a Whole EXE,”
arXiv:1710.09435, 2017.

M. Krédl, O. gvec, M. Bilek, and O. Jasek, “Deep Convolutional
Malware Classifiers Can Learn from Raw Executables and Labels
Only,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

E. Wen, “Browserify: Empowering Consistent and Efficient Application
Deployment across Heterogeneous Mobile Devices,” PhD Thesis, The
University of Auckland, 2020.

S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A First Look
at Browser-Based Cryptojacking,” in Proceedings of the IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), 2018.

J. Cabrera-Arteaga, N. Fitzgerald, M. Monperrus, and B. Baudry,
“Wasm-Mutate: Fast and Effective Binary Diversification for We-
bAssembly,” Computers & Security, 2024.

S. Cao, N. He, Y. Guo, and H. Wang, “WASMixer: Binary Obfuscation
for WebAssembly,” in Proceedings of the European Symposium on
Research in Computer Security (ESORICS), 2024.

A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller, N. Borisov,
M. Antonakakis, and M. Bailey, “Outguard: Detecting In-Browser
Covert Cryptocurrency Mining in the Wild,” in Proceedings of the ACM
Web Conference (WWW), 2019.

W. Bian, W. Meng, and M. Zhang, “MineThrottle: Defending against
Wasm In-Browser Cryptojacking,” in Proceedings of the ACM Web
Conference (WWW), 2020.

C. Kelton, A. Balasubramanian, R. Raghavendra, and M. Srivatsa,
“Browser-Based Deep Behavioral Detection of Web Cryptomining with
CoinSpy,” in Proceedings of the Workshop on Measurements, Attacks,
and Defenses for the Web (MADWeb), 2020.

F. Tommasi, C. Catalano, U. Corvaglia, and I. Taurino, “MinerAlert:
An Hybrid Approach for Web Mining Detection,” Journal of Computer
Virology and Hacking Techniques, 2021.

W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao, “SEISMIC:
SEcure In-lined Script Monitors for Interrupting Cryptojacks,” in Pro-
ceedings of the European Symposium on Research in Computer Security
(ESORICS), 2018.

T. Sermchaiwong and J. Shen, “Dynamic Graph-based Fingerprinting of
In-browser Cryptomining,” arXiv:2505.02493, 2025.

L. Petrov, L. Invernizzi, and E. Bursztein, “CoinPolice: Detecting Hidden
Cryptojacking Attacks with Neural Networks,” arXiv:2006.10861, 2020.
O. Suciu, S. E. Coull, and J. Johns, “Exploring Adversarial Examples in
Malware Detection,” in Proceedings of the IEEE Security and Privacy
Workshops (SPW), 2019.

Y. Sun, H. Chen, J. Guo, A. Sun, Z. Li, and H. Liu, “RoMA: Robust Mal-
ware Attribution via Byte-level Adversarial Training with Global Pertur-
bations and Adversarial Consistency Regularization,” arXiv:2502.07492,
2025.

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” arXiv:1412.6572, 2014.

W. C. Group, “WebAssembly Binary Toolkit,”
Available: https://github.com/WebAssembly/wabt.git
H. Harnes and D. Morrison, “Cryptic Bytes: WebAssembly Obfuscation
for Evading Cryptojacking Detection,” arXiv:2403.15197, 2024.

S. Bhansali, A. Aris, A. Acar, H. Oz, and A. S. Uluagac, “A First Look
at Code Obfuscation for Webassembly,” in Proceedings of the ACM
Conference on Security and Privacy in Wireless and Mobile Networks
(WISEC), 2022.

J. Cabrera-Arteaga, O. Floros, B. Baudry, and M. Monperrus, “CROW:
Code Diversification for WebAssembly,” in Workshop on Measurements,
Attacks, and Defenses for the Web (MADWeb), 2021.

D. Gibert, M. Fredrikson, C. Mateu, J. Planes, and Q. Le, “Enhancing
the Insertion of NOP Instructions to Obfuscate Malware via Deep
Reinforcement Learning,” Computers and Security, 2022.

L. Zhang, P. Liu, Y.-H. Choi, and P. Chen, “Semantics-Preserving
Reinforcement Learning Attack Against Graph Neural Networks for
Malware Detection,” IEEE Transactions on Dependable and Secure
Computing, 2023.

2024. [Online].

https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1.git
https://www.virusbulletin.com/virusbulletin/2018/10/dark-side-webassembly
https://www.virusbulletin.com/virusbulletin/2018/10/dark-side-webassembly
https://www.crowdstrike.com/en-us/blog/ecriminals-increasingly-use-webassembly-to-hide-malware
https://www.crowdstrike.com/en-us/blog/ecriminals-increasingly-use-webassembly-to-hide-malware
https://github.com/jwhitehorn/jsMiner
https://github.com/jwhitehorn/jsMiner
https://github.com/WebAssembly/wabt.git

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

K. Lucas, S. Pai, W. Lin, L. Bauer, M. K. Reiter, and M. Sharif, “Ad-
versarial Training for Raw-Binary Malware Classifiers,” in Proceedings
of the USENIX Security Symposium (Security), 2023.

A. Romano and W. Wang, “WASim: Understanding WebAssembly
Applications through Classification,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2020.

A. Hilbig, D. Lehmann, and M. Pradel, “WasmBench,” 2020. [Online].
Available: https://github.com/sola-st/WasmBench

B. Sheridan and M. Sherr, “On Manufacturing Resilient Opaque Con-
structs Against Static Analysis,” in Proceedings of the European Sym-
posium on Research in Computer Security (ESORICS), 2016.

L. Zobernig, S. D. Galbraith, and G. Russello, “When are Opaque Pred-
icates Useful?” in Proceedings of the IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), 2019.

J. Nagra and C. Collberg, Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection. Pearson
Education, 2009.

S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting Software through Obfuscation: Can It Keep Pace
with Progress in Code Analysis?” ACM Computing Surveys, 2016.

S. Andrei and C. Masalagiu, “About the Collatz Conjecture,” Acta
Informatica, 1998.

J. Lee and W. Lee, “Simplifying Mixed Boolean-Arithmetic Obfuscation
by Program Synthesis and Term Rewriting,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2023.

B. Liu, J. Shen, J. Ming, Q. Zheng, J. Li, and D. Xu, “MBA-Blast:
Unveiling and Simplifying Mixed Boolean-Arithmetic Obfuscation,” in
Proceedings of the USENIX Security Symposium (Security), 2021.

M. Schloegel, T. Blazytko, M. Contag, C. Aschermann, J. Basler,
T. Holz, and A. Abbasi, “Loki: Hardening Code Obfuscation Against
Automated Attacks,” in Proceedings of the USENIX Security Symposium
(Security), 2022.

13

[56]

(571
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

P. Lestringant, F. Guihéry, and P.-A. Fouque, “Automated Identification
of Cryptographic Primitives in Binary Code with Data Flow Graph
Isomorphism,” in Proceedings of the ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2015.

A. K. Gupta and S. Nadarajah, Handbook of Beta Distribution and Its
Applications. CRC Press, 2004.

Yuxia-Sun, “WasmMal,” 2025. [Online]. Available: https://github.com
/Yuxia-Sun/WasmMal

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz
Testing,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2018.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Under-
standing Deep Learning (Still) Requires Rethinking Generalization,”
Communications of the ACM, 2021.

R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel,
M. Bethge, and F. A. Wichmann, “Shortcut Learning in Deep Neural
Networks,” Nature Machine Intelligence, 2020.

M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical
Methods, 3rd ed., 2015.

L. T. Li, N. He, H. Wang, and M. Zhang, “VETEOS: Statically
Vetting EOSIO Contracts for the “Groundhog Day” Vulnerabilities,” in
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2024.

C. Collberg, “Tigress: A Diversifying Virtualizer/Obfuscator for C,”
2011. [Online]. Available: https://tigress.wtf

N. Loose, F. Michtle, C. Pott, V. Bezsmertnyi, and T. Eisenbarth, “Mad-
vex: Instrumentation-Based Adversarial Attacks on Machine Learning
Malware Detection,” in Proceedings of the International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), 2023.

K. Chmiel and P. Rajba, “How to Evade Modern Web Cryptojacking
Detection Tools? A Review of Practical Findings,” in Proceedings of
the International Conference on Availability, Reliability and Security
(ARES), 2024.

https://github.com/sola-st/WasmBench
https://github.com/Yuxia-Sun/WasmMal
https://github.com/Yuxia-Sun/WasmMal
https://tigress.wtf

	Introduction
	Background
	WebAssembly (Wasm)
	Wasm Malware
	Wasm Malware Detectors

	Our Analysis Framework: Swamped
	Section Parsing
	Perturbation Methods
	Structural Perturbation (Non-code)
	Code Perturbation

	Perturbation Placement and Deployment
	Perturbation Distribution
	Perturbation Ratio

	Execution and Interpretation

	Evaluation
	Experimental Setup
	Perturbation Impacts on Wasm Malware Detectors
	Insights from the Experiment Results
	Overhead

	Discussion
	Related Work
	Conclusion
	References

