
SWARMFLAWFINDER: Discovering and Exploiting
Logic Flaws of Swarm Algorithms

Chijung Jung∗, Ali Ahad∗, Yuseok Jeon†, and Yonghwi Kwon∗
∗Department of Computer Science, University of Virginia, Charlottesville, VA, USA

†Department of Computer Science and Engineering, UNIST, Ulsan, South Korea
∗{cj5kd, aa5rn, yongkwon}@virginia.edu †ysjeon@unist.ac.kr

Abstract—Inspired by swarms in nature, swarm robotics have
been developed to conduct various challenging tasks such as
environmental monitoring, disaster recovery, logistics, and even
military operations. Despite the significant potential impact of the
swarm on society, relatively little attention is given to adversarial
scenarios against swarm robotics.

In this paper, we explore a systematic approach to find logical
flaws of the swarm robotics algorithms that adversaries can
exploit. Specifically, we develop an automated testing system,
SWARMFLAWFINDER, for swarm algorithms. We identify and
overcome various challenges in understanding and reasoning
about the swarm algorithm execution. In particular, we propose
a novel abstraction of robotics behavior, which we call the degree
of causal contribution (DCC), based on the idea of counterfac-
tual causality. Then, we build a feedback guided greybox fuzz
testing system called SWARMFLAWFINDER, leveraging DCC as
a feedback metric. We evaluate SWARMFLAWFINDER with four
swarm algorithms conducting navigating, searching, and rescuing
missions. SWARMFLAWFINDER discovers 42 logic flaws (and
all of them have been acknowledged by the developers) in the
swarm algorithms. Our analysis of the flaws reveals that the
swarm algorithms have critical logic errors/bugs or suffer from
incomplete implementations that can be exploited by adversaries.

I. INTRODUCTION

Swarm robotics revolutionizes how robots can function and
what they can accomplish. It has attracted attention for a
variety of vital missions, such as search and rescue, that are
typically challenging for individual drones to complete. A
swarm is more than just a set of drones performing the same
operations. Robots in a swarm cooperate with others (e.g.,
sharing and distributing intelligence) to accomplish tasks.

A swarm operation is controlled by a swarm algorithm,
which coordinates the actions of multiple robots. The swarm
algorithm’s efficacy determines a swarm operation’s effective-
ness. Logic flaws (i.e., logic bugs or weaknesses) in a swarm
algorithm can result in various failures. Consider a swarm
searching algorithm that coordinates multiple groups of robots,
with robots in the same group sharing information discovered
during the mission. The efficiency of the swarm algorithm
depends on the number of robots in a group. In such a case,
an adversary, who is capable of breaking existing groups into
smaller groups, can lead the swarm to undesirable states,
significantly slowing down the searching. Such undesirable
swarm operations may lead to severe consequences in the wild.
For instance, failures in searching/rescuing missions can result
in casualties. Failure to search/deliver in military missions

can lead to losing a battle. Significantly slowed-down swarm
missions in commercial businesses can cause financial loss.

This paper explores a systematic approach for detecting
logic flaws in swarm algorithms, particularly in drone swarms.
Specifically, we develop a greybox fuzz testing technique for
swarm robotics, called SWARMFLAWFINDER, that overcomes
unique challenges in effectively testing drone swarm algo-
rithms. Given a target swarm algorithm and a swarm mission
definition (e.g., the number of drones and mission objectives),
SWARMFLAWFINDER introduces attack drones to disrupt the
swarm operation. The attack drones aim to interfere with the
swarm, attempting to expose logical weaknesses that lead to
mission failure, rather than launching naive and overt attacks
(e.g., directly crashing into victim drones). A key component
in developing SWARMFLAWFINDER is to design an efficient
metric that abstracts a given test’s effectiveness. Unfortunately,
unlike testing traditional software [1]–[3], coverage-based
metrics (e.g., basic block, branch/edge, or path coverage)
are ineffective in determining a test case’s effectiveness and
guiding the test generation for swarm robotics because robotics
systems are designed to have a relatively less-diverse control
flow but significantly more-diverse data variances at runtime.

To this end, a major challenge in SWARMFLAWFINDER is
to develop a metric for the guided fuzzing process. Inspired
by the idea of counterfactual causality, we propose a new
metric the degree of the causal contribution (or DCC) to
abstract the causal impact of attack drones on the target swarm.
Specifically, SWARMFLAWFINDER creates multiple perturbed
executions (i.e., counterfactual executions) to infer the causal-
ity between attack drones and victim drones’ behaviors. Based
on the inferred causality, we build the DCC to reflect the attack
drones’ impact on the victim swarm and use DCC to direct
the fuzzing process to accelerate the creation of test cases
covering unexercised swarm behaviors. We evaluate SWARM-
FLAWFINDER using four swarm algorithms [4]–[7], finding 42
logic flaws that are all confirmed by the algorithm developers.
Our major contributions are summarized as follows:
• We explore the possibility of exploiting swarm algorithms’

logic flaws to cause swarm mission failures, solving various
technical challenges.

• We propose a concept of the degree of the causal contribu-
tion (or DCC), based on the idea of counterfactual causality,
to abstract the impact of attack drones on a swarm operation.

• We develop a greybox fuzz testing system for drone swarm

algorithms called SWARMFLAWFINDER to systematically
discover logic flaws in swarm algorithms. It uses DCC as
a feedback metric for fuzz testing to mutate the test cases.

• SWARMFLAWFINDER identified 42 previously unknown
logic flaws (all confirmed by the developers) in the four
swarm algorithms, and present analysis results including root
causes and fixes (34 out of 42 fixes are confirmed).

• We publicly release all the developed tools, data, and results,
including SWARMFLAWFINDER, for the community [8].

II. BACKGROUND AND THREAT MODEL

Definition of Swarm Mission and Algorithm. A swarm
mission requires the following definitions: (1) the number of
drones in a swarm and (2) the objectives of a swarm mission
(e.g., the destination or goal). Such definitions can be typically
found in configuration files, swarm algorithm’s code (i.e.,
hardcoded), or the algorithms’ descriptions (e.g., academic
papers or manuals). A swarm algorithm essentially coordinates
individual drones to conduct the mission’s objectives. In this
paper, we consider the swarm algorithms to include logic for
both individual drones and the swarm’s cooperative behaviors.
Challenges in Testing Swarm Algorithms. A swarm is highly
dynamic. During a swarm mission, even a slight impact in
one of those inputs (caused by the environment or attack
drones) can lead to significantly different swarm behaviors. For
instance, assume a moving object is approaching one of the
drones in a swarm. The swarm’s reaction can be significantly
different depending on the approaching angle of the object.
Hence, to test swarms effectively, it is desirable to run tests
under diverse scenarios to cover various swarm behaviors.
However, the swarm’s input space (e.g., angles and coordinates
of objects) is often too large to cover them exhaustively in
practice. To mitigate the large input space, one may try to
identify inputs that may exercise a similar swarm behavior
(i.e., an equivalent class of the behavior) and prune out those,
to improve the testing performance. However, it is challenging
to know which inputs exercise a similar swarm behavior.

In typical software testing, coverage-guided fuzzing [9]–
[11] solves a similar challenge by using various code coverage
metrics (e.g., block or edge). It prioritizes the same class of
test inputs that have increased the coverage, aiming to exercise
diverse program behaviors (i.e., covering diverse execution
paths). However, they are not effective in testing robotics
systems because their execution is highly iterative. Even with
a few tests, majority of the code and branches in robotics
systems are quickly covered, while the tests do not cover
diverse behaviors. Unlike testing traditional software systems,
predicate conditions are not the critical challenges in swarm
algorithm testing. Instead, different behaviors are often caused
by different values of inputs and internal states of drones.
Greybox Fuzz Testing Approach. SWARMFLAWFINDER
chooses to use a greybox fuzz testing approach because
other alternatives, whitebox and blackbox approaches, are
not as effective as the greybox approach for testing swarm
algorithms. Specifically, whitebox approaches [12], [13] often
require expensive analyses (e.g., symbolic analysis) on the

swarm algorithm. Blackbox approaches [14] do not analyze
complex internals of the systems. They rely on correlations
between the inputs and observed outputs which are often too
coarse grained, to decide the test case mutation strategy.

SWARMFLAWFINDER takes the greybox approach, which
monitors an execution (focusing on the poses of drones) to
obtain finer-grained information than the blackbox approaches,
while not requiring expensive analyses.
Efforts in Dependable Swarm Robotics. There is a line
of research on making swarm robotics dependable [15]–[19],
where most of them focus on the modeling of swarms, and
their discussions are at a high level. Specifically, Winfield et
al. [15] define two properties of the swarm systems: liveness
(i.e., exhibiting desirable behaviors) and safety (not exhibiting
undesirable behaviors such as crashes). They present theoret-
ical models to prove the two properties, leveraging Lyapunov
theorems [20]. They also discuss difficulty in testing such as
the large input space. Higgins et al. [17] present various se-
curity threats to swarm robotics including intrusion of foreign
drones to a swarm, which is the same threat model of us (i.e.,
introducing attack drones to disrupt a swarm). Sargeant and
Tomlinson [16] present models of malicious swarms aiming
to make a victim swarm operation inefficient.

Compared to the above work [15]–[17], we aim to identify
concrete logical flaws from real algorithms via testing. In the
context of [15], SWARMFLAWFINDER can find flaws delaying
mission completion and crashing drones in a swarm that can
be considered ‘liveness’ and ‘safety’ violations, respectively.
To the best of our knowledge, SWARMFLAWFINDER advances
state-of-the-art swarm testing, especially in testing efficiency
and quality, mitigating the incompleteness of the testing dis-
cussed in [15]. Note that while [17] presents malicious swarm
models, their models are not concrete. For example, they
describe high-level classes of threats such as ‘mobility’ and
‘controllability’ issues. Instead, we find concrete logic flaws
with root causes. In other words, while some logic flaws we
find can relate to [17]’s definitions (In Table III, C1-5 and
C2-4 can be classified as mobility and controllability issues,
respectively), all the logic flaws we find are previously un-
known, meaning that they are newly discovered. Similarly, [16]
presents an example swarm threat scenario called landmine,
which has a similar objective (i.e., conducting a search) to two
swarm algorithms we evaluate (A2 and A3). We also find logic
flaws that slow down a swarm’s progress (See C2-3, C2-4,
C3-1, and C3-2 in Table III). However, [16]’s discussions are
conceptual and all the discovered flaws we find are new. Note
that the models in [15]–[17] can be used to define additional
mission failure criteria for our testing.

Besides, there are groups of researchers conducting in-depth
analysis in designing and modeling swarm algorithms. Taylor
et al. [18] discuss the effectiveness of adding collision avoid-
ance algorithms to existing swarm algorithms. It concludes that
it is recommended to design swarm algorithms with collision
avoidance in mind, rather than adding the collision avoidance
algorithm later. In our paper, all the four evaluated algorithms
are designed with collision avoidance in mind (i.e., we do

2

not observe a clear separation of the collision avoidance logic
from swarm algorithms). Hamann et al. [19] model swarm
robotics using statistical physics, showing that their models are
effective. Our work focuses on finding concrete logic flaws in
a concrete implementation of an algorithm, which is difficult
to achieve with the modeling approach.
Threat Model. We assume an adversary knows the target
swarm mission and its swarm algorithm and can launch
external attack drones to thwart the target swarm operation.
However, the adversary does not have access to the target
drone’s device, hence cannot compromise the drone’s soft-
ware/hardware. The adversary prefers subtle attacks that do not
make physical contact (e.g., crashing into the victim drones)
due to its economic benefit and subtleness. Note that a naive
crashing attack is not practical and scalable for a large-scale
swarm mission since crashed attack drones are not reusable
by the adversary, limiting the attack capability.

We target autonomous swarm algorithms and do not target
human-controlled swarms. If a swarm is a mixture of human
and autonomous control, we target the part of the swarm
with autonomous control. In practice, autonomous control is
required in many cases, such as conducting a long-distance
mission covering areas without communication infrastructure
(e.g., military mission) or a large-scale swarm mission (e.g., a
search/rescue mission over a large area). Our focus is to find
logic flaws in swarm algorithms. Traditional software/hard-
ware vulnerabilities of drones such as GPS jamming/spoof-
ing [21], [22] and network packet injections are not our focus.

III. MOTIVATING EXAMPLE

We use a drone swarm mission running Adaptive Swarm [4]
to show how SWARMFLAWFINDER discovers logic flaws.
Target Swarm Mission. The target swarm aims to deliver
an object that requires four drones’ cooperation as shown in
Fig. 1-(a). Each drone is attached with a string to hold the
object. Typically, it takes 189.4 (±5.8) ticks to complete (We
profile 100 runs of the mission to obtain the completion time).
Adversary. We assume an adversary wants to discover the
swarm algorithm’s logic flaws that can be exploited by an
attacker controlled external drone, in order to fail the mission.
We consider the swarm mission is failed if the swarm does
not reach the destination in 400 ticks (i.e., two times longer
than the typical mission completion time mentioned above).
Logic Flaw Discovery. SWARMFLAWFINDER conducts
guided fuzz testing via the following four steps.

1) Test Creation: Given the target swarm mission, we create
the initial test (T1 in Fig. 1-(a)). A test case consists of two
elements: the attack drone’s pose (or location; P) and an attack
strategy (S). For the initial test, we randomly pick P and S
where P being near a victim drone while avoiding being too
close to the victim drone (i.e., indicated by the gray area in
Fig. 1-(a)), because choosing such a value may cause a crash
immediately after the spawn. The attack strategy S represents
how the attack drone will act after the spawn. There are four
strategies S1∼S4: S1 pushes a victim drone against its flight

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13

Follower 3

Follower 1

Follower 2

Leader Object

String String

(a) Mutating test cases (by the µ function)

SA

T1={<P1, SA>}

SC

µ(P, S, ∆)

T3 = {<P3, SC>}

µ(P, S, δ)

(b) Impact of the attack drone in T1

T1

Delta ()

(c) Impact of the attack drone in T2

T2

Delta ()

(d) Impact of the attack drone in T3

T3

Delta ()

Delta ()

OM OM

OM
OM

T2=

{<P2, SA>}

SA

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10111213

100

50

0

20 24 28 32

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13

Destination Follower 2 Follower 3 Attacker Moving Obstacle

D
cc

(%
)

Tick

Legend for Dcc

100

50

0

Leader

20 24 28 32

Follower 2

100

50

0

D
cc

(%
)

Tick

100

50

0

Leader Follower 2

20 24 28 32 20 24 28 32

100

50

0

D
cc

(%
)

Tick

100

50

0

Leader

20 24 28 32 20 24 28 32

Follower 2

Fig. 1. SWARMFLAWFINDER in action on the motivation example.

direction and S3 represents a strategy that moves between two
victim drones. Other strategies can be found in § IV-A.

2) Test Evaluation and DCC Computation: We run the test
Ti and measure the attack drones’ impact on the victim swarm.
We propose the concept of the degree of causal contribution
(or DCC), which is based on the principle of counterfactual
causality [23], [24], to measure the impact. Briefly, a causal
relationship between an attack drone and a victim drone is
inferred by comparing an execution with the attack drone and
its counterfactual execution, which does not include the attack
drone. Any observable differences between the two executions
essentially represent the causality between the attack and
victim drones (Details about the counterfactual causality are
in § IV-B). Specifically, for each victim drone, we identify all
external objects that can affect the swarm operation. In this
example, the external objects for a victim drone (e.g., Leader)
include an attack drone, three victim swarm’s drones (Follower
1∼3), and a moving object (OM). To compute DCC, for every
external object, we run an additional test without the external
object. Any observed differences on the victim drone’s pose
between the tests with and without the object (e.g., represented
as ∆ in Fig. 1) are collected. We repeat this for all external
objects, and accumulate the ∆ values to get the DCC values,
shown at the bottom of Fig. 1-(b)∼(d).

3) Test Mutation Guided by DCC: After each test’s ex-
ecution, SWARMFLAWFINDER checks whether there was a
previous test that has a similar DCC of the current test. If there
are no similar DCC values observed previously, we consider
that the current test exercises a new behavior of the target
swarm. Hence, SWARMFLAWFINDER tries to prioritize tests
that are similar to the current test. It derives the next test by
mutating the test case slightly, denoted by µ(P , S, δ). Observe

3

(a) Attack drone and obstacle approach the victim swarm (b) Attack drone influences a victim drone (c) Leader drone crashed into the obstacle

O

O

A

A
A

A

A

A

O O

O

O

F1
L

F2

F3

F1

L

F3

F2

L F1
F3

F2

F1

L

F2

F3
L

F2

F1 F3

L
F1

F3F2

Fig. 2. Physical experiment reproducing the crash shown in Fig. 3 (L means Leader and F1∼3 indicates Follower 1∼3).

FG

FA

FO

FG

FA

Legend

Flight direction (i.e., final

decision)

Force to avoid the attack

drone (FA)

Force to fly toward the

goal (i.e., destination) (FG)

Force to avoid the

dynamic obstacle (FO)

Attack drone

Victim drone’s sensing

area for external objects

Moving obstacle

Leader

Follower 2

Follower 1

Follower 3

FG

FG

Fig. 3. Crash (caused by a logic flaw) found by SWARMFLAWFINDER.

that T1 and T2 in Fig. 1 have the same S1 (i.e., not mutated).
If the current test’s DCC is similar to one of the previously
observed DCC values (e.g., DCC of Fig. 1-(b) and (c) are
similar), SWARMFLAWFINDER mutates the current test more
significantly to derive a completely new test case for the next
test (e.g., T3 is derived by mutating both P and S of T2).

4) Repeating Test Execution and Mutation: We repeat the
Step 2 and Step 3 for a given amount of time (i.e., timeout): 24
hours in this example. During the testing process, we observe
a test case execution leading to a swarm mission failure due
to a crash between a victim drone and the moving obstacle
(OM). Note that OM is not an attacker controlled object. The
victim swarm is capable of avoiding OM without an attack
drone introduced by our system. SWARMFLAWFINDER also
logs the details of the test causing mission failures (e.g., attack
drone’s pose and strategy) for analysis.
Logic Flaw in the Algorithm. Fig. 3 explains the details
of a logic flaw discovered by SWARMFLAWFINDER. In this
scenario, three forces are considered to determine the final
flight direction of the victim drones. First, all four victim
drones try to move toward the goal, denoted by FG. If there
are no other forces to consider, FG becomes the final flight
direction denoted by the red arrow. Follower 1 and 3 are such
cases. Second, when an attack drone comes close to a victim
drone (e.g., Leader and Follower 2 in Fig. 3), the victim drone
tries to avoid it, causing FA. Third, when a moving obstacle
approaches the victim drone, it tries to avoid the obstacle (FO).
Note that when multiple forces are involved, the final flight
direction is determined by adding all the forces’ vectors. In this
example, when the attack drone flies in the middle of Leader

and Follower 2, the sum of FG, FO, and FA of Leader makes
the drone move towards the obstacle, leading to the crash.
Physical Experiment. To show that the identified logic flaw
can be exploited in the real world, we reproduce the motivation
example with real drones in our lab environment, as shown in
Fig. 2. Observe that we present the photos of real drones on the
upperside along with the simplified versions of the photos on
the bottom. A and O represent the attack drone and the moving
obstacle, respectively. The victim drones are connected with
red strings to hold an object (illustrated as a red diamond on
the bottom). Fig. 2 shows three steps: (a) the attack drone
and obstacle are approaching the victim swarm. (b) the attack
drone influences a victim drone’s decision, making it move
toward the obstacle. (c) the obstacle and the victim drone
influenced by the attack drone crashed, resulting in the entire
swarm crashed onto the ground (illustrated by the gray color).
Generality. We further analyze the crash in detail and discover
that Adaptive Swarm [4] does not handle multiple obstacles
well in general, meaning that the above crash is not an
accidental crash but it is caused by a fundamental weakness
of the algorithm. Details of the root cause of this error are
presented in § V-B (C1-2. Naive multi-force handling).

IV. DESIGN

Fig. 4 shows the overview of SWARMFLAWFINDER. It takes
a target swarm algorithm and a swarm mission (including the
definition of mission success and failure) as input. It runs
an initial test with attack drones (§ IV-A). If a test mission
finishes successfully (1), it conducts execution perturbation
(§ IV-B) to understand whether the current test exercised
a new behavior of the swarm or not. Based on the result,
SWARMFLAWFINDER mutates the current test and continues
testing (2 , § IV-C). If a test leads to a mission failure (3),
the attack drones’ configuration is obtained as output (4). It
repeats the above process until it reaches a predefined timeout.

A. Test-run Definition and Creation

A test-run is defined as a set of tuples < P, S > where P and
S represent an attack drone’s pose and its strategy respectively.
A test with n attack drones is composed of multiple tuples:
{< P1, S1 >,< P2, S2 >, ...,< Pn, Sn >}. To facilitate the
discussion, we first focus on testing with a single attack drone.
We discuss testing with multiple attack drones in § IV-D.

4

Swarm algorithm

Swarm mission Execution perturbation

(Section IV-B) Attack drone

configurations, causing

mission failures

Test creation and execution

(Section IV-A and B)

Test evaluation

using Dcc values

(Section IV-B)

Feedback-driven fuzzing (Section IV-C and D)

…

Mission failure

Mission

success

Input Output

Timeout
(No errors found)

1

2

3

4

Fig. 4. Overview of SWARMFLAWFINDER. (The shaded area represents SWARMFLAWFINDER with input and output on the left and right respectively)

Attack Drone’s Pose (P). P represents the initial pose of the
attack drone in a test. P is essentially a point in 3D space
in drone swarms, represented by three values on xy, xz, and
yz-planes: < x, y, z >. P ’s value range is large as it can be any
point in 3D space except for the points that are close to victim
drones (which can cause crashes even before a victim drone
tries to avoid collisions). For example, if a victim drone’s
sensing area (i.e., the area that the victim drone can detect
an object) is defined as x × y × z (length × width × height),
we only allow a value of P that is outside of the x × y × z
from the center of each victim drone. The sensing area can
be obtained by running a simple test with an external object
and observing the distance the victim drone starts to avoid the
object. After the attack drone is spawned at P , it moves toward
the victim drone to execute its attack strategy S (explained in
the next paragraph). Different P values can lead to different
timings of the attack drone approaching the victim swarm.
Attack Strategy (S). After an attack drone is spawned at P , it
detects the victim swarm and moves near the swarm. Then, it
conducts an attack based on the strategy S defined as follows
(An illustration of the strategies can be found in [8]).

1. Pushing Back (S1): An attack drone tries to push back
a victim drone (i.e., against the victim drone’s flight
direction). In a swarm, this strategy typically delays the
progress of the swarm reaching the destination.

2. Chasing (S2): An attack drone closely follows a single
victim drone in a swarm. It typically causes a victim to
speed up, often making it difficult for the victim to control
itself from crashing into other objects.

3. Dividing (S3): An attack drone flies into the middle
of two victim drones to divide a group of drones into
smaller groups. It aims to disrupt the swarm’s collective
operation, making the swarm sparse or smaller sized.

4. Herding (S4): It aims to change the direction of an entire
swarm or the size of the swarm via attack drones pushing
victim drones from the outmost layer of the swarm.

B. Test Execution and Evaluation
Initial Test Creation and Execution. We create the initial
test case by randomly choosing P and S for a single attack
drone. We run the created test case which spawns an attack
drone at P with an attack strategy S.
Test Evaluation. After a test, we evaluate the effectiveness of
the test. If the test case (i.e., < P, S >) effectively exercises

a new behavior of the victim swarm, we consider the test
case is effective and try to run similar tests with a slight
mutation (e.g., changing P to have less than 1 meter change
from the original P and do not change S). Otherwise, we try to
mutate the current test case significantly to derive a completely
different test that may exercise a new behavior of the victim
swarm. For example, we consider a significant mutation to be
(1) mutating P to have more than 1 meters (10 times of the
attack drone’s size) change and (2) selecting a different S.
• Challenges: Unfortunately, coverage based metrics (e.g.,

instruction or branch coverage) that are commonly used in
traditional software testing do not work well for swarm
algorithms because the algorithms are highly iterative. We
observe that even between significantly different tests, the
coverage metrics stay similar. Alternatively, one may record
victim drones’ poses (e.g., coordinate values) during the test
run and use the pose trace. However, the pose trace is too
sensitive, meaning that even for very similar tests, they may
differ significantly. Even running the same test multiple times
likely results in different poses, due to the non-deterministic
nature of swarm robotics. Hence, pose traces are not desirable.
• Our solution: We focus on the attack drones’ impact on the

victim swarm, where the impact can be intuitively measured by
the victim drones’ reactions to the attack drones. To quantify
the impact (or swarm’s reactions), we propose the degree of
the causal contribution (or DCC). The idea behind the DCC is
counterfactual causality [23], [24] which explains the meaning
of causal claims in terms of counterfactual conditionals: “If X
had not occurred, Y would not have occurred.”

Counterfactual Causality [23] is the most widely used
definition of causality. We adapt the above counterfactual
conditional statement to the context of inferring adversaries’
impact on drone swarm algorithms’ execution. Specifically,
a victim drone’s behavior B is causally dependent on an
adversary A, if A did not exist, B would not exist. To this
end, we conduct additional experiments to infer the causality
between A and B.
Given an execution Eorg of a swarm algorithm, we create a

new counterfactual execution Ecf that does not include A, to
test the counterfactual condition. From the above definition,
we can infer the causality between A and B as follows. If
B is only observed in Eorg but not in Ecf , B is causally
dependent on A. Note that B in our context is not a binary

5

but a difference (i.e., delta) between the two executions. In
other words, we aim to infer the causal relationship between
A and B where B is the behavior difference of a victim
drone between Eorg but not in Ecf .

Direction of the attack drone/

obstacles

Direction to the next position with

perturbations

Direction to the next position

without perturbation

Legend

Delta (Δ1)

Attack
drone

(a) Original swarm mission
(b) Perturbation 1:

without the obstacle
(c) Perturbation 2:

without the attack drone

Delta

(Δ2)

Delta

(Δ3)

(e) Perturbation 4:

without Drone 1

Drone 1

Leader

Drone 2

(d) Perturbation 3:

without Leader
(f) Perturbation 5:

without Drone 2

Delta

(Δ5)

Delta

(Δ6)

Delta

(Δ4)

Δ
1

(O
b

st
ac

le
)

Δ
4

(L
ea

d
er

)

(g) Degree of causal contribution (Dcc) values

Drone 1

Δ
3

(A
tt

ac
k
 d

ro
n
e)

Δ
5

(L
ea

d
er

)

Drone 2

Δ
2

(A
tt

ac
k
 d

ro
n
e)

Δ
6

(D
ro

n
e

2
)

Leader
Pose difference (delta) caused by

perturbations

Obstacle

Fig. 5. DCC computation via perturbed swarm executions.

We compute DCC values by (1) perturbing the original
swarm mission’s execution, (2) comparing the original swarm
mission with the perturbed swarm mission executions, and (3)
aggregating the differences of each victim drone in the swarm.

SWARMFLAWFINDER perturbs all objects including victim
drones, objects, and attack drones, one by one in each per-
turbed execution. Fig. 5-(a) shows the original swarm mission
including 3 victim drones, 1 moving obstacle, and 1 attack
drone. SWARMFLAWFINDER creates 5 perturbed executions.

1. Removing the obstacle (b): The obstacle is removed from
the swarm mission. Observe that Drone 1 is now flying
toward the east (gray arrow). The difference between the
original swarm mission is identified and annotated by ∆1.

2. Removing the attack drone (c): Without the attack drone,
two victim drones (Leader and Drone 2) move toward the
east (i.e., the original destination) as annotated by ∆2.
Drone 2’s flight direction is also changed (∆3) because,
in the original execution (a), it flies slightly south to avoid
the Leader drone that is affected by the attack drone.

3. Removing the Leader (d): In this swarm algorithm, non-
leader drones are instructed to follow the leader drone,
which aims to fly toward the destination. Without the
leader, the other drones do not try to fly toward the east.
Drone 1 reacts to the obstacle more actively since it does
not need to care about the destination (∆4). Drone 2 also
slows down and does not need to follow the leader (∆5).

Algorithm 1: Feedback based fuzz testing
Input : Dv : a set of variables representing victim drones.

Da: a set of variables representing attack drones.
Ow : a set of variables representing objects in the world.
Ttimeout : the maximum time limit for the testing (i.e., timeout).

Output: Efailed : a set of executions that were failed due to the attack drones.
1 procedure SwarmDcc(E, Dv , Da, Ow , Tend)
2 t ← 0
3 while t ≠ Tend do

// Each victim drone d
4 for d ∈Dv do
5 ∆Total ← 0
6 Oall ← Dv ∪Da ∪Ow

7 Porg ← GetPose (E, d, Oall , t) // Pose of a victim drone d at t
// Each variable o representing objects including attack/victim

drone and obstacles
8 for oi ∈ Oall do
9 obak ← oi // Save oi

10 oi ← ∅ // Removing an object oi
11 Pi ← GetPose (E, d, Oall , t) // Pose of d at t without i

12 ∆i ← ∣ Porg − Pi ∣ // ∆ for oi via Euclidean Distance
13 ∆Total ← ∆Total + ∆i
14 oi ← obak // Restore oi

15 for oi ∈ Oall do
16 DCC(d, t) ← DCC(d, t) ∪ < oi, (∆i / ∆Total) >

17 t ← t + 1

18 return DCC

19 procedure FuzzTesting(Dv,Da,Ow, Ttimeout)
20 Efailed ← {}
21 Ecur ← CreateInitialTest(Dv , Da, Ow) // Create the first test
22 Nthreshold ← 0.87 // NCC threshold (configurable).
23 while the elapsed time of testing did not reach Ttimeout do

// Run a test with the current configuration. If the current victim
mission fails, add the execution to the output.

24 if RunSwarm(Ecur) = MISSION FAILURE then
25 Efailed ← Efailed ∪ Ecur

// Obtain DCC values for the current test
26 DCCcur ← SwarmDcc(Ecur , Dv , Da, Ow , time(Ecur))

// Check whether the current test produce DCC values different enough
27 IsNewDcc ← TRUE
28 for r ∈ Dv do
29 for di ∈ DCCprev (r) do
30 if GetNCC(di, DCCcur (r)) > Nthreshold then
31 IsNewDcc ← FALSE
32 break

33 DCCprev ← DCCprev ∪ DCCcur

// The test did not find the obtained DCC values are different enough,
meaning that it is similar to one of the previous tests

34 if IsNewDcc = FALSE then
35 Ecur ← MutateTest(Ecur , R) // Mutate the test significantly
36 else
37 Ecur ← MutateTest(Ecur , δ) // Mutate slightly (δ)

38 return Efailed

4. Removing the Drone 1 (e): Drone 1 does not affect
other victim drones’ (Leader and Drone 2) behaviors. We
observe no delta values in this experiment.

5. Removing the Drone 2 (f): Without Drone 2, the leader
drone tends to fly toward the west more to avoid the
obstacle (∆6). In the original swarm mission, the leader
flies toward the south-east to avoid Drone 2.

Fig. 5-(g) shows DCC values computed from the perturbed
executions at the moment illustrated in Fig. 5. For each victim
drone, it is the percentage of aggregated ∆ values. Note that
we collect DCC values throughout the entire swarm mission.
Algorithm for DCC Computation. SwarmDcc() in Algo-
rithm 1 shows the algorithm to compute DCC values. Specif-

6

ically, DCC values are computed for each victim drone spec-
ified by Dv . The for loop from line 4 to line 16 describes
the DCC computation for each drone. SWARMFLAWFINDER
runs multiple tests with perturbations that remove one of the
attack drones (Da), obstacles (Ow), and the victim drones
(Dv) specified as input (Lines 8∼14). In particular, Pi (line
11) and Porg (line 7) represent the pose of a drone with
and without the perturbation. We then compute the euclidean
distance between the two trajectories (∆i at line 12, which is
essentially ∆ in Fig. 5). To understand the attack’s impact on
the entire swarm, we compute all the delta values for all victim
drones (see the nested for loops at lines 4∼16 and 8∼14).

DCC is computed by adding all the delta values computed
(line 13) and then calculating each delta value’s proportion in
the total accumulated delta value (in percentage) (lines 15∼16).

C. DCC Guided Fuzz Testing

Abstracting Swarm Missions via DCC. Fig. 6 shows a
series of DCC values computed throughout the swarm mission
(0∼180 ticks). X-axis and Y-axis represent the time and
stacked ∆ values, respectively. Intuitively, we use the series of
DCC values to represent a swarm mission. When we identify
two tests that have a similar series of DCC values, we consider
them similar. To compare two number series, we leverage NCC
(Normalized Cross Correlation) [25] which is commonly used
to compute the similarity between data in various fields [26]–
[28]. Fig. 6 shows examples of NCC scores from different
DCC values: (a) shows Dcc values from the original execution.
(b) and (c) are DCC values from two different runs. Note that
when DCC values from two executions have different lengths
(i.e., running time), we scale one of the execution’s DCC
values to another execution (i.e., interpolation), then compute
the NCC. However, if two executions’ running times are
different more than two times, we consider they are different.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112115118121124127130133136139142145148151154157160163166169172175178

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112115118121124127130133136139142145148151154157160163166169172175178

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112115118121124127130133136139142145148151154157160163166169172175178

Destination Follower 2 Follower 3 Attacker 1 Moving ObstacleWall

Legend

100

80

60

40

20

0
0 18016014012010080604020

0 18016014012010080604020

0 18016014012010080604020

(b) Dcc from the similar execution to (a) (NCC = 0.923, compared with (a))

(a) Dcc from the original execution

(c) Dcc from the different execution to (a) (NCC = 0.650, compared with (a))

D
cc

(%
)

100

80

60

40

20

0

D
cc

(%
)

100

80

60

40

20

0

D
cc

(%
)

Fig. 6. Example of NCC scores from three executions.

Using NCC [25] of DCC Values to Guide Testing. After
every test, we store observed DCC values from the test.
Then, we determine whether the current test exercises new

behaviors of the swarm by computing NCC scores with the
previously observed (and stored) DCC values (lines 26∼32
in Algorithm 1). Specifically, after each run, for each victim
drone, we compute NCC scores against all of the previously
observed DCC values for the victim drone. If there is a
previous test run with an NCC score larger than a threshold
(0.75∼0.87 in this paper, line 22 in Algorithm 1), we consider
that the current test run is similar to the compared run,
meaning that we consider it did not exercise a substantially
new swarm behavior. Hence, we aim to mutate the test (i.e., the
pose and strategy) significantly to derive the next test (line 35,
R representing a large random value). If there is no previous
test case with an NCC score smaller than the threshold, it
means that the current test has DCC values that have not been
seen yet. Then, we mutate the test slightly to derive a new test
since we may find new swarm behaviors from a test similar to
the current test (line 37, δ representing a small random value).

Note that the NCC threshold value is configurable, and it
does not affect the validity of the testing. If the threshold
is ill-configured, SWARMFLAWFINDER may finish the testing
process early (if the value is too high) because significantly
different test runs will be considered similar. If the configured
value is too low, the testing will take longer as it considers
more tests are different. To find a proper NCC threshold, we
run 100 runs for the same initial test of a given swarm mission
(without any changes), and then take the lowest value of the
measured NCC scores as shown in Table II.
Algorithm. FuzzTesting() in Algorithm 1 describes the
entire fuzz testing process of SWARMFLAWFINDER including
measuring the swarms’ behaviors against attacks and mutating
tests based on the measured impacts. The algorithm takes
four inputs: (1) Dv: a configuration of the victim drones,
including their poses and goals, (2) Da: a configuration of
attack drones consisting of attack drones’ poses and strategies,
(3) Ow: objects such as walls and moving obstacles that affect
the victim and attack drones during the mission, (4) Ttimeout :
the time limit for the entire testing process. Typically, this is
set for longer than several hours (e.g., 24 hours). The output
(i.e., return) is Efailed which is a set of executions where the
missions were failed due to the conducted attacks (line 38).

D. Testing with Multiple Attack Drones

Algorithms that run significantly distributed drone swarms
may require SWARMFLAWFINDER to test with multiple attack
drones. For example, for a swarm algorithm that maintains
a number of small swarm groups spread over a large area,
a single attack drone may only affect one of the groups,
making it difficult to find a logic flaw. To handle this,
SWARMFLAWFINDER automatically adds an additional attack
drone and repeats the testing if the entire testing process
failed to find attacks. Note that adding N additional attack
drones causes roughly 5*N% overhead on average (for all the
algorithms we evaluated). Details of the number of additional
attack drones and additional overhead are presented in [8].
Mutating Tests with Multiple Attack Drones. As described
in § IV-A, a test run with multiple drones is defined as a test

7

case with multiple tuples such as {< P1, S1 >,< P2, S2 >, ...,<
Pn, Sn >}, where each tuple represents an attack drone. When
there are multiple attack drones in a test, we may observe the
changes of DCC values caused by multiple attack drones. It is
critical to identify which attack drone is effective in exercising
a new behavior of the swarm to choose the mutation strategy
(i.e., mutating significantly or slightly as shown in lines 35
and 37 of Algorithm 1). We apply the mutation for each attack
drone (i.e., each tuple) so that DCC value changes caused by
an attack drone would not mutate the other attack drones.

For each attack drone, SWARMFLAWFINDER identifies all
the victim drones’ DCC values that are affected by the attack
drone. There are two cases of victim drones affected by an
attack drone: directly and indirectly. First, the victim drone
is directly affected when we observe the attack drone’s delta
value in the victim drone’s DCC values. Second, the victim
drone is indirectly affected by the other victim drone that is
directly affected by the attack drone (i.e., a cascading effect).
To this end, we check the DCC values of the victim drones to
identify the drones affected by each attack drone and compute
the NCC values for the identified victim drones. We present
an example scenario with multiple attack drones on [8].

V. EVALUATION

A. Experiment Setup

1) Selection of Target Swarm Algorithms: We search open-
sourced research projects related to swarm robotics for the last
ten years, from 2010 to 2021. We listed 44 academic papers
and 29 public GitHub repositories from the initial search. From
the 44 papers, 17 of them provide source code, resulting in
46 available algorithms. However, 20 out of 46 algorithms are
not executable (e.g., the source code is incomplete and not
compilable) or partially implemented (e.g., only implementing
algorithm logic), leading to 26 runnable algorithms. Finally,
we prune out 22 out of 26 algorithms since they do not
exhibit collective (or cooperative) behaviors or allow external
objects such as our attack drones (hence cannot implement our
approach). Specifically, swarm algorithms that are a collection
of individual drones lacking cooperative interactions between
the neighbor drones [29]–[38] are not considered.1 To this
end, we choose four runnable algorithms that exhibit collective
swarm behaviors and allow us to introduce external objects.
Details of the selection process can be found in § IX-A.

TABLE I
SELECTED SWARM ALGORITHMS FOR EVALUATION

ID Name SLOC Language Algorithm’s Objective

A1 Adaptive Swarm [4] 3,091 Python Multi-agent navigation
A2 SocraticSwarm [5] 9,920 C# Coordinated search
A3 Sciadro [6] 3,851 Netlogo Distributed target search
A4 Pietro’s [7] 752 Matlab Coordinated search and rescue

Selected Target Algorithms. Table I presents the selected
four swarm algorithms and Fig. 7 shows visualizations of the
swarm algorithms using the Gazebo simulator [39].

1If a drone in an algorithm does not recognize other drones as cooperating
units (e.g., other drones are considered as obstacles), we exclude the algorithm.

A1. Adaptive Swarm [4] aims to move a swarm of (up to
20) drones, from the current position to a predefined
destination (shown as a yellow path in Fig. 7-(a)) while
maintaining a formation and avoiding obstacles.

A2. SocraticSwarm [5] conducts a swarm searching mission,
where individual drones actively interact with neighbor
drones to share information, as shown in Fig. 7-(b).

A3. Sciadro [6] runs multiple swarms to search targets dis-
tributed over a wide range of areas, as shown in Fig. 7-(c).
Swarm groups can be dynamically changing at runtime,
allowing individual drones joining and leaving a swarm.

A4. Pietro’s algorithm [7] aims to achieve a cooperative
rescue mission. Fig. 7-(d) shows an example mission:
searching and rescuing targets inside various structures.
The process is accelerated with more participating drones.

TABLE II
FUZZ TESTING CONFIGURATIONS

ID Completion 200% NCC Mutation # of victim Time for
time (sec) Deadline threshold (δ / R) drones testing

A1 189.4 400 0.87 0.4 / 0.8 4 24 hrs
A2 90.11 200 0.82 50 / 100 8 24 hrs
A3 1,756.13 3,500 0.85 25 / 50 10 24 hrs
A4 715.41 1,400 0.75 10 / 5 15 24 hrs

2) Experimental Configurations: Table II shows how we
define mission failures in the four selected swarm algorithms’
missions. We consider a swarm mission failed (1) if it takes
longer than two times of its typical mission completion time
to accomplish its given goals or (2) a drone in the swarm
crashes into an object or another victim drone. Note that we
do not try opportunistic attacks such as blocking the target
point to prevent the mission completion. Similarly, we do
not count attack drones crashing into the victim drone as a
failure. Our attack drones are designed not to crash into victim
drones directly. The third column defines the 200% deadline,
which is essentially the time we consider a mission fails if it
exceeds. They are roughly more than 200% of the completion
times. The fourth column shows the NCC threshold used in
the experiments for each algorithm. To get the typical mission
completion time and NCC threshold for each algorithm, we
run each mission 100 times and get an average completion
time without any interventions (i.e., without attack drones).
We also find the NCC thresholds by taking the lowest NCC
values from the 100 test runs. The fifth column shows the
distance values used to apply slight (δ) and significant (R)
mutation in each algorithm. The sixth column shows the
number of victim drones for each algorithm, varying from
4 to 15 drones. Finally, the last column presents that we run
SWARMFLAWFINDER on each algorithm for 24 hours.

3) Implementation and Setup: We implement prototypes of
SWARMFLAWFINDER for each algorithm in the programming
language that the original algorithm is written in: Python, C#,
Netlogo, and Matlab. Our implementation includes modifica-
tions of existing simulators/emulators. To this end, we write
839, 331, 422, and 230 SLOC for implementing SWARM-
FLAWFINDER for A1∼A4, respectively. Our analysis tool for
NCC and the map of A3 is written in R (820 lines).

8

(a) Adaptive Swarm (Navigation) (c) Sciadro (Distributed search)(b) SocraticSwarm (Coordinated search) (d) Pietro’s (Search and rescue)

Fig. 7. Visualizations of the selected algorithms’ missions. Yellow and white circles indicate swarm drones and search/rescue targets or the destination.

TABLE III
FUZZ TESTING RESULTS

ID Mission Failure and Root Cause # of Exec. Uniq. Confm.

A1

Crash between victim drones 273 9
– C1-1: Missing collision detection 86 4 ±
– C1-2: Naive multi-force handling 176 4 ±
– C1-3: Unsupported static movement 11 1 ±

Crash into external objects 435 8
– C1-1: Missing collision detection 88 3 ±
– C1-2: Naive multi-force handling 326 3 ±
– C1-3: Unsupported static movement 3 1 ±
– C1-4: Excessive force in APF 18 1 ±

Suspended progress 671 2
– C1-5: Naive swarm’s pose measurement 242 1 ±
– C1-6: Insensitive object detection 429 1 ±

Slow progress 175 1
– C1-6: Insensitive object detection 175 1 ±

Total 1,554/1,724 20

A2

Crash between victim drones 28 3
– C2-1: Overly-sensitive object detection 28 3 ±

Suspended progress 119 1
– C2-2: Indefinite wait for crashed drones 119 1 ±

Slow Progress 608 4
– C2-3: Long deadline for assigned task 586 3 ±
– C2-4: Drones detaching from a swarm 22 1 ±

Total 755/990 8

A3

Crash into external objects 47 2
– C3-1: Naive/faulty detouring method 10 1 ±
– C3-2: Insensitive object detection 37 1 ±

Slow progress 240 4
– C3-1: Naive/faulty detouring method 23 2 ±
– C3-2: Insensitive object detection 217 2 ±

Total 287/811 6

A4

Crash between victim drones 230 3
– C4-1: Naive detouring method 216 1 ±
– C4-2: Detouring without sensing 14 2 ±

Crash into external objects 630 3
– C4-1: Naive detouring method 599 1 ±
– C4-2: Detouring without sensing 31 2 ±

Slow progress 1,228 2
– C4-3: Insensitive object detection 1,228 2 ±

Total 2,088/2,469 8

Environment Setup. For our evaluation, we use a machine
with i7-9700k 3.6Ghz and 16GB RAM, running 64-bit Linux
Ubuntu 16.04 (for A1, A3, and A4) and Windows 10 (for A2).

B. Effectiveness in Finding Logic Flaws

Table III presents the number of executions exhibiting logic
flaws identified by SWARMFLAWFINDER for each algorithm.
In total, we find 4,684 executions leading to mission failures
for the four algorithms: 1,554 from A1, 755 from A2, 287 from

A3, and 2,088 from A4 (in the third column). After pruning
out similar executions, we find 42 distinct mission failures,
that are attributed to 15 different root causes (C1-1∼C4-3)2.
The unique number of failures are presented in the fourth
column and the last column shows whether it is confirmed by
the developers of the algorithms. ± indicates that developers
have confirmed the logic flaws. We further analyze the mission
failures and categorize them into four different types as follows
(in the gray shaded rows):

1. Crash between victim drones: A victim drone is crashed
into another victim drone.

2. Crash into external objects: A victim drone is crashed
into an external object (not a victim drone).

3. Suspended progress: A swarm could not make meaning-
ful progress, failing to complete the mission.

4. Slow progress: A swarm’s progress is exceptionally slow,
eventually failing to complete the mission in time. This is
less severe than the suspended progress since the swarm
may finish the mission if given a longer time.

Root Causes and Potential Fixes. We identify root causes of
the mission failures and potential fixes via manual analysis.
Note that all the fixes we present below resolved the prob-
lem in the tested scenarios. We also communicate with the
developers to confirm the fixes. Fixes with ‘(Confirmed)’ are
the ones that are confirmed. We present a few cases in this
section, and the remainings are in § IX-F.

C1-1. Missing collision detection: In A1, a leader drone
does not have logic for avoiding other drones in a swarm. The
algorithm developers confirmed that they thought that leader
drones always move ahead of other drones, believing the logic
is unnecessary. Details are in § V-E1.

Fix (Confirmed): We reuse code snippets from a follower
drone that detects other victim drones for the leader drone.

C1-2. Naive multi-force handling: A1 uses the artificial
potential field (APF) to implement the drones’ collision avoid-
ance mechanism. Unfortunately, it has difficulty handling
multiple forces are involved, as shown in § III’s Fig. 3.

Fix (Confirmed): We find that this is a fundamental weak-
ness of the APF. One may reconfigure the algorithm to
make the drone sense external objects earlier by changing
the value of influence radius (from 0.15 to 0.3). This
will avoid a drone surrounded by external objects.

2CX-Y means “the root cause Y of a logic flaw in algorithm X (AX)”

9

C1-4. Excessive force in APF: A1 uses the artificial potential
field (APF) to make drones’ decisions at runtime. If a drone is
at a location that is very far from the other drones in a swarm,
a force to move toward the swarm becomes excessively strong,
making the detached drone fly directly to the swarm without
considering external objects on the path (e.g., wall). In other
words, the drone decides to fly toward the wall because the
force for rejoining the swarm becomes bigger than the force
preventing the drone from crashing into the wall.

Fix (Confirmed): We define a maximum value for all
forces and assign a much larger value than the maximum
value for the force related to obstacles (e.g., the wall). It
requires changing 6 SLOC. This prevents the drone from
crashing into obstacles but often causing the swarm stuck
as described in C1-5, requiring the fix from C1-5 as well.

C1-5. Naive swarm’s pose measurement: A1 measures the
current pose of the entire swarm by computing the centroid
of all drones. Unfortunately, this often neglects drones to fall
behind significantly, eventually making the swarm unable to
progress. Details are shown in § V-E2.

Fix (Confirmed): We add code snippets (2 SLOC) to con-
sider the drone’s distances from the centroid, and if a drone
is significantly far behind than others (e.g., more than two
times), we make the leader wait for the other drones.

C2-1. Overly-sensitive object detection: Drones are config-
ured to be overly sensitive in avoiding external objects, leading
to crashes to other victim drones to avoid objects.

Fix (Confirmed): We relax the object detection by changing
DEFAULT WEIGHT COSTS to 0.219 (from 0.319) in A2.

C2-2. Indefinite wait for crashed drones: A2 uses a bid-
ding algorithm to distribute tasks to individual drones. The
algorithm has a bug that it does not exclude crashed drones
(hence unusable) from the bidding process. After assigning a
task to an inactive crashed drone, the algorithm waits for the
task completion indefinitely, suspending progress.

Fix (Confirmed): We change the bidding algorithm (10
SLOC) to reclaim tasks from crashed drones.

C2-3. Long deadline for an assigned task: A2’s bidding
algorithm has an internal deadline for each task assigned to
a drone. However, the deadline is too long. When an attack
drone successfully prevents victim drones from completing
tasks, the algorithm keeps waiting for the task.

Fix (Confirmed): We change the deadline (SEARCH
TIMEOUT TIME) shorter in A2. This effectively mitigates
the delays caused by the adversarial drones in our scenario.

C2-4. Drones detaching from a swarm: We observe that
malfunctioning drones are moving outside of the map, de-
taching themselves from the swarm. This is because drones
do not have any tasks to bid (i.e., finished all the tasks) have
no incentive to stay in the swarm. This significantly delays the
swarm’s progress since the algorithm still waits for the task
completion by the malfunctioning drone.

Fix (Confirmed): We increase the individual drone’s incen-
tive value for being a part of the swarm.

C3-1 and C4-1. Naive detouring method: In A3, when a
drone encounters an obstacle, it tries to detour the obstacle
by randomly selecting the alternative direction (i.e., angle) to
fly. Unfortunately, if objects are approaching the drone from
the randomly decided direction, the drone crashes. Moreover,
this method also performs poorly for drones escaping from a
complex structure, delaying the progress significantly.

Fix : For A3, we add more randomness in choosing a
direction for detouring by changing 8 SLOC. For A4, we
find that the randomness in the detouring process overly
affects the decision. Hence, we remove the random values
involved in the process by changing 2 SLOC.

C4-2. Detouring without sensing: In A4, when a drone
avoids an obstacle, it selects an alternative path. Unfortunately,
it does not consider whether there is an obstacle in the
alternative path. If there is an object in the path, the drone
crashes. We present a detailed case study in § V-E3.

Fix : We add 10 SLOC to make a drone sense the surround-
ings when it calculates an alternative path.

Quality of Fixes. To understand the quality of our fixes,
we have applied them to the algorithms, and run SWARM-
FLAWFINDER on the fixed algorithms (for 24 hours per
algorithm). The results show that the logic flaw targeted by
the fix is no longer observed after applying each fix. Hence,
we consider each fix successfully resolves its targeted logic
flaw. Further, we apply all the fixes together (i.e., an integrated
fix) and run SWARMFLAWFINDER to understand whether the
integrated fix can eliminate all the logic flaws. We find that
for A1, the integrated fix fails to resolve C1-2 and C1-6,
because the fixes for C1-2 and C1-6 are conflicting. To solve
this, we manually tune the configuration values (i.e., changing
influence radius to 0.225 and repulsive coef to 300
in the fixes; the original fixes; the original fixes are changing
them to 0.3 and 400), and the tuned integrated fix resolved all
the logic flaws. Details can be found in § IX-D.
Side Effects of Fixes. While the fixes make the algorithms
more robust, they may also cause overhead. We observe 3.9%,
2.5%, 1.2%, and 1.5% average overhead for A1, A2, A3, and
A4, respectively. For the integrated fixes, we observe 11.4%,
9.0%, 2.2%, and 4.7% overhead for A1, A2, A3, and A4,
respectively. Details can be found in [8]. Note that we do not
observe fixes introducing additional logic flaws.
Impact of Flaws. In A1, C1-1∼C1-4 are the most critical bugs
since they will result in crashed drones. C1-5∼C1-6 lead to
mission delays, and the victim drones are intact; hence their
impact is limited. In A2, A3, and A4, the crashes between
drones are less critical than crashes in A1 since there are many
victim drones, and crashing a few drones may not immediately
lead to mission failures. However, since a crash in A2 (C2-
2) can suspend the search progress, it is more critical than
the crashes in A3 and A4. Slow progress type bugs in all
algorithms are less impactful than other types of bugs.

10

(a) Visualized test cases generated

for A1 by SWARMFLAWFINDER

(b) Visualized test cases generated for A1

by the random testing approach

Victim

Swarm

Fig. 8. Spatial Distribution of Test cases generated by (a) SWARM-
FLAWFINDER and (b) the random testing approach.

69.2%

59.8%

67.0%

57.9%

30.8%

27.8%

29.5%

25.8%

0% 10% 20% 30% 40% 50% 60% 70% 80%

A4

A3

A2

A1

Random

FlawFinderSwarmFlawFinder

Fig. 9. Coverage of Unique DCC Values.

C. Effectiveness of DCC in Fuzz Testing

1) Creating Random Testing Approach: To understand the
effectiveness of DCC based guidance during the fuzz testing,
we create a random testing approach by removing DCC based
guidance from SWARMFLAWFINDER. The random testing
version only leverages the result of the execution (whether
the mission is failed or not). If a test run resulted in a mission
failure, it prioritizes similar tests by perturbing the test case
with a small delta. If a test did not lead to a mission failure,
it tries to mutate the test case with a larger random value, as
SWARMFLAWFINDER does when it observes a similar DCC
value described in § IV-C.

2) Spatial Distribution of Test-cases: We run the random
testing approach and SWARMFLAWFINDER on our evaluated
algorithms for 24 hours to measure the spatial distribution
of the test cases generated by the two techniques. Fig. 8
shows the results of A1 (Results for A2, A3, and A4 are
presented in [8]). Specifically, Fig. 8-(a) is the results from
SWARMFLAWFINDER while (b) is from the random testing
approach. The silver round dotted circles approximately show
the size of the area explored during the testing. Each dot in
the figure represents a test case. Large dots indicate they result
in new unique DCC values, where small dots are not. Red and
orange dots are the test cases that caused mission failures (i.e.,
discovering logic flaws). Silver and blue dots are the test cases
that do not cause mission failures. Note that we do not limit
searching space for both SWARMFLAWFINDER and random
approach, and the results show that SWARMFLAWFINDER
does more focused searching. The shaded area in Fig. 8-(b)
represents the explored area by SWARMFLAWFINDER in (a).
Observations. First, SWARMFLAWFINDER is able to focus
on testing a smaller but more promising area, as shown in
the shaded area. Moreover, while it tests a smaller area,
SWARMFLAWFINDER’s test cases result in more new unique
DCC values (represented by the large red and blue dots). This

is because, in part, SWARMFLAWFINDER can run more test
cases exhaustively in the focused area, guided by DCC, without
any domain knowledge in finding the area. The random
testing approach does not have such a particular focused area
observed. Second, SWARMFLAWFINDER found on average
25.75% more failures than random testing (red and orange
dots in Fig. 8), when we run both for the same period (i.e.,
24 hours). We present details of the statistics in the Appendix
(Fig. 16). Third, the random testing seems to find some unique
DCC values from the places that SWARMFLAWFINDER did not
test (the large red and blue dots outside the shade). However,
we manually check them and find that they are variants of the
tests generated by SWARMFLAWFINDER, meaning that they
are all subsets of SWARMFLAWFINDER’s tests.

3) Impact of Searching Space on Random Testing: Observe
that the random testing approach’s test cases are spread over
the wide area in Fig. 8. This is because the random testing
approach lacks the guidance metric which is DCC in SWARM-
FLAWFINDER. To further understand the effectiveness of DCC
and the impact of searching space, we conduct additional
experiments with different searching spaces restrictions on
random testing approach. Specifically, we run the random
testing with the explored space (e.g., the gray shaded area
in Fig. 8-(b)) obtained by SWARMFLAWFINDER. We also run
two more experiments with 2x and 3x Base searching spaces
(as shown in Fig. 17). The results show that the random testing
performs better when given the searching space. However,
it still misses three logic flaws C1-2, C1-3, and C2-1, that
are dependent on the subtle timing. Details including all the
experiment results (in Table IV) can be found in § IX-C2.

D. Coverage based on DCC

We measure the coverage of DCC values by SWARM-
FLAWFINDER. Specifically, we first collect an almost com-
plete range of the DCC values by running tests with attack
drones on every 0.2 meters in the 3D space. Then, we run
SWARMFLAWFINDER for 24 hours to understand how many
DCC values (out of the collected values) are covered. We
also run the random testing version of SWARMFLAWFINDER
(without the DCC guidance) and measure the coverage of DCC
values. As shown in Fig. 9, SWARMFLAWFINDER covers two
times more DCC values (avg. 63.5%) than the random testing
version (avg. 28.5%). Details can be found in § IX-B.

E. Case Studies

1) Missing Collision Detection in Adaptive Swarm: Fig. 10
shows three screenshots of a failed mission which we repro-
duced in the lab with real world drones. The failed mission
represents the ‘C1-1’ in Table III. In Fig. 10-(a), the attack
drone (red circled) approaches the leader drone (L), making
it to move closer to another drone near the wall (F3). In (b),
the attack drone pushes the leader drone further. Interestingly,
we find that the leader does not consider the fact that there
is F3, pushing it to the wall until F3 crashes. In (c), after the
crash, the attack drone still is alive.

11

(a) Attack drone pushes the leader drone (b) Leader drone moves back without considering

the F3, making F3 crashing into the wall

(c) Mission failed with a crash

(The attack drone still alive)

L

F2
F3

F1

L

F2
F3

F1
L

F2

F3

F1

Fig. 10. Attack drone causing a victim drone (F3) to crash into the wall.

(a) Attack drone chases a victim drone (b) The chased victim drone blocks the other

drone’s way, making it stuck behind the wall

(c) Other drones make progress (d) The entire swarm cannot make progress

due to the drone stuck behind the wall

L

F2

F3

F1

L

F2

F3

F1
LF2

F3

F1

L
F2

F3

F1

Fig. 11. Attack drone pushes a victim drone F2 to suspend the swarm’s progress.

(a) Victim drones approaching the corner (b) Victim drones try to detour without

considering the surrounding

Fig. 12. Drones crashing while detouring due to obstacles.

Analysis. We inspect the DCC values of the leader drone
before the crash. Interestingly, its DCC values do not include
other victim drones, even if they are very close. This means
that the leader drone does not recognize and try to avoid other
victim drones. We inspect the source code of A1 and find
that it does not have the logic to detect other victim drones
as external objects. The algorithm’s developer confirms that
the logic is omitted, because the leader drone will mostly fly
ahead of other drones, making the mission failure difficult to
be revealed without SWARMFLAWFINDER. We ran SWARM-
FLAWFINDER without the DCC guided feedback (i.e., random
testing approach) for 24 hours and did not find the error.

2) Suspended Swarm Mission due to a Logic Flaw: We find
another logic flaw (C1-5 in Table III) in A1. Fig. 11 shows
the mission failure reproduced with the real-world drones. In
(a), the attack drone (red circled) chases the victim drone F2,
making it go faster. This results in F2 blocking the path of F3.
As shown in (b), F3 is stalled because F2 is going faster than
expected. In (c), F3 is completely behind the wall, while L
and F1 make progress toward the destination. Finally, in (d),
due to the F3, the other drones cannot make progress while
F3 cannot proceed due to the F2 blocking its path.

Analysis. We manually analyze the algorithm to understand
why the leader drone keeps moving forward while F3 stays
behind the wall. It turns out that the algorithm computes the
centroid of all drones to measure the current position of the
swarm. As long as the centroid is not falling behind, the leader
keeps moving forward. Hence, even if F3 cannot progress,
the other drones’ progress makes the centroid move toward
the destination, giving the leader a wrong perception that the
swarm is progressing. A possible fix is to consider the distance
between the centroid and individual drones.

3) Detouring without Sensing: Fig. 12 shows the failed
mission (C4-2 in A4): (a) the attack drone (red drone) pushes
two victim drones into the corner. (b) The victim drones sense
the corner and try to fly in the opposite direction. Then, both
drones fly to the same location, causing a crash.
Analysis. This crash happens when an attack drone pushes
multiple drones into the corner, making both of them try to
escape from the corner. From our manual analysis, we find that
the algorithm does not have code for detecting obstacles when
detouring. As a result, when it computes a flight path to detour,
it does not consider any obstacles in the path. We believe this is
a mistake, and we resolved this issue by implementing sensing
during detouring by reusing the existing code.

VI. DISCUSSION

Additional Attack Strategies. We acknowledge that there can
be more sophisticated attack strategies, which may improve
the SWARMFLAWFINDER’s performance. Adding new attack
strategies is straightforward. One can define a new attack
behavior relative to a victim drone. The essence of this
research is to show the feasibility of DCC based fuzz testing.
DCC and Behavior Abstraction. While it turns out DCC is
highly effective in guiding the SWARMFLAWFINDER’s testing

12

process, we do not argue that DCC is a direct abstraction of
the swarm behavior. Instead, it is an approximation of the
abstraction. However, we argue that it captures the behavior
differences of swarm algorithms effectively.

VII. RELATED WORK

Testing for Robotics. While systematic testing for robotics
systems helps improve the overall quality and safety of the
systems significantly, testing robots in real-world conditions
is often expensive and unsafe. As a result, simulation-based
approaches have been widely adopted in robotics testing [39]–
[46], and shown to be effective [47]. [44] proposes coverage-
driven verification (CDV) for evaluating the testing progress of
the system under test. CDV and DCC in SWARMFLAWFINDER
share the same goal while CDV is coarse-grained and requires
definitions from developers. [48], [49] apply combinatorial
interaction testing to detect flaws triggered by interactions
of parameters, while they also require definitions of systems’
configuration space. Calò [50] proposes using search-based
approach to generate collision inducing configurations for
autonomous driving systems. [42] integrates dynamic physical
models of the robot to generate physically valid yet stress-
ful test cases. SWARMFLAWFINDER targets swarm robotics,
which is more complex than individual robots. [51] aims to
find faults in a flocking algorithm of on ground vehicle swarms
by using genetic algorithms (GA) [52]. However, they are
not applicable to the non-flocking swarm algorithms, which
require more sophisticated definitions such as fitness functions.
Specifically, their fitness function focuses on handling flocking
algorithms, considering splitting swarms as failures. However,
A3 in our paper dynamically forms and splits swarms to
improve the efficiency of searching. Hence, a perfectly fine
mission of A3 can be considered a failure. The idea of GA
can be applied to SWARMFLAWFINDER.

Formal validation and verification for robotics systems have
been studied [53]–[58]. However, they require fine-grained
definitions of correct behaviors, which typically need to be de-
fined by domain experts. SWARMFLAWFINDER only requires
a high-level failure definition (e.g., 200% of typical deadline).
Fuzz Testing. Fuzz testing has become widely used today
due to its effectiveness. Some of these studies aim to improve
the coverage-driven [9]–[11] fuzzers, while others [1], [59]–
[62] aim to retrieve more advanced information (e.g., code-
and data-flow) to handle systems on new domains/platforms
or improve input mutation strategy. Hybrid fuzzing tech-
niques [1], [63], [64] are proposed to increase testing coverage
using both dynamic and symbolic execution. Conventional
techniques that rely on obvious symptoms of program failures
(e.g., segmentation faults) in detecting bugs and exercising
new unique execution paths are ineffective to swarm robotics
because traditional coverage metrics are not effective for
swarm robotics. SWARMFLAWFINDER proposes and leverages
the degree of the causal contribution (instead of code coverage)
to effectively guide the testing process.
Fuzz Testing for Drones. There are several fuzzers targeting
drones [65]–[70]. However, they are designed to find vulnera-

bilities in a single drone (not from swarm robotics). Note that
they (i.e., fuzzers for a single drone) can replace the adversarial
drone in our approach, and it is complementary to our paper.
Moreover, existing fuzzers [65]–[70] try to find bugs in a
target device’s software (e.g., firmware), assuming a stronger
attack model than ours. Our threat model assumes no direct
access to the drones. Lastly, existing fuzzers have limited
scope in the types of bugs they are targeting. [68]–[70] aim to
detect general type bugs only (e.g., buffer overflow). [67] can
only detect limited types of misbehavior (e.g., finding input
validation bugs). [65] relies on substantial domain knowledge,
which is not designed for swarm robotics. Others [66], [69],
[70] also focus on bugs related to a specific environment, such
as weak ports [66], MAVLink protocol [69], and WiFi [70].
However, our approach can be used to detect a wide range of
bugs in various swarm algorithms unlike those existing spe-
cific environments, general type, and implementation-oriented
bugs. Moreover, SWARMFLAWFINDER can detect logic flaws
without requiring particular domain expertise in drone swarm
fuzz testing, as we use DCC to abstract swarm behaviors.
Attacks and Defences for Drones. As drones are getting
more attention in the research and industry communities,
attacks [71]–[73] and defenses [74]–[80] of drones have gained
significant attention. There are testing tools [81] developed
to run various known attacks (e.g., GPS spoofing, jamming,
and acoustic attacks) against drones. Compared to the pre-
vious work which focuses on individual drones, SWARM-
FLAWFINDER focuses on finding logic flaws in drone swarm
algorithms. To the best of our knowledge, this is the first work
that finds logic flaws of the swarm robotics algorithms.

VIII. CONCLUSION

This paper develops a novel fuzz testing approach for
swarm robotics, SWARMFLAWFINDER, to discover swarm
algorithms’ logic flaws. We propose a novel concept of the
degree of the causal contribution and use it as a feedback
metric for fuzz testing. Our extensive evaluation with four
swarm algorithms shows that SWARMFLAWFINDER is highly
effective, finding 42 unique previously unknown logic flaws
(all of them have been confirmed by the developers). We
release the code and data for future research.

ACKNOWLEDGMENT

We thank the anonymous referees for their constructive
feedback. The authors gratefully acknowledge the support of
NSF #1916499, #1908021, and #1850392. This work was
also supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant by
the Korea government (MSIT) (No. 2021-0-01817, Develop-
ment of Next-Generation Computing Techniques for Hyper-
Composable Datacenters) and Basic Science Research Pro-
gram by the National Research Foundation of Korea (2021
R1F1A1049822). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsor.

13

REFERENCES

[1] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, 2019.

[2] Y. Wang, P. Jia, L. Liu, C. Huang, and Z. Liu, “A systematic review of
fuzzing based on machine learning techniques,” PloS one, 2020.

[3] P. Wang, X. Zhou, K. Lu, T. Yue, and Y. Liu, “The progress, chal-
lenges, and perspectives of directed greybox fuzzing,” arXiv preprint
arXiv:2005.11907, 2020.

[4] R. Agishev, “Adaptive Control of Swarm of Drones for Obstacle Avoid-
ance,” Master’s thesis, Skolkovo Institute of Science and Technology,
2019.

[5] P. Henderson, M. Vertescher, D. Meger, and M. Coates, “Cost adaptation
for robust decentralized swarm behaviour,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.

[6] M. G. Cimino, M. Lega, M. Monaco, and G. Vaglini, “Adaptive explo-
ration of a uavs swarm for distributed targets detection and tracking.”
in ICPRAM, 2019.

[7] P. Carnelli, “SwarmRoboticsSim,” 2017, https://github.com/pc0179/
SwarmRoboticsSim.

[8] SwarmFlawFinder, “Project Website,” 2021, https://github.com/
adswarm/src.

[9] Google, “syzkaller is an unsupervised, coverage-guided kernel fuzzer,”
https://github.com/google/syzkaller, 2018.

[10] LLVM, “LibFuzzer: a library for coverage-guided fuzz testing,” https:
//llvm.org/docs/LibFuzzer.html, 2021.

[11] M. Zalewski, “American Fuzzy Lop,” http://lcamtuf.coredump.cx/afl.
[12] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox

fuzz testing.” in Network and Distributed System Security Symposium
(NDSS), 2008.

[13] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing Surveys
(CSUR), 2018.

[14] B. Beizer, Black-box testing: techniques for functional testing of software
and systems. John Wiley & Sons, Inc., 1995.

[15] A. F. Winfield, C. J. Harper, and J. Nembrini, “Towards dependable
swarms and a new discipline of swarm engineering,” in International
Workshop on Swarm Robotics. Springer, 2004.

[16] I. Sargeant and A. Tomlinson, “Modelling malicious entities in a robotic
swarm,” in 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference
(DASC). IEEE, 2013.

[17] F. Higgins, A. Tomlinson, and K. M. Martin, “Threats to the swarm:
Security considerations for swarm robotics,” International Journal on
Advances in Security, 2009.

[18] C. Taylor, A. Siebold, and C. Nowzari, “On the effects of minimally
invasive collision avoidance on an emergent behavior,” in International
Conference on Swarm Intelligence. Springer, 2020.

[19] H. Hamann and H. Wörn, “A framework of space–time continuous
models for algorithm design in swarm robotics,” Swarm Intelligence,
2008.

[20] C. Harper and A. Winfield, “Direct lyapunov design - a synthesis
procedure for motor schema using a second-order lyapunov stability
theorem,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2002.

[21] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal of
Field Robotics, 2014.

[22] S.-H. Seo, B.-H. Lee, S.-H. Im, and G.-I. Jee, “Effect of spoofing on
unmanned aerial vehicle using counterfeited gps signal,” Journal of
Positioning, Navigation, and Timing, 2015.

[23] D. Lewis, Counterfactuals. Oxford: Blackwell Publishers, 1973.
[24] Y. Kwon, D. Kim, W. N. Sumner, K. Kim, B. Saltaformaggio, X. Zhang,

and D. Xu, “LDX: Causality inference by lightweight dual execution,” in
Proceedings of the 21st International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS’16).

[25] J. P. Lewis, “Fast normalized cross-correlation,” in Proceedings of the
Vision Interface, 1995.

[26] L. Yu and V. Giurgiutiu, “Advanced signal processing for enhanced
damage detection with embedded ultrasonics structural radar using
piezoelectric wafer active sensors,” in Smart Structures & Systems –
An International Journal of Mechatronics, Sensors, Monitoring, Control,
Diagnosis, and Maintenance, 2005.

[27] D. M. Tsai and C. T. Lin, “The evaluation of normalized cross correla-
tions for defect detection,” Pattern Recognition Letters, 2003.

[28] E. Rafajłowicz, M. Wnuk, and W. Rafajłowicz, “Local detection of
defects from image sequences.” International Journal of Applied Math-
ematics & Computer Science, 2008.

[29] C. Howard, “Algorithms developed to make drone swarm move to-
gether,” 2020, https://github.com/choward1491/SwarmAlgorithms.

[30] T. Vicsek, “Autonomous mission control of drone flocks,” EOTVOS
Lorand Tudomanyegetem Budapest Hungary, Tech. Rep., 2019.

[31] J. S. Huang, S. Ma, G. Li, O. W. Yang, and C. Shao, “An artificial swan
formation using the finsler measure in the dynamic window control,” Int
J Swarm Evol Comput, 2020.

[32] B. Balázs, G. Vásárhelyi, and T. Vicsek, “Adaptive leadership overcomes
persistence–responsivity trade-off in flocking,” Journal of the Royal
Society Interface, 2020.

[33] L. Ma, W. Bao, X. Zhu, M. Wu, Y. Wang, Y. Ling, and W. Zhou,
“O-flocking: Optimized flocking model on autonomous navigation for
robotic swarm,” in International Conference on Swarm Intelligence,
2020.

[34] A. Wright, “swarmSimRescue,” 2014, https://github.com/aywrite/
swarmSimRescue.

[35] J. Harwell and M. Gini, “Improved swarm engineering: Aligning intu-
ition and analysis,” arXiv preprint arXiv:2012.04144, 2020.

[36] K. Patel, “optimization-wolf-search-algorithm,” 2017, https://github.
com/bavalia/optimization-wolf-search-algorithm.

[37] R. Berg, “Zebro-Search-and-Rescue,” 2020, https://github.com/
RobvandenBerg/Zebro-Search-and-Rescue.

[38] G. M. Fricke, J. P. Hecker, A. D. Griego, L. T. Tran, and M. E. Moses,
“A distributed deterministic spiral search algorithm for swarms,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016.

[39] C. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey,
S. Paepcke, J. Rivero, J. Manzo, E. Krotkov, and G. Pratt, “Inside
the virtual robotics challenge: Simulating real-time robotic disaster
response,” Automation Science and Engineering, IEEE Transactions on,
2015.

[40] A. Patelli and L. Mottola, “Model-based real-time testing of drone
autopilots,” in Proceedings of the 2nd Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications for Civilian Use, 2016.

[41] M. Lindvall, A. Porter, G. Magnusson, and C. Schulze, “Metamorphic
model-based testing of autonomous systems,” in Proceedings of the 2nd
International Workshop on Metamorphic Testing, 2017.

[42] C. Hildebrandt, S. Elbaum, N. Bezzo, and M. B. Dwyer, “Feasible and
stressful trajectory generation for mobile robots,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2020.

[43] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and service
robotics, 2018.

[44] D. Araiza-Illan, D. Western, A. G. Pipe, and K. Eder, “Systematic and
realistic testing in simulation of control code for robots in collaborative
human-robot interactions,” in Annual Conference Towards Autonomous
Robotic Systems, 2016.

[45] C. Hutchison, M. Zizyte, P. E. Lanigan, D. Guttendorf, M. Wagner,
C. Le Goues, and P. Koopman, “Robustness testing of autonomy
software,” in IEEE/ACM 40th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP),
2018.

[46] A. Afzal, C. Le Goues, M. Hilton, and C. S. Timperley, “A study
on challenges of testing robotic systems,” in IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST),
2020.

[47] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and C. Le Goues,
“Crashing simulated planes is cheap: Can simulation detect robotics bugs
early?” in 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2018, pp. 331–342.

[48] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), 2011.

[49] D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and Y. Lei,
“Combinatorial methods for event sequence testing,” in 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation, 2012.

[50] A. Calò, P. Arcaini, S. Ali, F. Hauer, and F. Ishikawa, “Simultane-
ously searching and solving multiple avoidable collisions for testing

14

https://github.com/pc0179/SwarmRoboticsSim
https://github.com/pc0179/SwarmRoboticsSim
https://github.com/adswarm/src
https://github.com/adswarm/src
https://github.com/google/syzkaller
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://lcamtuf.coredump.cx/afl
https://github.com/choward1491/SwarmAlgorithms
https://github.com/aywrite/swarmSimRescue
https://github.com/aywrite/swarmSimRescue
https://github.com/bavalia/optimization-wolf-search-algorithm
https://github.com/bavalia/optimization-wolf-search-algorithm
https://github.com/RobvandenBerg/Zebro-Search-and-Rescue
https://github.com/RobvandenBerg/Zebro-Search-and-Rescue

autonomous driving systems,” in Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, 2020.

[51] H. Wei, J. Timmis, and R. Alexander, “Evolving test environments to
identify faults in swarm robotics algorithms,” in IEEE Congress on
Evolutionary Computation (CEC), 2017.

[52] M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. H. Labella, G. Baldassarre,
S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano et al., “Evolving
self-organizing behaviors for a swarm-bot,” Autonomous Robots, 2004.

[53] S. Bensalem, L. de Silva, F. Ingrand, and R. Yan, “A verifiable and
correct-by-construction controller for robot functional levels,” arXiv
preprint arXiv:1309.0442, 2013.

[54] A. Desai, S. Qadeer, and S. A. Seshia, “Programming safe robotics
systems: Challenges and advances,” in International Symposium on
Leveraging Applications of Formal Methods. Springer, 2018.

[55] R. C. Cardoso, L. A. Dennis, M. Farrell, M. Fisher, and M. Luckcuck,
“Towards compositional verification for modular robotic systems,” Elec-
tronic Proceedings in Theoretical Computer Science, 2020.

[56] X. Zheng, C. Julien, M. Kim, and S. Khurshid, “On the state of the art
in verification and validation in cyber physical systems,” The University
of Texas at Austin, The Center for Advanced Research in Software
Engineering, Tech. Rep. TR-ARiSE-2014-001, 2014.

[57] R. C. Cardoso, M. Farrell, M. Luckcuck, A. Ferrando, and M. Fisher,
“Heterogeneous verification of an autonomous curiosity rover,” in NASA
Formal Methods. Springer International Publishing, 2020.

[58] H. T. Dinh and T. Holvoet, “A framework for verifying autonomous
robotic agents against environment assumptions,” in Advances in Prac-
tical Applications of Agents, Multi-Agent Systems, and Trustworthiness.
The PAAMS Collection. Springer International Publishing, 2020.

[59] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “Parmesan: Sanitizer-
guided greybox fuzzing,” in 29th USENIX Security Symposium, 2020.

[60] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “IoTFuzzer: Discovering Memory Corruptions
in IoT Through App-based Fuzzing,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2018.

[61] P. Fiterau-Brostean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas,
and J. Somorovsky, “Analysis of DTLS implementations using protocol
state fuzzing,” in 29th USENIX Security Symposium, 2020.

[62] H. Kim, J. Lee, E. Lee, and Y. Kim, “Touching the untouchables:
Dynamic security analysis of the lte control plane,” in IEEE Symposium
on Security and Privacy (SP), 2019.

[63] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: A practical concolic
execution engine tailored for hybrid fuzzing,” in 27th USENIX Security
Symposium, 2018.

[64] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu,
“Savior: Towards bug-driven hybrid testing,” in IEEE Symposium on
Security and Privacy (SP), 2020.

[65] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “Pgfuzz:
Policy-guided fuzzing for robotic vehicles.”

[66] D. Rudo, D. Zeng et al., “Consumer UAV Cybersecurity Vulnerability
Assessment Using Fuzzing Tests,” arXiv:2008.03621, 2020.

[67] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “Rvfuzzer: Finding input validation bugs in robotic
vehicles through control-guided testing,” in 28th USENIX Security
Symposium, 2019.

[68] O. M. Alhawi, M. A. Mustafa, and L. C. Cordeiro, “Finding security
vulnerabilities in unmanned aerial vehicles using software verification,”
arXiv preprint arXiv:1906.11488, 2019.

[69] K. Domin, I. Symeonidis, and E. Marin, “Security analysis of the drone
communication protocol: Fuzzing the mavlink protocol,” 2016.

[70] M. Hooper, Y. Tian, R. Zhou, B. Cao, A. P. Lauf, L. Watkins, W. H.
Robinson, and W. Alexis, “Securing commercial wifi-based uavs from
common security attacks,” in MILCOM 2016-2016 IEEE Military Com-
munications Conference, 2016.

[71] J. Valente and A. A. Cardenas, “Understanding security threats in
consumer drones through the lens of the discovery quadcopter family,”
in Proceedings of the 2017 Workshop on Internet of Things Security and
Privacy, 2017.

[72] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking drones with intentional sound noise on gyroscopic sensors,”
in 24th USENIX Security Symposium, 2015.

[73] I. Pustogarov, T. Ristenpart, and V. Shmatikov, “Using program analysis
to synthesize sensor spoofing attacks,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security.
Association for Computing Machinery, 2017.

[74] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2018.

[75] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and
Z. Lin, “SAVIOR: Securing autonomous vehicles with robust physical
invariants,” in 29th USENIX Security Symposium, 2020.

[76] N. Moustafa and A. Jolfaei, “Autonomous detection of malicious events
using machine learning models in drone networks,” in Proceedings
of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless
Communications for 5G and Beyond, 2020.

[77] R. Mitchell and I.-R. Chen, “Adaptive intrusion detection of malicious
unmanned air vehicles using behavior rule specifications,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems.

[78] R. R. Beck, A. Vijeev, and V. Ganapathy, “Privaros: A framework for
privacy-compliant delivery drones,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[79] S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A
survey on aerial swarm robotics,” IEEE Transactions on Robotics, 2018.

[80] A. A. Paranjape, S.-J. Chung, K. Kim, and D. H. Shim, “Robotic herding
of a flock of birds using an unmanned aerial vehicle,” IEEE Transactions
on Robotics, 2018.

[81] M. S. bin Mohammad Fadilah, V. Balachandran, P. Loh, and M. Chua,
“DRAT: A drone attack tool for vulnerability assessment,” in Proceed-
ings of the Tenth ACM Conference on Data and Application Security
and Privacy, 2020.

[82] DARPA, “OFFensive Swarm-Enabled Tactics (OFFSET),” 2017, https:
//www.darpa.mil/work-with-us/offensive-swarm-enabled-tactics.

[83] DARPAtv, “Teams Test Swarm Autonomy in Second Major OFF-
SET Field Experiment,” 2019, https://www.youtube.com/watch?v=
ruWC10AW87E.

[84] D. Hambling, “What Are Drone Swarms And Why
Does Every Military Suddenly Want One?” 2021,
https://www.forbes.com/sites/davidhambling/2021/03/01/
what-are-drone-swarms-and-why-does-everyone-suddenly-want-one/
?sh=2a5f085d2f5c.

[85] K. N. McGuire, C. De Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E.
de Croon, “Minimal navigation solution for a swarm of tiny flying robots
to explore an unknown environment,” 2019.

[86] T. Delft, “SGBA-code,” 2020, https://github.com/tudelft/SGBA code
SR 2019.

IX. APPENDIX

A. Algorithm Selection

1) Selection Criteria: As shown in Fig. 13- 1 , we exhaus-
tively search all publicly accessible swarm algorithms (i.e., 46
algorithms in the second row, 2) and select the reproducible
ones (i.e., 26 algorithms in the third row, 3).

1727 29

20 26

22 4

from 44 Academic Papers from 29 GitHub Repositories

Without

Source Code

Not executable

(NE)

Lacking swarm

behaviors
Selected

46 Algo. with Source Code

26 Executable Algo.

73 Academic

Papers and Public

GitHub Repos

1

46 Swarm Algorithms2

26 Executable Algorithms3

Fig. 13. Algorithm Selection Process

Not Executable Algorithms. During the process, we en-
counter 20 swarm algorithms that are not executable due
to various reasons, including compilation errors (e.g., miss-
ing libraries/packages), runtime errors, and missing modules.
Summary of errors for each algorithm can be found in [8].
Algorithms lacking Swarm Behaviors. We further inspect the
26 executable algorithms and prune out 22 algorithms lacking

15

https://www.darpa.mil/work-with-us/offensive-swarm-enabled-tactics
https://www.darpa.mil/work-with-us/offensive-swarm-enabled-tactics
https://www.youtube.com/watch?v=ruWC10AW87E
https://www.youtube.com/watch?v=ruWC10AW87E
https://www.forbes.com/sites/davidhambling/2021/03/01/what-are-drone-swarms-and-why-does-everyone-suddenly-want-one/?sh=2a5f085d2f5c
https://www.forbes.com/sites/davidhambling/2021/03/01/what-are-drone-swarms-and-why-does-everyone-suddenly-want-one/?sh=2a5f085d2f5c
https://www.forbes.com/sites/davidhambling/2021/03/01/what-are-drone-swarms-and-why-does-everyone-suddenly-want-one/?sh=2a5f085d2f5c
https://github.com/tudelft/SGBA_code_SR_2019
https://github.com/tudelft/SGBA_code_SR_2019

swarm behaviors. Specifically, 21 algorithms do not exhibit
communications between drones in the swarm, meaning that
a drone will consider other drones as merely an external
object to avoid. 16 algorithms do not allow us to introduce
external attack drones; hence we prune out them. 2 algorithms
are immature, meaning that they fail on provided example
missions without any interventions. We focus on algorithms
that at least can finish simple missions without errors. We
further elaborate on the details of our analysis on [8].
Sizes of the Algorithms. Fig. 14 shows the SLOC of all
the considered swarm algorithms’ source code size in lines
of code. We count the SLOC of swarm algorithms, excluding
files for installations and configurations. It shows the selected
algorithms’ sizes are comparable to others and representative.
Commercial Swarm Algorithms. The reason that we do not
have commercial swarm algorithms in our evaluation is that
they are not publicly available for us to run. We comment that
one of our selected swarm algorithms’ authors mention that
their recent version of the swarm algorithm is not publicly
accessible due to legal issues. We could not investigate the
details of those legal issues, but we believe that their codebase
might be used in a proprietary product.

0

2500

5000

7500

10000

A1~4

Exec.

N. Exec.

0

2500

5000

7500

10000 A1~4

Exec.

N. Exec.

1 2 3 4 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0

Selected Executable Not executable

10,000

7,500

5,000

2,500

0

Fig. 14. SLOC of Considered and Selected Algorithms. Avg. of A1-4: 3,919
lines, Executable: 1,968 lines, and Not Executable: 2,305 lines.

2) Representativeness with respect to Real-world Examples:
We believe our selection of the algorithms is comparable to
the commercial algorithms because the four selected algo-
rithms can conduct complex swarm scenarios that commercial
swarms target. Specifically, we compare our selected algo-
rithms with other publicly known swarm projects to understand
the representativeness of our selection. In particular, DARPA’s
OFFSET program [82] conducted swarm missions aligned
with our selected swarm algorithms: searching missions in ur-
ban/rural areas [83]. While the source code of their algorithms
is not available, from the materials provided by DARPA, our
algorithms A2 and A3 are comparable. Also, the column from
Forbes [84] introduces the Reynolds’ Boids model as the
theoretical base for the modern military’s swarm operation.
A3 is comparable as it uses the same flocking model. Another
popular swarm searching project by TU Delft [85] releases its
source code [86]. We compare it with our algorithms, and it
is smaller than A1, A2, and A3. Moreover, we believe that
an up-to-date version of A4 [7] might be used in proprietary
products, while the authors choose not to reveal the details.

B. Observed Unique DCC Values

Fig. 15 shows the number of newly observed DCC values
over 12 hours of testing. Observe that most new DCC values

are discovered in the first 8-9 hours, showing the effectiveness
of DCC guided testing and justifying our 24 hours of timeout.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12N
ew

 U
n

iq
u

e
D

cc
 V

a
lu

es

Elapsed Time (Hours)

A1 A2 A3 A4

Fig. 15. Observed unique DCC values during testing over time

C. Random Testing Approach vs SWARMFLAWFINDER

In § V-C, we created a random testing approach by remov-
ing the DCC guidance from SWARMFLAWFINDER. We use
the random testing approach to understand which components
of SWARMFLAWFINDER make our approach more effective.

1) Effectiveness in Finding Mission Failures: Finding
mission failures during testing is critical since they can
lead to logic flaws of the algorithms. Fig. 16 shows the
number of tests leading to mission failures executed by
SWARMFLAWFINDER and a random testing approach (i.e.,
SWARMFLAWFINDER without the DCC guidance). Observe
that SWARMFLAWFINDER covers more test cases leading
to mission failures. Note that the total number of tested
missions is similar between the random testing and SWARM-
FLAWFINDER, because it depends on the execution time of
each test case.

786

614

300

239

764

615

696

554

183

320

692

753

228

364

277

411

0 200 400 600 800 1000

SwarmFlawFinder

Random

SwarmFlawFinder

Random

SwarmFlawFinder

Random

SwarmFlawFinder

Random

A
4

A
3

A
2

A
1

Fail

Success

Fig. 16. Effective test cases (i.e., failures) from the random testing approach
and SWARMFLAWFINDER

2) Impact of Searching Space on Random Testing Ap-
proach: SWARMFLAWFINDER’s DCC based guided fuzz test-
ing prioritizes test cases generated in an area that can lead
to more unique DCC values (or exercise diverse swarm be-
haviors). In this experiment, we aim to understand the impor-
tance of finding the searching space in SWARMFLAWFINDER.
Specifically, we run the random testing approach (which is
essentially SWARMFLAWFINDER without DCC guided test-
ing) with different searching space restrictions, obtained by
SWARMFLAWFINDER. Note that except for the searching
spaces, we keep the original configurations described in
§ V-A2. We define three different searching spaces for each
algorithm. First, we run SWARMFLAWFINDER and obtain
the explored space by SWARMFLAWFINDER as shown in
Fig. 17-(a), considering it the baseline space. Second, from
the baseline space, we define 2x and 3x Base (Fig. 17-(b) and
(c)) by extending the radius of the baseline by 2 and 3 times.

16

(a) Base Radius

(b) 2x Base Radius (c) 3x Base Radius

Base Radius

(6m)

Base Radius

(6m)

2x Base Radius

(12m)

Base Radius

(6m)

2x Base Radius

(12m)

3x Base Radius

(18m)

Fig. 17. Examples of Searching Space Definition from A1. Dots in this figure
represent executed test cases with the searching space restrictions.

Results. Table IV shows the experiments results. Observe
the random testing approach’s results vary depending on
the searching space restrictions. First, without any searching
space restriction (“No Restrict.” column), the random approach
misses many unique flaws (represented as red cells): missing
8 from A1, 4 from A2, 3 from A3, and 4 from A4. When
we provide a restricted searching space (the space found by
SWARMFLAWFINDER), the random approach finds 10 more
flaws (4 for A1, 1 for A2, 1 for A3, and 4 for A4) than the
random testing without the space restriction. If we simply look
at the number of mission failures (not the unique failures), the
random approach with the restriction finds even more instances
than our system. However, the quality of testing is worse than
ours. It misses 9 flaws (C1-1, C1-2, C2-1, C2-3, and C3-1).

Our manual analysis shows that those flaws are dependent
on subtle timings (i.e., to expose the flaws, an attack drone
has to approach from a certain pose when the swarm makes
a turn). Without the guidance of DCC, the random testing
approach has difficulty catch such subtle timings. This result
shows that while the searching space is important in testing,
DCC guided test mutation plays a critical role in finding
subtle logical flaws. Note that finding the searching space is a
core contribution of SWARMFLAWFINDER, which the random
testing approach by itself cannot achieve.

Further, we run the experiments with 2x and 3x Bases,
where they mostly perform worse as the searching space gets
larger but still better than the one with no restriction. There
are two exceptions in A1 (C1-2 and C1-4). With the 2x Base
space, the random testing finds 1 more unique flaw in C1-
2. Similarly, C1-4 is not found with the 2x Base space while
found with the 3x Base space. Our manual analysis shows that
the random testing approach’s result is highly dependent on
the randomness in test mutation.

D. Quality of Fixes

A fix is effective if SWARMFLAWFINDER fails to find a
logical flaw the fix aims to resolve. In addition, we create an
integrated fix that combines all the fixes in the algorithm to

TABLE IV
SWARMFLAWFINDER VS RANDOM TESTING, WITH RESPECT TO

DIFFERENT SEARCHING SUBSPACE RESTRICTIONS.

ID Root
SWARMFLAWFINDER Random Testing Approach

Cause No Restrict. No Restrict. Base 2x Base 3x Base

Exe. Uq. # Exe. Uq. # Exe. Uq. # Exe. Uq. # Exe. Uq.

A1

Crash btw.
Drones 273 9 166 4 251 6 260 5 148 4

C1-1 86 4 49 3 80 3 85 3 28 3
C1-2 176 4 117 1 162 2 175 2 120 1
C1-3 11 1 0 0 9 1 0 0 0 0
Crash into
ext. objects 435 8 359 5 407 7 375 5 348 5

C1-1 88 3 89 3 79 3 65 3 89 3
C1-2 326 3 270 2 310 2 310 2 259 2
C1-3 3 1 0 0 7 1 0 0 0 0
C1-4 18 1 0 0 11 1 0 0 0 0
Suspended
progress 671 2 594 2 752 2 708 2 617 2

C1-5 242 1 183 1 298 1 236 1 190 1
C1-6 429 1 411 1 454 1 472 1 427 1
Slow
progress 175 1 163 1 179 1 178 1 137 1

C1-6 175 1 163 1 179 1 178 1 137 1

Total: 1,554 20 1,282 12 1,589 16 1,521 13 1,250 12

A2

Crash btw.
Drones 28 3 20 1 25 1 14 1 24 1

C2-1 28 3 20 1 25 1 14 1 24 1
Suspended
progress 119 1 99 1 140 1 120 1 116 1

C2-2 119 1 99 1 140 1 120 1 116 1
Slow
progress 608 4 415 2 592 3 524 2 421 2

C2-3 586 3 415 2 571 2 524 2 421 2
C2-4 22 1 0 0 21 1 0 0 0 0

Total: 755 8 534 4 757 5 658 4 561 4

A3

Crash into
ext. objects 47 2 50 1 36 1 38 1 46 1

C3-1 10 1 0 0 0 0 0 0 0 0
C3-2 37 1 50 1 36 1 38 1 46 1
Slow
progress 240 4 182 2 189 3 178 3 166 2

C3-1 23 2 16 1 36 1 28 1 22 1
C3-2 217 2 166 1 153 2 150 2 144 1

Total: 287 6 232 3 225 4 216 4 212 3

A4

Crash btw.
Drones 230 3 210 1 218 3 201 2 189 1

C4-1 216 1 210 1 207 1 193 1 187 1
C4-2 14 2 0 0 11 2 7 1 0 0
Crash into
ext. objects 630 3 411 1 461 3 431 2 411 1

C4-1 599 1 411 1 427 1 414 1 390 1
C4-2 31 2 0 0 34 2 17 1 0 0
Slow
progress 1,228 2 887 2 1,005 2 981 2 850 2

C4-3 1,228 2 887 2 1,005 2 981 2 850 2

Total: 2,088 8 1,508 4 1,684 8 1,613 6 1,450 4

check whether fixes conflict with others. If there is no conflict,
the integrated fix should eliminate all logical flaws we find.
Invidivual Fixes for A1. Table V shows the results for A1.
The numbers in the table represent the number of failed
missions during the testing. The “Unpatched” columns show
the SWARMFLAWFINDER’s result on the original algorithm
(identical to Table III). Observe that once each fix is ap-
plied, SWARMFLAWFINDER does not find any mission failures
caused by the fixed logic flaw, meaning that individual fixes
are effective. For instance, with the fix for C1-1, SWARM-
FLAWFINDER fails to find mission failures due to C1-1.
A green cell represents a fix that successfully resolves the
targeted flaw. Note that some fixes resolve flaws that are not
targeted to handle. For example, the fix for C1-2 resolves flaws
caused by C1-3 and C1-4 (represented as yellow cells). The fix
for C1-6 resolves flaws of C1-3 and C1-4, because the fix for
C1-2 makes drones more reactive, avoiding crashes due to C1-
3 and C1-4. Similarly, the fix for C1-6 increases the sensing
sensitivity, mitigating crashes caused by C1-3 and C1-4.
Integrated Fix for A1. The last column shows the result

17

TABLE V
FUZZ TESTING WITH FIXES FOR A1.

ID Root Cause Unpatched (Org.) Fix for C1-1 Fix for C1-2 Fix for C1-3 Fix for C1-4 Fix for C1-5 Fix for C1-6 Integrated Fix

Exec. Uniq. # Exec. Uniq. # Exec. Uniq. # Exec. Uniq. # Exec. Uniq. # Exec. Uniq. # Exec. Uniq. # Exec. Uniq.

A1

Crash btw. victim drones 273 9 152 5 26 4 261 8 271 9 279 9 36 8 0 0
C1-1 86 4 0 0 26 4 79 4 85 4 81 4 14 4 0 0
C1-2 176 4 146 4 0 0 182 4 176 4 181 4 22 4 0 0
C1-3 11 1 6 1 0 0 0 0 10 1 17 1 0 0 0 0
Crash into ext. objects 435 8 324 5 52 3 406 7 418 7 432 8 90 6 0 0
C1-1 88 3 0 0 52 3 77 3 81 3 79 3 44 3 0 0
C1-2 326 3 315 3 0 0 309 3 331 3 331 3 46 3 0 0
C1-3 3 1 5 1 0 0 0 0 6 1 7 1 0 0 0 0
C1-4 18 1 4 1 0 0 20 1 0 0 15 1 0 0 0 0
Suspended progress 671 2 636 2 631 2 683 2 648 2 553 1 453 1 101 2
C1-5 242 1 224 1 317 1 243 1 229 1 0 0 453 1 79 1
C1-6 429 1 412 1 314 1 440 1 419 1 553 1 0 0 22 1
Slow progress 175 1 181 1 112 1 175 1 168 1 240 1 0 0 3 1
C1-6 175 1 181 1 112 1 175 1 168 1 240 1 0 0 3 1

Total: 1,554 20 1,293 13 821 10 1,525 18 1,505 19 1,504 19 579 15 104 3
Green: Fixes resolve targeted flaws, Yellow: Fixes resolve additional non-targeted flaws, Red: Fixes fail to resolve targted flaws.

from the integrated fix. It resolves the flaws from C1-1 to
C1-4. However, it fails to handle C1-5 and C1-6. Our manual
analysis points out that the fixes for C1-5 and C1-6 are
conflicting. Specifically, the fix for C1-5 makes drones move
together, waiting for slower drones if needed. However, the
fix for C1-6 makes drones sensitive in avoiding obstacles. To
this end, when there is an obstacle, the drones try to avoid it
more actively, often making the swarm easily stuck or stalled.
Tuning the Integrated Fix for A1. To make the integrated
fix work, we tuned the fix. Specifically, when we combine
the individual fixes, we tune the fix for C1-2 and C1-6.
The original fixes for C1-2 and C1-6 add 0.15 and 200
to influence radius and repulsive coef, respectively.
We reduce the increment in half: 0.075 and 100, resulting
in the final value of 0.225 (originally 0.15) and 300 (orig-
inally 200) for influence radius and repulsive coef,
respectively. With the tuned fix, SWARMFLAWFINDER was
not able to find logic flaws for 24 hours.
Fixes for Others. For A1∼A4, all individual fixes successfully
resolve targeted logic flaws. The integrated fixes for A2 and
A3 resolved all the logic flaws. For A4, we observe conflicting
fixes when we integrate the fixes. Details can be found in [8].

E. Influence of Moving Obstacles to our Evaluation

In our evaluation (§ V), A1’s mission contains a moving
obstacle. To understand its impact on our experiment results,
we run the experiments again without the moving obstacle.
Table VI shows the result. While there are small differences
in the number of executions, the number of unique mission
failures is mostly identical except for 4 flaws in C1-1 and C1-
2 (marked as yellow and red cells). Those four missing unique
mission failures are either directly caused by the obstacle (i.e.,
crashed into the obstacle; red cells) or indirectly caused (e.g.,
pushed by the dynamic obstacle leading to a crash to other
drones; yellow cells).

F. Root Causes and Potential Fixes

C1-3. Unsupported static movement: A1 and A4 do not
allow a drone’s static movement, meaning that a drone has
to move on every tick, even if it is desirable to maintain the

TABLE VI
INFLUENCE OF MOVING (OR DYNAMIC) OBSTACLES

ID Root Cause With Dyn. Obj. Without Dyn. Obj.

of Exec. Uniq. # of Exec. Uniq.

A1

Crash between Victim Drones 273 9 223 7
C1-1 86 4 78 3
C1-2 176 4 132 3
C1-3 11 1 13 1
Crash into external objects 435 8 378 6
C1-1 88 3 53 2
C1-2 326 3 297 2
C1-3 3 1 5 1
C1-4 18 1 23 1
Suspended progress 671 2 622 2
C1-5 242 1 231 1
C1-6 429 1 391 1
Slow progress 175 1 181 1
C1-6 175 1 181 1

same pose. The design of the algorithms does not consider the
static movement, causing crashes in a crowded area.

Fix (Confirmed): We change the constraints that make
drones always moving (8 SLOC).

C1-6, C3-2, and C4-3. Insensitive object detection: A victim
drone’s sensitivity in detecting objects is too low, making the
entire swarm less reactive and sluggish in reacting to external
objects and attack drones. We observe that a single attack
drone can slow down the entire swarm due to this.

Fix (Confirmed for [4], [6]): We change repulsive coef,
sensing radius, and IR dist configuration variables
with the values of 400, 10, and 4 respectively. The devel-
opers of [4], [6] agreed with our analysis and the fix.

G. Supporting a new Algorithm

Our design is general and applicable to other swarm algorithms
while it requires engineering effort. To support a new swarm
algorithm, we need to instrument the algorithm to integrate
SWARMFLAWFINDER (e.g., changing 218, 271, 198, and
166 SLOC for A1, A2, A3, and A4, respectively). In our
evaluation, it took 8∼15 hours (by a graduate student with
moderate experience in drones) to complete this task for an
algorithm. Details including the additional code are on [8].

18

	Introduction
	Background and Threat Model
	Motivating Example
	Design
	Test-run Definition and Creation
	Test Execution and Evaluation
	Dcc Guided Fuzz Testing
	Testing with Multiple Attack Drones

	Evaluation
	Experiment Setup
	Selection of Target Swarm Algorithms
	Experimental Configurations
	Implementation and Setup

	Effectiveness in Finding Logic Flaws
	Effectiveness of Dcc in Fuzz Testing
	Creating Random Testing Approach
	Spatial Distribution of Test-cases
	Impact of Searching Space on Random Testing

	Coverage based on Dcc
	Case Studies
	Missing Collision Detection in Adaptive Swarm
	Suspended Swarm Mission due to a Logic Flaw
	Detouring without Sensing

	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Algorithm Selection
	Selection Criteria
	Representativeness with respect to Real-world Examples

	Observed Unique Dcc Values
	Random Testing Approach vs SwarmFlawFinder
	Effectiveness in Finding Mission Failures
	Impact of Searching Space on Random Testing Approach

	Quality of Fixes
	Influence of Moving Obstacles to our Evaluation
	Root Causes and Potential Fixes
	Supporting a new Algorithm

