
Swarmbug: Debugging Configuration Bugs in Swarm Robotics
Chijung Jung

University of Virginia
Charlottesville, Virginia, USA

cj5kd@virginia.edu

Ali Ahad
University of Virginia

Charlottesville, Virginia, USA
aa5rn@virginia.edu

Jinho Jung
Georgia Institute of Technology

Atlanta, Georgia, USA
jinho.jung@gatech.edu

Sebastian Elbaum
University of Virginia

Charlottesville, Virginia, USA
selbaum@virginia.edu

Yonghwi Kwon
University of Virginia

Charlottesville, Virginia, USA
yongkwon@virginia.edu

ABSTRACT

Swarm robotics collectively solve problems that are challenging
for individual robots, from environmental monitoring to entertain-
ment. The algorithms enabling swarms allow individual robots of
the swarm to plan, share, and coordinate their trajectories and tasks
to achieve a common goal. Such algorithms rely on a large number
of configurable parameters that can be tailored to target particular
scenarios. This large configuration space, the complexity of the
algorithms, and the dependencies with the robots’ setup and per-
formance make debugging and fixing swarms configuration bugs
extremely challenging. This paper proposes Swarmbug, a swarm
debugging system that automatically diagnoses and fixes buggy
behaviors caused by misconfiguration. The essence of Swarmbug
is the novel concept called the degree of causal contribution (Dcc),
which abstracts impacts of environment configurations (e.g., obsta-
cles) to the drones in a swarm via behavior causal analysis. Swarm-
bug automatically generates, validates, and ranks fixes for con-
figuration bugs. We evaluate Swarmbug on four diverse swarm
algorithms. Swarmbug successfully fixes four configuration bugs
in the evaluated algorithms, showing that it is generic and effective.
We also conduct a real-world experiment with physical drones to
show the Swarmbug’s fix is effective in the real-world.

CCS CONCEPTS

•Computer systems organization→Robotics; • Software and

its engineering → Development frameworks and environments.

KEYWORDS

debugging, configuration bug, swarm robotics

ACM Reference Format:

Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon.
2021. Swarmbug: Debugging Configuration Bugs in Swarm Robotics. In
Proceedings of the 29th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468601

August 23–28, 2021, Athens, Greece. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3468264.3468601

1 INTRODUCTION

In robotics, a swarm is a group of cooperative robots that is able to
solve complex tasks through their collective behavior [24]. Swarms
are being used to solve many real-world problems, from environ-
mental monitoring and emergency response to entertainment [73].
Key enablers of such success are the algorithms that allow the in-
dividual robots of the swarm to plan, share, and coordinate their
trajectories and tasks to achieve a common goal [17].

Despite the potential of swarms, developing robust swarm al-
gorithms is challenging. (1) Swarm algorithms are dependent on
a large number of related parameters and inputs that can signifi-
cantly change the behavior of the swarms. The swarm algorithm
controls multiple robots adding an order of magnitude in com-
plexity to a large number of parameters used to configure each
robot (e.g., ArduCopter [5] has hundreds of configuration parame-
ters). (2) Swarm operations are highly dynamic, compounding the
variability and sensitivity of all its robots to the environment. (3)
Swarm algorithms have variables and code blocks that are highly
inter-dependent. The algorithms are often a closed-loop (feedback)
control system [29, 54] which continuously computes robots’ new
states using new inputs and their previous states.

In our conversation with developers of swarm algorithms [2, 77]
and observation from public forums [42, 49, 79, 80, 92], one of the
common challenges in swarm algorithms and robotics development
is to find appropriate values for configurable parameters. A slightly
misconfigured parameter can cause a buggy behavior, which we
call configuration bugs. This paper focuses on configuration bugs

in swarm algorithms (i.e., bugs caused by misconfiguration of the
algorithms and robots), causing incorrect swarm states (such as
crashing drones) in a particular deployment scenario.

Space of all possible scenarios A successful scenario

(Ssucc) with Corg

2

1

Scenarios covered
by Corg

2

A failed scenario

(Sfail) with Corg

3

A new configuration

Cfix covering the

failed scenario (Sfail)

4

4

3

SWARMBUG

1

Corg

Cfix

Figure 1: Illustration of a configuration bug and Swarmbug.

https://orcid.org/0000-0003-1507-3635
https://doi.org/10.1145/3468264.3468601
https://doi.org/10.1145/3468264.3468601

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon

Configuration Bugs. Figure 1 illustrates a high-level concept of
the configuration bug and the Swarmbug’s ultimate objective.
Given the space of all possible scenarios (Sall) of a swarm, there is
a configuration for the swarm (Corg) that can result in a successful
scenario (Ssucc) denoted by 1 . 2 denotes scenarios that can be
successfully covered by Corg . A configuration bug happens when
a swarm operates under a new scenario resulting in a failure Sfail
because it is not covered by Corg .
Challenges. A typical debugging approach for a configuration
bug might be tracking each parameter’s value propagation to the
robot’s decision that caused a faulty scenario. Unfortunately, the
aforementioned complexity of swarm algorithms makes this ap-
proach impractical. For example, parameters often go through a
number of complex computations with other variables, including
matrix multiplications. Precisely tracking a variable’s impact af-
ter those computations is an extremely challenging task. Another
typical approach is trial-and-error. A developer inspects a partic-
ular variable’s value, modifies its value, and tests whether it will
fix the bug. The debugging process typically requires non-trivial
manual effort due to many configurable parameters and complex
dependencies. Without proper guidance on each trial-and-error,
this approach is rather impractical. Moreover, even after the devel-
oper identifies a potential fix (i.e., a new value for a configurable
parameter), testing the fix in various scenarios is time-consuming
and challenging due to the large space of possible swarm behaviors.
Our Approach. This paper proposes Swarmbug, a swarm debug-
ging approach for configuration bugs. As illustrated in Figure 1,
it aims to find a new configuration which we call a fix Cfix that
can cover more scenarios (4). While not guaranteed, Swarmbug
prioritizes Cfix that are close to the Corg , which can potentially
cover some of the scenarios already covered by Corg (2) (as per
the overlapping area of 2 and 4).

In particular, Swarmbug targets bugs that are caused by mis-
configuration of the swarm algorithm or robot’s parameters (i.e.,
configuration variables). It aims to (1) find key variables that caused
a buggy behavior, (2) identify possible fixes for the bug via system-
atic testing, and (3) rank the fixes that preserve the behavior of
the original execution. Swarmbug’s key enabling technique is the
novel concept of the degree of causal contribution (Dcc). It creates
alternative executions with and without critical factors (e.g., ob-
jects) that affect the swarm’s behavior to understand which factors
are causally contributing to the buggy behavior. Swarmbug then
finds variables that can configure swarm algorithms to adjust the
Dcc of the factors. The contributions of this research are as follows:

• We develop a swarm robotics debugger for configuration bugs.
• We propose the concept of Dcc to understand the degree of
causal contribution of each variable to swarm behavior and use
it to precisely pinpoint critical variables that contribute to bugs.

• We evaluate our algorithm on 4 real-world swarm algorithms
and automatically identified 7 valid bug fixes, including physical
flight experiments with real-world drones to empirically show
that the generated fixes are effective in real-world scenarios.

• We have communicated and confirmed all the configuration bugs
and our fixes with the authors of the swarm algorithms.

• We publicly release the source code and data of Swarmbug on
https://github.com/swarmbug/src.

2 MOTIVATING EXAMPLE

We use the Adaptive Swarm [2] algorithm to illustrate Swarmbug’s
operation. We run the algorithm for four drones: one leader and
three follower drones (F1∼F3). The algorithm’s goal is to safely
move the swarm to a destination while maintaining a diamond-
shape formation as shown in Figure 2-(a). The arrows with borders
(either blue or gray) indicate the drone’s flight direction. Orange
arrows are the vectors caused to avoid obstacles (including other
drones). Gray arrows represent the vector to maintain the diamond
formation. When there are multiple vectors considered, the blue
arrows with borders indicate the final flight directions.
Configuration Variables. In this example, there are two types
of configuration variables: environment and swarm configuration
variables. Environment configuration variables represent objects
such as robots and obstacles (e.g., followers[0∼1].sp, self.sp.x , and ob-
stacle[8] in Figure 3). Swarm configuration variables are parameters
for swarm algorithm and robots. For example, circles surrounding
drones visualize a parameter infl_radius that determines the maxi-
mum sensing distance for objects. interrbt_dist is another parameter
that represents the desired distance between drones.
Configuration Bug. Figure 2-(b)∼(e) show such a scenario where
F3 crashes with an obstacle due to a configuration bug. First, the
moving obstacle approaches F1, which is also moving, in (b) and
makes F1 move towards the south-west, leading F1 to get close to
F3. In (c), the obstacle forces F1 and F3 closer. In (d), the obstacle
approaches now F3 which fails to avoid it because the other four
forces come into play: three forces to avoid F1, F2, and obstacles
(oranges), and the force to maintain the formation. This causes F3
to move just slightly from its current position, not enough to avoid
the obstacle, leading to a crash in (e). A cause for the failure is that,
in (d), F3 was too close to adjacent drones which interfere with the
decision of F3 to avoid the obstacle.
Debugging Attempts without Swarmbug. A typical debugging
approach of the given bug is to trace the value propagation from the
obstacle (i.e., the cause of the crash) to the drone to understand how
the obstacle and other variables affect the drone’s faulty decision.
For example, one may use existing program analysis techniques
such as taint analysis [7, 18, 40, 67, 76] to trace obstacle[8] which is
an environment configuration variable (defined as a global variable)
representing the obstacle. Each drone in the swarm reads this vari-
able to determine whether they are close to the moving obstacle
or not. However, tracking the value propagation of the variable is
challenging as it goes through complex computations.

Figure 3 shows a simplified value propagation graph. The arrows
in Figure 3 show the data propagation paths. The source variable
(obstacle[8]) is a 2×4 array and the values of its elements (along
with other variables including followers[0].sp and followers[1].sp

representing other drones) are used to generate each element of
a 500×500 array, d2. Later, each element of d2 is used to create
another 500×500 array repulsive with infl_radius and nu. Then,
each element of repulsive and attractive are added to create total
(a 500×500 array). Finally, it computes a gradient of the matrix to
create gx and gy . Finally, mean values of the gx and gy arrays to
compute x (self.sp.x) and y (self.sp.y) coordinates. At this point,
which part (of bytes) of the x and y coordinates are affected by
the source variable obstacle[8] is challenging to know. Using taint

Swarmbug: Debugging Configuration Bugs in Swarm Robotics ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Leader

F1

F2

F3

(1) Flight configuration (2) F1 detects the obstacle

Obstacle

(3) F1 approaches to F3 (4) F1 avoids the obstacle (5) F3 avoids the obstacle

Leader

F1

F2

F3

(a) Flight configuration (b) F1 detects the obstacle (c) F1 approaches to F3
(d) Interference from F1

and F2 slows down F3
(e) F3 crashes with the

obstacle

Obstacleinfl_radius
=0.15 (m)

infl_radius
=0.3 (m)

interrbt_dist
=0.7 (m)

interrbt_dist
=0.7 (m)

O
r
ig

in
a

l
C

o
n

fi
g

u
ra

ti
o

n

(B
u

g
g
y
)

F
ix

ed
 C

o
n

fi
g
u

ra
ti

o
n

 b
y

S
W

A
R

M
B

U
G

Figure 2: Swarm of four drones crashing an obstacle: (a)∼(e). The same swarm mission with a fix by Swarmbug: (1)∼(5).

analysis would tell that every part of both coordinates depends on
the source variable and other variables, which are not useful for
debugging the configuration bug. Note that the graph is simplified.
The complete graph of the swarm algorithm [2] is at least 10 times
larger than Figure 3. A backward edge from the self.sp.x and self.sp.y
to followers[0].sp and followers[1].sp, that forms cycles, are omitted.
Debugging with Swarmbug. Swarmbug (1) conducts a behavior
causal analysis to find out environment configuration variables
that caused the bug, (2) obtains bug fixes by mutating swarm con-
figuration variables, and (3) ranks fixes that preserve the original
behavior of the swarm.

(1) Cause Analysis: Given a definition of configuration vari-
ables provided by a user, Swarmbug infers which configuration
variables significantly contribute to the buggy behavior by lever-
aging a concept we call the degree of causal contribution (or Dcc,
details in Section 4.1.2). Dcc essentially abstracts the impact (or
contribution) of individual variables to a robot’s decision.

Dcc is computed as follows. Given the original execution (demon-
strating the crash), Swarmbug creates alternative executions by
removing the impact of environment configuration variables (that
are essentially related to surrounding objects and robots). Then,
we compare the robots’ behaviors of the original execution and

d2
(500*500)

...

obstacle[8] followers[0].sp followers[1].sp

...
repulsive

(500*500)

infl_radius

nu

...
total

(500*500)

...

attractive
(500*500)

...
gx (and gy)
(500*500)

self.sp.x self.sp.y

* Each box represents a variable or an element of an array

Figure 3: Illustration of simplified value propagation.

the alternative executions. The difference of the robots’ poses be-
comes a Dcc value. Finally, we analyze the trends of Dcc values
around the time when the bug occurred to pinpoint the cause of
the bug (e.g., whether some variable’s contribution is insufficient or
excessive). Note that Swarmbug does not rely on tracking complex
propagations of values, which existing techniques struggle to do,
but rather analyzes values related to the robots’ behavior as the
environment is changed.

In the earlier example, Swarmbug derives alternative executions
without each obstacle by mutating environment configuration vari-
ables, to infer the causal relationship between an obstacle and the
buggy behavior. Then, we compare each drone’s poses observed dur-
ing the generated alternative executions and the original execution,
obtaining the difference that represents the impact of each removed
obstacle to the buggy behavior. To this end, Swarmbug identifies
the most impactful variable: obstacles[8] (a moving obstacle).

(2) Finding Potential Configuration Fixes: From the environ-
ment configuration variable that contributes to the bug, Swarmbug
conducts a number of experiments that change each swarm configu-

ration variable’s value (e.g., a robot’s parameter’s value) to identify
potential fixes for the bug. Specifically, it focuses on the trend of
Dcc values of the environment configuration variable. For example,
we earlier noticed that the obstacle’s contribution becomes more
significant near the crash while other objects (e.g., other drones)
also compete for the contribution.

To this end, Swarmbug tries to reinforce (or intensify) the in-
creasing trend of the moving obstacle’s Dcc value. With the change,
we expect the drone to take the obstacle into account more signifi-
cantly than the original execution. We then run multiple executions
with mutated swarm configuration variables (e.g., increasing/de-
creasing their values) to find mutations that can reinforce the trend.
Finally, we find concrete values for two swarm configuration vari-
ables (defined as global variables), leading to two configuration fixes:
(i) infl_radius=0.3 and (ii) interrbt_dist=1.4.

(3) Validating the Robustness of Fixes: Swarmbug tests the
two fixes (i.e., infl_radius and interrbt_dist) exhaustively, by running
a number of tests with diverse scenarios that Swarmbug derived
by profiling the variation of the target scenario (e.g., spawning the

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon

swarm in various positions). To make each test more meaningful in
terms of validating the robustness, Swarmbug measures whether
each run exercises observable new swarm behaviors using Dcc
values. Specifically, for each test, we collectDcc values and compute
MSE scores against previous executions’ Dcc values. The testing is
repeated until it does not observe new swarm behaviors (e.g., MSE
scores of 100 consecutive executions are all smaller than 0.01) or
reached a predefined timeout (e.g., 20 hours). In this example, both
fixes successfully pass the testing, meaning that Swarmbug did not
observe any failures after 20 hours of testing while the fixes with
infl_radius and interrbt_dist successfully finishes 3,880 and 1,211
tests respectively. Hence, both are considered as valid fixes.

(4) Finding Behavior-preserving Fixes: Some fixes may dis-

ruptively change the swarm behavior. For instance, in our example,
changing interrbt_dist results in a bigger diamond formation, mak-
ing the swarm look and behave quite differently. To avoid such
fixes, Swarmbug aims to identify a behavior-preserving fix which
behaves similar to the original swarm. Specifically, we compare the
Dcc values from a fixed execution and the original execution to
measure the differences between the two executions. If two swarm
executions have similar Dcc values, we consider that their behav-
iors are similar. In our example, the Dcc values from the fix with
infl_radius is more similar to the Dcc values from the original run
than the fix with interrbt_dist .
Chosen Fix: Figure 2-(1)∼(5) show the flight with the infl_radius fix.
It maintains the same formation, while individual drone detects and
avoids the obstacle earlier, preventing the situation where multiple
drones get too close (2)∼(4). All the drones, including F3, avoid the
obstacle successfully (5).

3 BACKGROUNDS, GOALS, AND SCOPE

3.1 Mobile Robot Software

Configurable Variables. A typical robot such as the drones we
use in our studies can have hundreds of configurable parameters
and each of the parameters can affect the robot’s behavior signifi-
cantly. A robot’s decision-making process is typically implemented
as a sequence of program statements that continuously and itera-

tively reads inputs from various sensors and computes the robot’s
next state, meaning that it is essentially a closed-loop system [98].
During the computation, the configurable parameters are also taken
into account. As shown in Figure 3, variables in the algorithms are
highly inter-dependent (e.g., most variables in the loop are depen-
dent on their previous iteration’s values), making it difficult to apply
data-dependency analysis techniques.
Field Testing and Simulation-based Testing. Testing robotics
algorithms is challenging because robots interact with the physical
surroundings. While testing robots in the real-world (field testing or
physical testing) is desirable and ultimately required, it is expensive
and dangerous due to the cost of failures. As a result, simulation-
based testing is a common alternative that can reduce development
and validation costs. Still, given the dimension and complexity of
the real-world, simulation-testing must identify what scenarios are
worth validating and attempt to reduce the exploration of equivalent
scenarios that render little value for testing.

3.2 Swarm Algorithms

Centralized and Distributed Swarm Algorithms. There are
two main lines in constructing swarm algorithms [8, 10, 17, 37, 56]:
centralized and distributed. A centralized algorithm [14, 22, 55]
computes all the decisions of individual robots in a swarm in a
centralized system. On the other extreme, a distributed swarm al-
gorithm [6, 45, 94] runs the majority of the algorithm on individual
robots, where robots are communicating via network channels. Ex-
isting approaches such as taint analysis have difficulty handling
distributed algorithms while Swarmbug works well on both cen-
tralized and distributed algorithms.
Local vs Global Goals. Swarm algorithms may have global goals
for the entire swarm and local goals for individual robots at the
same time, leading to conflicting goals. For instance, each robot
may have a local algorithm to avoid obstacles, while a swarm al-
gorithm aims to maintain a specific formation during the flight.
When a robot in the swarm encounters an obstacle, the robot’s
local algorithm may hold back the swarm algorithm’s progress as
it prioritizes its local goal (i.e., avoiding the obstacle). Note that
even if a swarm algorithm includes logic to balance the two goals
(e.g., prioritizing local and global goals based on the current state
and environment), the balancing logic may not be perfect, failing
to balance the conflicting goals.
Complex Dependencies. As a swarm consists of multiple robots,
the complexity of dependencies among variables and configurations
has significantly increased compared to that of a single robot. Dur-
ing our experiments, we observe that the average number of data de-
pendencies (i.e., the number of edges in the data dependence graph)
in drone swarm algorithms [36, 50, 51, 61, 93] is ‘1,693+1,207∗n’
where n represents the number of robots.1 When n=5, the number
is approximately 3.7 times the average number of dependencies of
algorithms for a single drone which is 2,042 [15, 25, 27, 59, 68] (with
n=10, the swarm algorithms’ dependencies are 6.7 times bigger
than the single drone algorithms). It means that applying the data
dependency analysis to swarm algorithms is ineffective in practice.
Dynamic Behaviors. In a swarm, individual robots’ dynamic be-
haviors are often accumulated and amplified, leading to even more
diverse swarm behaviors. For example, in our motivation example,
Figure 2-(c) and (d) have a chain reaction to the obstacle, which is
different from when an individual drone interacts with an obsta-
cle. Hence, a significant challenge in swarm testing is obtaining
test cases that can effectively cover various swarm behaviors and
prioritizing test cases to cover diverse scenarios.

3.3 Goals and Scope

Goals of Swarmbug. Swarmbug aims to achieve the three major
goals to effectively debug swarm algorithms as follows.
• Goal-1: Developing effective causal analysis capabilities for swarm
algorithms to automatically identify root causes of configuration
bugs and find fixes.

• Goal-2: Developing an effective and efficient testing approach to
validate bug fixes for swarm algorithms by systematically cover-
ing various corner cases.

1As for ‘1,693’ and ‘1,207’, we use the data-dependency graph using Sourcetrail [75],
with T as the total edges of the swarm algorithm and L as the number of edges for an
individual drone algorithm. ‘1,693’ is the average of the difference between T and L,
and ‘1,207’ is the average of L of all drones.

Swarmbug: Debugging Configuration Bugs in Swarm Robotics ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

(1) Swarm algorithm and

(2) a swarm mission

Behavior

causal analysis

(Section 4.1)

Fix candidates

Fix validation (testing)

(Section 4.2)

Fix prioritization

(Section 4.3)

Successful fixes

SWARMBUG

1

2

…

Fixes sorted

by preserved

behavior

Configuration fixes

for swarm(3) Configuration

definitions

Real-world

testing

Test cases and traces

Figure 4: Overview of Swarmbug

• Goal-3: Understanding the impact of fixes and guiding how to

choose fixes that preserve the original swarm algorithm’s behavior
while correcting buggy behaviors.

Focus on Unmanned Air Vehicles (Drones).While our findings
and insights are generic and applicable to various swarm robotics
environments, our research focuses on swarm robotics algorithms
for unmanned aerial vehicles. This is because (1) they are prevalent
and used in various missions, and (2) they have one of the most
sophisticated dynamics, leading to various challenges in debugging.
Generality of Swarmbug’s Fix. Swarmbug generates fixes for
a bug under a particular mission and algorithm’s configuration.
This means that the fixes may not work for a significantly different
mission or scenario. For instance, a bug fix for a swarm mission
with four drones may not work for a mission with eight drones.
Also, a bug fix for a swarm avoiding obstacles may not work if the
obstacles’ speed changes (e.g., become faster).

4 DESIGN

Figure 4 shows the overall procedure of Swarmbug. It takes three
inputs: (1) a swarm algorithm’s source code, (2) a swarm mission
that triggers a buggy behavior, and (3) configuration definitions
that include a list of configuration variables for the swarm and en-
vironment (e.g., certain obstacles, wind, etc.). Swarmbug conducts
a behavior causal analysis (Section 4.1) to find causes of buggy
behaviors from environment configuration variables and generate
fixes for swarm configuration variables. Then, Swarmbug validates
the fixes under various scenarios (Section 4.2) to obtain robust fixes.
Further, it ranks the fixes based on the behavior similarity between
the original swarm and the fixed swarm (Section 4.3). Finally, while
it is not part of our main contribution, the test cases and traces can
be used to conduct real-world testing as shown in Section 5.2.1.

4.1 Behavior Causal Analysis

4.1.1 Configuration Variables. Among the variables in a swarm
algorithm, there are two types of variables that are important in
understanding and controlling behavior: environment and swarm
configuration variables. One of the Swarmbug’s inputs is the con-
figuration definitions: a list of configuration variables with each
variable’s type (either environment or swarm configuration) and
the value specification.
1. Environment Configuration Variables define the environ-

ment of the swarm that can be manipulated during simulation
such as obstacles, robots, and wind. The value specification
includes a value to eliminate the impact of the variable. For

instance, if an obstacle is defined as a set of coordinates, co-
ordinate values outside of the map will effectively remove the
obstacle. We use the ∅ symbol to represent such a value.

2. Swarm Configuration Variables typically define parameters
of drones and swarm algorithms. The specification includes
the range of values (i.e., minimum and maximum values, dis-
tribution). For instance, the maximum drone velocity or the
minimum distances between drones in a swarm.

Profiling for the Configuration Definitions. Swarmbug ex-
pects a user to provide the configuration definitions2, which may
require non-trivial effort. To mitigate this, we present a set of profil-
ing tools and supporting approaches on our project website [82] that
can generate sketches of such configuration definitions for imple-
mentations like the ones we present later in our study [2, 16, 60, 88]
to reduce such effort.

4.1.2 Degree of Causal Contribution (Dcc). Our analysis targets
environment configuration variables that represent obstacles and
other robots because they directly affect the swarm behavior and
are crucial in understanding causes of bugs. A key innovation of
Swarmbug is the concept of the degree of causal contribution (or

Dcc) of a variable to a robot’s pose and propose its computation
without relying on complex data propagation analysis techniques
such as taint analysis. Dcc is computed by comparing differences
between executions with mutations applied on the environment
configuration variables.

Direction to the next
position with the
obstacle

Legend

Delta

()
Obstacle

Direction to the next
position without the
obstacle

(b) Alternative

execution

(a) Original

execution

(c) Delta

computation

D1

D2

D3

D1
D2

D3

D1
Direction of
the obstacle

Figure 5: Example of computing a delta (∆) value.

ComputingDelta (∆) viaAlternative Execution.To understand
the contribution of an environment variable, we first create a new
(alternative) execution with a mutation on the variable that can es-
sentially remove the variable’s presence in the environment. Since
the new execution negates the existence of the mutated variable,
we call the new execution alternative execution. Figure 5 shows an
example. Suppose that Figure 5-(a) shows an original execution
that includes an obstacle, leading to the drone moving toward the
2Details of the configuration definitions and the real input file we use in this paper
can be found on https://github.com/swarmbug/src/tree/main/Input_Swarmbug

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon

Algorithm 1: Computing Dcc from the Delta values
Input :M : a set of missions for robots.mr ∈ M is a mission for robot r ,

Te : the tick value of when the swarm mission finishes.
Vec : a set of environment configuration variables.

Output :Dcc(r, t): a set of tuples <vec , N > where vec is an environment configuration
variable and N is the Dcc value of vw at tick t for robot r

1 procedure ComputeSwarmDcc(M ,Vw)
2 t ← 0
3 while t ≠ Te do

4 formr ∈ M do

5 Dcc(r, t)← ComputeRobotDcc (mr ,Vec , t)

6 t ← t+Time-step // Time-step represents a single tick

7 procedure ComputeRobotDcc(r ,Vec , t)
8 ∆total← 0
9 Porg = GetRobotPose (r ,Vec , t) // Obtain a pose of r at t

// Each source variable vi representing a world object

10 for vi ∈ Vec do
11 tmp ← vi // Save vi
12 vi ← ∅ // Removing the impact of an environment configuration variablevi
13 Pi = GetRobotPose (r ,Vec , t) // Obtain a pose of r at t without vi
14 ∆i ← ||Porg − Pi || // ∆ for vi via Euclidean Distance

15 ∆total ← ∆total + ∆i
16 vi ← tmp // Restore vi
17 dccSet ← {}
18 for vi ∈ Vec do
19 dccSet ← dccSet ∪ <vi , (∆i / ∆total) >

20 return dccSet

south-west (from D1 to D2). A counterfactual execution is shown
in Figure 5-(b) without the obstacle. The drone moves toward the
south (from D1 to D3). As shown in Figure 5-(c), we obtain a delta
by computing the Euclidean distance between drones’ poses (D2
and D3) from the two executions.
Computing Dcc. The degree of causal contribution (or Dcc) is an
aggregation of the delta (∆) values of environment configuration
variables. Specifically, we obtain ∆ values of all environment con-
figuration variables. Then, we compute the percentages for each
variable, resulting in Dcc.

Algorithm 1 shows the details of Dcc computation. Given a
swarm algorithm, it iterates over all the robots in the swarm and
calls ComputeRobotDcc for every tick to obtain all Dcc values in
the given mission M (lines 1-6). Then, it obtains the robot’s pose
(i.e., coordinate) in the original mission at the given tick t by calling
GetRobotPose and stores the results to Porg at line 9.We remove each
environment configuration variable’s impact (i.e., vi) by assigning
∅ to vi . Next, we obtain a new robot’s pose (line 13) without the
object vi , and store it to Pi . We compute delta ∆i by calculating
Euclidean distance between Porg and Pi (line 14). We modify vi ’s
value on each iteration to remove the object (line 12), and restore
it (line 16). Finally, we construct a set of proportions of individual
variables’ deltas (line 19).

4.1.3 Temporal Analysis. We analyze how Dcc values change over
time (i.e., trend) to identify the causes of a bug.
Time Window for Temporal Analysis. Robots typically have
some lag in recognizing and reacting to changes in their surround-
ings. We call such time durationTwin (or time window for temporal
analysis), and focus on the trend of Dcc values within the window.
Note that different swarm algorithms may have different time win-
dows so test missions are typically provided by the developers or
can be obtained with slight changes of their configuration. Then, we
identify when the currentDcc value is changed more than 10% than

its previous tick’s Dcc value (i.e., Dcc value is rapidly changing).
Note that the 10% threshold is configurable3.If such rapid changes
are observed, we record how long the changing trend lasts. We
calculate the average time they last and use it for the time win-
dow, Twin. In this paper, we measured Twin values of 7.6 ticks, 100
ticks, 6 ticks, and 3 ticks for Adaptive Swarm [2], Swarmlab [88],
Fly-by-logic [60], and Howard’s [16] respectively.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

158 160 162 164

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

158 160 162 164

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

142 144 146 148

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

142 144 146 148

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

159 161 163 165 167

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

159 161 163 165 167

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

159 161 163 165 167

D
cc

(%
) Leader

Follower 2

Follower 3

Obstacle 1

Obstacle 2

Obstacle 3

Legend

𝑇𝑤𝑖𝑛

Original

(Decreasing)
Reinforced

(Decreasing)

Inverted

(Increasing)

Original

(Increasing) Balanced
(Stable)

D
cc

(%
)

Time
(sec)

100

75

50

25

0

Original

(Stable) Imbalanced
(Decreasing)

(infl_radius = 0.15)

(a) Original

(nu = 0.0007)

(infl_radius = 0.3)

(b) Reinforcing

(infl_radius = 0.03)

(c) Inverting

158 160 162 164 142 144 146 148

159 161 163 165 167

100

75

50

25

0

100

75

50

25

0

100

75

50

25

0
158 160 162 164 142 144 146 148

100

75

50

25

0

100

75

50

25

0

100

75

50

25

0
159 161 163 165 167159 161 163 165 167Time

(sec)

(nu = 0.0014)

(e) Balancing

(xi = 600.0) (xi = 400.0)

(d) Imbalancing

Figure 6: Examples of Dcc value trends and fixing strategies.

Fixing Strategies Based onDccTrends.With the identifiedTwin,
we try to identify a temporal trend of Dcc values within a family of
predefined templates, as shown in Figure 6, that reflect our experi-
ence in practice. Then, we apply a set of predefined fixing strategies
depending on the matching temporal trend template. From the time
that it causes a buggy behavior, Tbug , the time window for our tem-
poral analysis starts at ‘Tbug −Twin’ and ends at ‘Tbug ’, as shown in
Figure 6. Then, we apply the following four strategies.
1. Reinforcing. If the trend of Dcc values is either increasing

or decreasing, we try to reinforce the trend (i.e., increasing or
decreasingmore). Figure 6-(a) shows an example of a decreasing
trend of Dcc values. Figure 6-(b) is a fix obtained by changing
the value of infl_radius (a swarm configuration variable that
represents the maximum sensing distance for objects) to 0.3
from 0.15 (the original value shown in Figure 6-(a)).

2. Inverting. If Dcc values are increasing/decreasing, we gener-
ate a fix to invert (i.e., decrease/increase) the trend of Dcc val-
ues, respectively. For example, Figure 6-(c) inverts the trend of
Dcc values from Figure 6-(a) by changing the value of infl_radius
to 0.03 (from 0.15). This strategy is effective when a swarm over-
looks an essential factor and focuses on trivial inputs. It would
invert the focus so that the essential factor can be considered.

3. Imbalancing. If a Dcc value of the variable does not have
noticeable changes, we try to introduce changes that can lead
to different swarm behavior. We first try to imbalance (i.e.,
either increase or decrease) the Dcc values.
For example, Figure 6-(d) introduces a decreasing trend by
changing the value of xi (a swarm configuration variable) to
400 from 600. xi represents the non-leader robot’s tendency of
following the leader drone. Reducing this value allows robots
to focus on other surroundings.

4. Balancing. Swarm algorithms may fail because they acciden-
tally take some inputs into the computation more or less than
they should be. This strategy will try to reduce the impact of

3The optimal for each algorithm can be profiled. Details can be found in [82]. We
profile the four algorithms we evaluated, and find that 10% works for all of them.

Swarmbug: Debugging Configuration Bugs in Swarm Robotics ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

overly-prioritized objects in algorithms. For example, Figure 6-
(e) changes the value of nu from 0.0007 to 0.0014. nu swarm
configuration variable representing the priority of avoiding
obstacles over other goals (e.g., following the leader). The fix
prevents the drone from being overly considering the leader.

4.2 Fix Validation

4.2.1 Profiling Spatial Variations. It is common to observe a swarm
behaves differently between each test. A robust fix should be tested
under such diverse behaviors. To understand the variation of a
given swarm algorithm, we profile the drone’s poses from tests.
Aligning Spatial Coordinates. Spatial coordinates of the swarm
can vary across the test runs. For example, two relatively identical
flights can have different coordinates if the entire swarm’s poses are
shifted. To identify the variation of drones’ poses in the swarm, it is
necessary to align the drones’ poses based on common coordinate
system. Specifically, we set the spatial coordinates of the swarm on
the drone that caused a bug (e.g., a crash). Other objects including
other drones and obstacles are referenced accordingly.
Computing Spatial Variations.We runn sets of tests where each
set includes N tests (N = 10 in this paper), until we reach a fixed
point of the spatial variation. We measure the spatial variation
of the drones’ poses from all the test runs on each test set. For
measuring the spatial variation SV , we leverage the concept of
circular/spherical error probable (CEP/SEP) [20] to identify the
area that can include 90% of coordinates from the total tests.

On the ith test set, we measure the spatial variation of the drones’
poses (SVi) from all the test runs executed at this point (i ∗ 10 tests).
We repeat the process until we observe SVi−1 and SVi do not differ
more than 5%. In general, we reach the fixed point with 10 test sets,
meaning that we run 100 tests in total. Details can be found on [82].

To this end, we obtain a map called SVmap (Spatial VariationMap)
that shows the aligned spatial variations of individual robots and
objects. Figure 7 shows an example SVmap obtained from Adaptive
Swarm [2]. In the map, observed robots are presented as points.
Solid contour lines indicate areas that are estimated as the same
density. The contour lines represent areas that contain the sample’s
population from 10% to 90%, where the outmost area includes 90%,
and each inner area has 10% less population.

Leader

Follower 1

Follower 2

Follower 3

Legend

Obstacle

Follower 1

Follower 2

Follower 3

Leader Flight

direction of

the swarm

Figure 7: Spatial Variation Map (SVmap)
4.2.2 Feedback-driven Fuzzing. We validate the generated fixes
by testing them under various scenarios. We use SVmap, which
represents the spatial variation of the swarm under test. We aim to
spawn robots and obstacles within the regions shown SVmap.

Initially, we spawn them in inner layers more than outer layers
(because more drones were observed there during the profiling).
During the tests, we record Dcc values. If the Dcc values of the

current test differ by more than 10% from all the previously observed

Dcc values, we consider the test covered some new swarm behav-
iors, hence a meaningful test covering a new scenario. In this case,
we prioritize creating new tests that are similar to the current one.
If the Dcc values from the current testing are similar to Dcc values
from previous tests, we prioritize the other layers. Note that we
essentially use Dcc values as feedback representing the behavior
of the swarm. If we tried all the layers and cannot find new Dcc
values that are more than 10% different from the previous tests, we
extend the layers to cover larger spaces.

The process terminates (1) when the test fails (e.g., robots crash-
ing to obstacles or walls) or (2) reaches a predefined timeout. If we
reach the timeout without a failure, we consider the fix is valid.
During the testing, if we observe any crashes or runs that fail to
reach the original goal, we consider them unsuccessful runs, and
the corresponding fixes are discarded.

4.3 Fix Prioritization

The fixes by Swarmbug may affect different aspects of the swarm
behavior in an undesirable way. For example, a fix may resolve a
crash by changing the swarm’s formation significantly (increasing
the distances between drones). In such a case, the swarm with the
fix may look very different from the original one.

To this end, we rank the fixes by how much they preserve the
original algorithm’s behavior. Specifically, for each fix, we compare
Dcc values from the swarm with the original configuration and
fixed configuration. Then, we rank the fixes with smaller differences
higher because they preserve the original behavior of the swarm
more than those with larger differences in Dcc values. In many
cases, a higher-quality fix does not significantly change the swarm’s
behavior while eliminating the fault bug. Note that we essentially
use Dcc to approximate the swarm behavior.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

139 142 144 146 148 150 154

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

148 150 152 154 156 158 159

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

159 161 163 165 167 169 171

D
cc

(%
)

Time
(sec)

100

75

50

25

0

(a) Original execution’s Dcc (c) Dcc of MSE: 0.0224(b) Dcc of MSE: 0.0129

Leader Follower 2 Follower 3 Obstacle 1 Obstacle 2 Obstacle 3

Legend

158 163 167 171 148 152 156 159 139 144 148 154

100

75

50

25

0

100

75

50

25

0

Figure 8: Example MSE scores

Measuring Distances of Dcc Values. To compare Dcc values
from different runs, we leverage the Mean Squared Error (MSE).
Figure 8-(a) shows Dcc values from the original execution, and
Figure 8-(b) and (c) are Dcc values from executions with two dif-
ferent fixes. We rank the one with a smaller MSE value (0.0129)
higher than the other with MSE value 0.0224. Note that we make
them have the same length using interpolation (i.e., applying linear
interpolation to the shorter sequence), then calculate the MSE to
handle Dcc values of different time periods.

5 EVALUATION

Implementation. We prototype two versions of Swarmbug to
support four swarm algorithms. One in Python (742 lines) to sup-
port Adaptive Swarm [2] and another one in Matlab (536 lines)

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon

to support Swarmlab [88], Fly-by-logic [60], and Howard’s [16].
We also modified existing simulators/emulators. Our analysis for
SVmap (Section 4.2) is written in R (632 lines).
Environment Setup.We performed our evaluation on an Intel i7-
9700k 3.6Ghz and 16GBRAM, and 64-bit LinuxUbuntu 16.04. For the
real-world experiment in Section 5.2.1, we use six Crazyflies [13].

Table 1: Selected Algorithms for Evaluation

Name SLOC Drones Objective

Adaptive Swarm [2] 3,091 20 Flight avoiding static & dynamic obst.
Swarmlab [88] 13,213 20 Flight avoiding static obstacle
Fly-by-logic [60] 13,244 6 Optimizing path avoiding unsafe zone
Howard’s [16] 1,989 20 Flight avoiding static obstacle

Swarm Algorithms. As shown in Table 1, we use four representa-
tive and diverse swarm algorithms. To select the four algorithms, we
search total 23 swarm-related research papers with open sourced
algorithms and 54 public GitHub repositories related to swarm
robotics from 2010 to 2020. Among these, 25 came with runnable
code from which we pruned out 12 that were just off-line planning
algorithms not reactive to the environment, and 9 algorithms that
did not exhibit collective behaviors (e.g., collections of individual
drones without cooperative interactions). Finally, we end up with
the selected four swarm algorithms. Details can be found in [82].

Note that while there are many swarm algorithm papers, the
viable implementations are limited. We found that many repos-
itories do not include the full implementations to support the
swarm [33, 38, 62, 65, 78, 91] or do not release enough details for
usage [3, 70, 99]. Others just include rudimentary implementations
that do not provide basic swarm functionality or testing environ-
ments (e.g., maintaining formation, avoiding obstacles) [9, 26, 32,
53, 72, 87, 95, 96].

Table 1 shows the SLOC (Source Line of Code) of algorithms and
the number of drones we used for the evaluation. We use 20 drones
for all the algorithms, except for the Fly-by-logic as it does not
support a swarm with up to 6 drones. The last column briefly de-
scribes the objective of each algorithm. Among the four algorithms,
Adaptive Swarm is the only algorithm that enforces a particular for-
mation during the mission. Swarmlab tries to match the speed with
other robots during the mission, while the other three algorithms
consider other robots as an object to avoid. Swarmlab implements
two swarm algorithms: Olfati-Saber’s [58] and Vicsek’s [86]. We
use Olfati-Saber’s algorithm because Vicsek’s algorithm has a bug
(all the robots are disappearing after a mission starts).

5.1 Effectiveness

Buggy Behaviors. During the evaluation, we aim to fix four bug
classes as shown in Figure 9 by using Swarmbug: (a) A drone fails
to avoid a moving obstacle in Adaptive Swarm, leading to a crash,
(b) Drones fail to avoid the second static obstacles they encounter,
crashing to the pillar structure which is a round shape object in the
figure, (c) The first drone fails to avoid the unsafe zone (represented
as the red cube) that the algorithm aims to go around, and (d) A
drone (the green sphere) crashes into an obstacle (the red sphere).

5.1.1 Behavior Causal Analysis. Table 2 shows the result of Swarm-
bug’s causal analysis. “Trend” shows the identified trends of Dcc
values as described in Section 4.1.3. Note that the variable name is

(c) Fly-by-logic

(a) Adaptive Swarm

(d) Howard’s

Goal

Goal

Goal

Goal

(b) Swarmlab

Legend

Flight direction of the swarmCrash point Goal of the missionGoal

Crashed into

unsafe zone

Figure 9: Buggy behaviors in the four selected algorithms

the one that dominates the Dcc values. “Strategies” shows all the
fixing strategies applied. “Swarm Configuration” shows the swarm
configuration variables (and their initial values) we mutate to apply
the fixing strategy (e.g., reinforcing or inverting the trend of Dcc
values). To achieve a target Dcc trend, Swarmbug tries both (1)
increasing the value by two times and (2) decreasing the value by
80%, and chooses one that achieves the target Dcc trend. Note that
we omit several swarm configuration variables4 that could not lead
to any fixing strategies. Also, some strategies cannot be done by mu-
tating a particular environment variable (e.g., mutating drone_vel
does not reinforce the trend in the Adaptive Swarm’s case). In such
a case, we consider the strategy is not applicable and mark it as é.
Also, there are some cases where the strategies are well achieved
while the resulting execution always crashes. To check such a case,
we run 10 runs for sanitization purposes. Those that fail to pass the
sanitization test (e.g., drones crashing into other objects/drones)
are marked as . All successfully applied strategies are annotated
by Ë. It does not include the imbalancing strategy which requires
the Dcc trends to be balanced, while all the observed Dcc trends
are decreasing.

5.1.2 Testing Fixes. “Profiling” presents the results of 100 tests
we run for spatial variation profiling (Section 4.2.1). It took ap-
proximately 25.2 (for Adaptive Swarm), 2.8 (for Swarmlab), 0.4 (for
Fly-by-logic), and 0.3 (for Howard’s) hours for run 100 tests. Note
that they are naive testing runs where Swarmbug further conducts
fuzz testings (shown in the “Fuzzing” column) guided byMSE scores
of Dcc values. In general, our fuzz testing finds more crashes (lower
rates of successful runs) than the naive profiling tests, meaning that
it is effective in discovering more diverse testing scenarios.

Swarmbug initially generates 11 (for Adaptive Swarm), 6 (for
Swarmlab), 4 (for Fly-by-logic), and 3 (for Howard’s) fixes. Gray
cells represent fixes that do not fail any tests during the profiling
step. “Fuzzing” shows the number of successful tests during the
fuzz-testing out of 30 hours for Adaptive Swarm and Swarmlab, 10
hours for Fly-by-logic and Howard’s. Gray cells mean the fixes that

4In Table 2, we omit 8, 11, 4 swarm configuration variables from Swarmlab, Fly-by-logic,
and Howard’s respectively.

Swarmbug: Debugging Configuration Bugs in Swarm Robotics ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 2: Effectiveness of Swarmbug

Algorithm

Behavior causal analysis Fix validation Fix prioritization Dev.

Trend
Strategies Profiling

1
Fuzzing

3
MSE score (Rank) cfm.

5

Swarm Configuration Reinforcing Inverting R
2

In
2

Reinforcing Inverting R
2

In
2

w (=20.0) Ë (+20.0) Ë (-18.0) 34 16 1195/4292 (28%) 601/4282 (14%) - - -
xi (=400.0) Ë (-380.0) Ë (+400.0) 100 13 4281/4324 (99%) 477/4333 (11%) 0.024 (2) - Ë

Adaptive Decreasing nu (=1.4E-03) Ë (+1.4E-03) Ë (-1.12E-03) 100 51 4060/4215 (96%) 1858/4424 (42%) 0.031 (3) - Ë
Swarm (robot1.sp) int_dist (=0.7) Ë (+0.7) Ë (-0.56) 88 58 3922/4466 (88%) 2131/4441 (48%) 0.053 (4) - Ë

infl_radius (=0.3) Ë (-0.24) Ë (+0.3) 11 100 411/4190 (10%) 4199/4199 (100%) - 0.022 (1) Ë
drone_vel (=4.0) é Ë (+4.0) - 76 - 3052/4788 (64%) - 0.061 (5) Ë

c_vm (=3.0) Ë (-2.4) - 15 - 669/4554 (15%) - - -
b (=5.0) Ë (-4.0) é 22 - 1019/4323 (24%) - - - -

Swarmlab Decreasing r0 (=10.0) Ë (+10.0) é 100 - 4508/4537 (99%) - 0.021 (1) - Ë
(p_swarm.u_ref) c_pm_obs (=5.0) é Ë (-4.0) - 57 - 2311/4661 (50%) - - -

d_ref (=10.0) é Ë (-8.0) - 29 - 1167/4551 (26%) - - -
v_ref (=6.0) Ë (-4.8) é 100 - 3811/4088 (93%) - 0.023 (2) - Ë

Fly-by-logic Decreasing max_vel (=0.8) Ë (+0.8) é 78 - 3776/4896 (77%) - 0.021 (2) - Ë
(obs) max_accl (=1.0) Ë (+1.0) é 60 - 2808/4888 (57%) - 0.025 (3) - Ë

C (=50.0) Ë (+50.0) Ë (-40.0) 100 23 4808/4901 (98%) - 0.015 (1) - Ë

Howard’s Decreasing dist_thresh (=2.0) Ë (+2.0) é 26 - 1444/6281 (23%) - - - -
(wypt) obst_pot_c

4 (=1000.0) Ë (+1000.0) Ë (-800.0) 100 14 5697/6311 (90%) 831/6211 (13%) 0.011 (1) - Ë

1: Data in Profiling column indicates the number of successful mission for 100 tests. 2: R and In indicate Reinforcing and Inverting, respectively. 3: Data in Fuzzing column indicates
the number of successful mission over the number of fuzz testing in given time and success rate. 4: The program has hardcoded constants instead of variables. We assign a
conceptual name to them. 5: Checkbox in this column indicates whether the bugs and fixes are confirmed by developers or not.

are most successful (e.g., more than 90% of them are successful).
We run Adaptive Swarm and Swarmlab longer than the other two
because a single run from the first two algorithms is much slower
than the other two.

5.1.3 Fix Prioritization. As explained in Section 4.3, we obtain MSE
scores of the fixes and rank them according to the scores. The most
promising fixes are ranked the first in all cases. Two fixes are ranked
second: xi and v_ref in Adaptive Swarm and Swarmlab, respectively.
Our manual inspection shows that they are still valid fixes while
they are ineffective compared to the fix ranked first.

However, nu in Adaptive Swarm, which is ranked third, shows
abnormal behavior: it often makes robots stall or even move back-
ward when they recognize obstacles (even if the obstacles are quite
far away from them). Our manual inspection reveals that the fix
prioritizes avoiding obstacles significantly more than other goals.
Confirmation from the Algorithm Authors. Throughout our
research project, we have communicated with the authors of all four
swarm algorithms [2, 16, 60, 88] regarding the configuration bugs
we find. The bugs and fixes for the three algorithms are confirmed
and acknowledged by the authors. The authors also agreed that the
higher-ranked fixes are better than those that are lower-ranked.

5.2 Case Study

5.2.1 Real-world Experiment of a Fix from Swarmbug. To show
that a fix generated and validated by Swarmbug is effective in
real-world environment (e.g., with various noises), we conduct
a physical experiment that uses the fixed configuration (nu) of
Adaptive Swarm to reproduce the same flight.
Setup and Presentation. We use 6 Crazyflies [13] and leverage
CrazySwarm [66] as a controller for swarming. We use a local posi-
tion system (called LPS [12]) supported by Crazyflies to precisely
locate drones’ 3D positions in space. We conduct the experiments in
the lab environment where the space is 3m × 4m × 3m (in width ×
length× height).We use the same trajectory (which includes drones’
poses) from the Adaptive Swarm mission shown in Figure 9-(a).

Figure 10 illustrates the results. Drones start from the right-
bottom side of the map (marked as ‘Start’) and move toward the
left (marked as ‘Goal’), while avoiding obstacles. There is an L-
shape static obstacle which we use two white boxes in our physical

experiment. Moving obstacle (i.e., red symbol) is approaching the
drones from the left to right direction in the upper side of the map.
Thick lines are trajectories computed by swarm algorithms, and
thin lines with jitters are the traces of the real physical drones’
movements from the motion capture system [12]. The physical
aerodynamics and noise may have caused these variations (i.e.,
jitters). Along the trajectories, we visualize instances of drones at
two different time ticks. Circled letters represent drones, where
‘L’ means the leader, and A∼E means follower 1∼5. The symbol is
followed by a number that represents the time tick of the instances.
For instance, ‘L1 and A1∼E1’ represent the drones’ positions at the
time tick 1 while ‘L2 and A2∼E2’ are positions of the same drones at
the time tick 2. The red transparent lines between drones visualize
a group of drones at the same time tick.
Result. Figure 10-(a) shows partial traces of the drones using
Swarmbug’s fix “infl_radius = 0.6” (from the original value 0.3),
which safely finishes the mission without crashing. Figure 10-(b)
shows a picture of the physical experiment, while safely passing
the obstacle (the box behind the drones). With the Swarmbug’s fix,
drones maintain a sufficient safe distance. A video of this physical
experiment is available on [82].
Finding a Fix without Swarmbug. To provide a comparison
point for the quality of the fix generated by Swarmbug, we conduct
a small additional experiment that tries to come up with a fix by
manually changing the parameters without Swarmbug. First of all,
it would take a lot of time to pick the right configuration variable
for the fix (i.e., infl_radius), without any guidances such as Dcc
and MSE values used in Swarmbug. Even if we assume that the
desired variable, infl_radius, is chosen, finding a good value for the
fix is difficult. Assume that 0.4 is chosen (the original value is 0.3).
The fix is tested by running the simulations 200 times that are all
successfully finished without any crashes.

To this end, we run a physical experiment with the fix as shown
in Figure 10-(c). Observe that Follower 2 (B2) and Follower 3 (C2)
crash each other, meaning that while it passes the naive testing
(200 times), the fix is not effective in real-world scenarios.

5.2.2 Debugging a Ground Vehicle Swarm. In this case study, we
show how Swarmbug is used to debug a ground vehicle swarm
algorithm’s configuration bug. We use a swarm algorithm [85]

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon

5

5

5

5

5

5

(c) Trajectories (Naïve Fix)

Start

O
b

st
ac

le

Crashed

drones
B2

C2
E2

Moving obstacle

(d) Picture from the

physical experiment of (c)

O
b

st
ac

le

Start

(a) Trajectories (SWARMBUG Fix)
(b) Picture from the

physical experiment of (a)

Moving obstacle

Safe

C2

B2

E2

Legend

ObstaclesFollower 4 ()D1 D2 Follower 5 ()E1 E2Follower 1 ()A1 A2 Follower 2 ()B1 B2Leader ()L1 L2 Follower 3 ()C1 C2

D1E1

A1

B1
L1

C1
L2

C2

B2
D2

E2A2

D1
E1

A1

B1L1

C1
L2

C2B2

D2

E2

A2

Figure 10: Trajectories of 6 drones during our physical experiment.

0.2 2.3 4.3 6.4 8.5-1.0 0.7 2.3 4.0 5.7m

5.1

3.5

1.8

0.2

-1.5

2.3

0.2

-1.9

-4.0

-6.1

0%

20%

40%

60%

80%

100%

322 332 342 352 362 372

(a) Original execution (b) Execution with fix

Repetitive

crashes

D
cc

(%
)

100

80

60

40

20

0

(c) Dcc of original execution (d) Dcc of execution with fix

0%

20%

40%

60%

80%

100%

322 332 342 352 362 372

100

80

60

40

20

0
322 332 342 352 362 372 322 332 342 352 362 372

Move
direction

Start pointS

Legend

S

S

Waypoint

Rover 3

Cube

Rock

Wall

Legend

Rover 2

m

Time
(sec)

Figure 11: Applying Swarmbug to Swarmathon

submitted to an annual robot competition funded by NASA: Swar-
mathon [57, 81]. The algorithm [85] took third place in the compe-
tition and was selected as the authors identified the bug with a few
test runs. The goal of the algorithm is to leverage the swarm robots
to gather resources spread throughout the map quickly.

During the mission, there is a buggy behavior that rovers keep
crashing on the north border of the map and get stuck into the
north-east corner, as shown in Figure 11-(a).

Swarmbug identifies the Dcc trends as shown in Figure 11-(c)
with seven environment configuration variables. Fluctuating Dcc
values for the wall (i.e., the gray area) in the graph represent the
crashes. Swarmbug applies the balancing strategy based on the
trend, identifying 14 potential fixes (from 38 swarm configuration
variables). Among these fixes, “M_PI_2 = rand()+pi()/2” ranked the
first (the original value for the variable is “pi()/2”). The fix yields the
Dcc trend shown in Figure 11-(d). Most of the gray area is removed
as the fix reduces the number of crashes. As shown in Figure 11-(b),
the execution with the fix does not show the buggy behavior (e.g.,
drones stuck in the corner).

6 DISCUSSION

Overhead. During the operation, Swarmbug runs a number of
tests and conducts various analyses (e.g., computing Dcc and MSE
values) on the collected data from the tests. Note that the analyses
are done offline. We also instrument existing simulators to collect
values for Dcc computation and the instrumentations incur less
than 5% overhead at runtime.

Applicability of Swarmbug’s Fuzz Testing. While this paper
focuses on finding and fixing configuration bugs, Swarmbug’s fuzz
testing can find other types of bugs as well.

Specifically, while fuzz-testing the Adaptive Swarm, we find a
bug in the algorithm that may rarely appear at runtime. That is,
when a follower drone and the leader drone get very close to each
other, the leader does not try to avoid the follower, leading to a crash.
Our manual analysis shows that the leader drone’s algorithm does
not consider follower drones as an object to avoid. This is odd because
follower drones have the logic to avoid the leader drone if they
get too close. Our conversation with the developer confirmed that
the developer assumed that the leader will always be far ahead of
other drones and do not need to implement code to avoid a collision.
Even testing three days without Swarmbug does not reveal the bug.
Swarmbug’s fuzz-testing identified such a scenario and exposed
the defect, thanks to the guidance via Dcc and MSE values. We
also validated this can happen in the real-world and the issue is
confirmed by the author of the algorithm as well. More details can
be found on our project page [82].

We also find that Dcc can be used to identify buggy logic in the
swarm algorithm. Specifically, when we initially evaluate Howard’s
algorithm, we find that Swarmbug could not find any possible
fix. We investigate the Dcc values produced during the experiment
further and notice that the observedDcc values are extremely stable,
except for slight variations observed in obst_pot_c just before the
drone crashes. As we trace back to code related to obst_pot_c, we
found that it detects the obstacle only after a crash happens. To
properly avoid objects before it crashes, the algorithm should detect
the object before it gets too close.

To fix this, we modify the algorithm so that it can detect objects
early. After we patch the algorithm (can be found on our project
page [82]), we conduct our evaluation on the algorithm again, and
Swarmbug successfully finds a possible fix as shown in Table 2.
Scalability and Usability of Swarmbug. Our design is general
and applicable to other swarm algorithms while it requires some
engineering effort. Specifically, to support a new swarm algorithm,
two tasks are required: (1) identifying configuration-variables (we
provide a profiling tool for this in Section 4.1.1) and 5 thresholds
(e.g., mission completion time, time-window, MSE thresholds), (2)
instrumenting the algorithm to integrate Swarmbug (e.g., changing
289 SLOC for Adaptive Swarm). In our evaluation, it took 10∼18

Swarmbug: Debugging Configuration Bugs in Swarm Robotics ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

hours (by a graduate student with moderate experience in drones)
to complete the two tasks for an algorithm. The effort is non-trivial,
but it is required one time for each algorithm. For example, besides
the four evaluated algorithms, we have applied Swarmbug to Swar-
mathon (see Section 5.2.2), taking about 10 hours (identifying 38
configuration-variables, the 5 thresholds, and changing 152 SLOC
for the integration).
Future Directions. We envision future directions of our paper
along two dimensions: empirical and technical. For the empirical
aspect, applying Swarmbug to more diverse swarm algorithms/sys-
tems (e.g., ground vehicle swarm) and more complicated scenarios
(e.g., drones navigating a city landscape) and analyzing the cost
and benefits of it can be the future work. Also, further analysis
support to complete some of the semi-automated processes such as
identifying key parameters used as inputs in Swarmbug can be the
future work as the technical aspect.

7 RELATEDWORK

Testing Autonomous Robotics. Several testing methods are pro-
posed [4, 31, 34] and studied [1] to solve and understand diverse
challenges in testing autonomous robots. To evaluate the explo-
ration of the system under test (SUT), coverage-driven verification
(CDV) guides the testing process with an automated and systematic
aspect; thus developers generate a broad range of test cases [4].
ASTAA [34] proposed an automated system specialized in stress
and robustness testing and then discovered hundreds of bugs. Tim-
perley et al. empirically studied and found that the majority of
bugs in autonomous systems can be reproduced by software-based
simulations [83]. Hildebrandt et al. integrated dynamic physical
models of the robot to generate physically valid yet stressful test
cases [31].

Alternatively, formal validation and verification are rigorously
studied [35, 52] and used to prove properties of the testing programs
such as correctness, functionality, and availability. Bensalem et al.
developed a toolchain for specifying and formally modeling the
functional level of robots [11], and Halder et al. implemented a
system for checking the model of robots. Deeproad [23] validated
inputs for testing autonomous driving systems.

Unlike previous studies, Swarmbug aims to debug swarm algo-
rithms, which is an order of magnitude more complex, by using the
novel concept of the degree causal of contribution (Dcc).
Testing/Debugging Approaches. Delta debugging [97] isolates
the difference between a passing and a failing test case, by running
mutated test cases and observing the execution results. BugEx [69]
and Holmes [39] leverage a similar approach to understand the
cause of bugs. In addition, Coz [19] introduces additional delays
to infer possible optimization opportunities. LDX [46] perturbs
program states at runtime to infer causality between system calls.

Swarmbug uses a similar idea of mutating environment con-
figuration variables to conduct behavior causal analysis. However,
Swarmbug handles swarm algorithms where inputs are essentially
streams of data, while other techniques may need a non-trivial
amount of modifications to handle such input data. Swarmbug also
leverages the Dcc values to create a fuzz testing system.

Researchers leveraged random testing techniques (e.g., fuzzing)
to continually improve the quality of test cases [47, 64, 84]. PySE [43]
used a reinforcement learning-based approach to find a worst-case

scenario. There are also model-based approaches inferring the ac-
tual program state [71, 74] or input types [89].
Automated Program Repair. There is a line of research focused
on fixing buggy programs automatically [28, 30, 41, 48, 90]. In partic-
ular, [48] leverages a genetic programming approach [44] to repair
a buggy program. [30, 90] proposes an automated program repair
technique for programming assignments. While the previous works
and Swarmbug share the same goal of fixing a bug, Swarmbug aims
to fix configuration bugs in complex swarm algorithms running
multiple robots. It fixes bugs by changing the swarm configuration
variables’ values, while the previous works change the program
code to repair. QLOSE [21] leverages program distances to come
up with solutions for program repairing. SemCluster [63] defines a
new metric based on the input data space and uses the metric to
cluster programs. Swarmbug leverages Dcc to guide the analysis
and testing for swarm algorithms.

8 CONCLUSION

We proposed Swarmbug, a debugging approach for resolving con-
figuration bugs in swarm algorithms. Swarmbug automatically
identifies the causes of configuration bugs by creating new execu-
tions with mutated environment configuration variables. It com-
pares the new executions with the original execution to find the
causes of the bug. Then, given the cause, Swarmbug applies four
different strategies to fix the bug by mutating swarm configuration
variables, resulting in fixes for the configuration bugs. Our evalua-
tion shows that Swarmbug is highly effective in finding fixes for
diverse configuration bugs in swarm algorithms.

ACKNOWLEDGMENTS

We thank the anonymous referees for their constructive feedback.
The authors gratefully acknowledge the support of NSF 1916499,
1908021, 1850392, 1853374, and 1924777. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
sponsor.

REFERENCES

[1] Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven Timperley.
2020. A Study on Challenges of Testing Robotic Systems. In 2020 IEEE 13th

International Conference on Software Testing, Validation and Verification (ICST).
96–107. https://doi.org/10.1109/ICST46399.2020.00020

[2] Ruslan Agishev. 2019. Adaptive Control of Swarm of Drones for Obstacle Avoidance.
Master’s thesis. Skolkovo Institute of Science and Technology, Moscow, Russia.

[3] Javier Alonso-Mora, Stuart Baker, and Daniela Rus. 2015. Multi-robot navigation
in formation via sequential convex programming. In 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). 4634–4641. https://doi.org/
10.1109/IROS.2015.7354037

[4] Dejanira Araiza-Illan, David Western, Anthony G Pipe, and Kerstin Eder. 2016.
Systematic and realistic testing in simulation of control code for robots in col-
laborative human-robot interactions. In Annual Conference Towards Autonomous

Robotic Systems. Springer, 20–32.
[5] Ardupilot. 2020. ArduCopter. https://ardupilot.org/copter/docs/introduction.

html.
[6] H. Asama, M. Habib, I. Endo, K. Ozaki, A. Matsumoto, and Y. Ishida. 1991. Func-

tional distribution among multiple mobile robots in an autonomous and de-
centralized robot system. In Proceedings. 1991 IEEE International Conference

on Robotics and Automation. IEEE Computer Society, Los Alamitos, CA, USA,
1921,1922,1923,1924,1925,1926. https://doi.org/10.1109/ROBOT.1991.131907

[7] Mona Attariyan and Jason Flinn. 2010. Automating Configuration Troubleshoot-
ing with Dynamic Information Flow Analysis. In Proceedings of the 9th USENIX

Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI’10). USENIX Association, USA, 237–250.

https://doi.org/10.1109/ICST46399.2020.00020
https://doi.org/10.1109/IROS.2015.7354037
https://doi.org/10.1109/IROS.2015.7354037
https://ardupilot.org/copter/docs/introduction.html
https://ardupilot.org/copter/docs/introduction.html
https://doi.org/10.1109/ROBOT.1991.131907

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon

[8] Erkin Bahceci, Onur Soysal, and Erol Sahin. 2003. A review: Pattern formation and
adaptation in multi-robot systems. Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA, Tech. Rep. CMU-RI-TR-03-43 (2003).
[9] Boldizsár Balázs, Gábor Vásárhelyi, and Tamás Vicsek. 2020. Adaptive leadership

overcomes persistence–responsivity trade-off in flocking. Journal of the Royal
Society Interface 17, 167 (2020), 20190853. https://doi.org/10.1098/rsif.2019.0853

[10] Jan Carlo Barca and Y. Ahmet Sekercioglu. 2013. Swarm robotics reviewed.
Robotica 31, 3 (2013), 345–359. https://doi.org/10.1017/S026357471200032X

[11] Saddek Bensalem, Lavindra de Silva, Félix Ingrand, and Rongjie Yan. 2013. A
verifiable and correct-by-construction controller for robot functional levels. arXiv
preprint arXiv:1309.0442 (2013).

[12] bitcraze. 2019. A local positioning system. https://www.bitcraze.io/products/loco-
positioning-system/.

[13] bitcraze. 2020. A lightweight, open source flying development platform based on
a nano quadcopter. https://www.bitcraze.io/products/crazyflie-2-1/.

[14] Alexandre Santos Brandão and Mário Sarcinelli-Filho. 2016. On the guidance
of multiple uav using a centralized formation control scheme and delaunay
triangulation. Journal of Intelligent & Robotic Systems 84, 1 (2016), 397–413.
https://doi.org/10.1007/s10846-015-0300-5

[15] Gino Brunner. 2019. autonomous-drone. https://github.com/szebedy/
autonomous-drone.

[16] Christian Howard. 2020. Algorithms developed to make drone swarm move
together. https://github.com/choward1491/SwarmAlgorithms.

[17] Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay
Kumar. 2018. A Survey on Aerial Swarm Robotics. IEEE Transactions on Robotics

34, 4 (2018), 837–855. https://doi.org/10.1109/TRO.2018.2857475
[18] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A Generic Dy-

namic Taint Analysis Framework. In Proceedings of the 2007 International Sym-

posium on Software Testing and Analysis (London, United Kingdom) (ISSTA ’07).
ACM, New York, NY, USA, 196–206. https://doi.org/10.1145/1273463.1273490

[19] Charlie Curtsinger and Emery D Berger. 2015. Coz: Finding code that counts
with causal profiling. In Proceedings of the 25th Symposium on Operating Systems

Principles. 184–197. https://doi.org/10.1145/2815400.2815409
[20] Daniel Wollschlaeger. 2020. Analyzes shooting data with respect to group shape,

precision, and accuracy. https://cran.r-project.org/web/packages/shotGroups/
index.html.

[21] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
repair with quantitative objectives. In International Conference on Computer Aided

Verification. Springer, 383–401. https://doi.org/10.1007/978-3-319-41540-6_21
[22] Celso De La Cruz and Ricardo Carelli. 2006. Dynamic modeling and centralized

formation control of mobile robots. In IECON 2006-32nd Annual Conference on

IEEE Industrial Electronics. IEEE, 3880–3885. https://doi.org/10.1109/IECON.2006.
347299

[23] Ankush Desai, Shaz Qadeer, and Sanjit A Seshia. 2018. Programming safe robotics
systems: Challenges and advances. In International Symposium on Leveraging

Applications of Formal Methods. Springer, 103–119. https://doi.org/10.1007/978-
3-030-03421-4_8

[24] Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mondada,
Stefano Nolfi, Tarek Baaboura, Mauro Birattari, Michael Bonani, Manuele Bram-
billa, Arne Brutschy, et al. 2013. Swarmanoid: a novel concept for the study
of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20, 4
(2013), 60–71. https://doi.org/10.1109/MRA.2013.2252996

[25] Jan Dufek. 2019. Multi-UAV Cooperative Surveillance. https://github.com/jan-
dufek/multi-uav-surveillance.

[26] Francesco. 2016. VRepRosQuadSwarm. https://github.com/merosss/
VRepRosQuadSwarm.

[27] Kshitij Gajapure. 2018. Drone Simulation with realistic controls made using
Unity. https://github.com/Kshitij08/Drone-Simulation.

[28] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65. https://doi.org/10.1145/
3318162

[29] Volker Grabe, Heinrich H Bülthoff, and Paolo Robuffo Giordano. 2012. On-board
velocity estimation and closed-loop control of a quadrotor UAV based on optical
flow. In 2012 IEEE International Conference on Robotics and Automation. IEEE,
491–497. https://doi.org/10.1109/ICRA.2012.6225328

[30] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. 2018. Automated clustering
and program repair for introductory programming assignments. ACM SIGPLAN

Notices 53, 4 (2018), 465–480. https://doi.org/10.1145/3296979.3192387
[31] Carl Hildebrandt, Sebastian Elbaum, Nicola Bezzo, and Matthew B Dwyer. 2020.

Feasible and stressful trajectory generation for mobile robots. In Proceedings of

the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
349–362. https://doi.org/10.1145/3395363.3397387

[32] Jun S Huang, Siqing Ma, Gao Li, Oliver W Yang, and Chang Shao. 2020. An
Artificial Swan Formation Using the Finsler Measure in the Dynamic Window
Control. Int J Swarm Evol Comput 9 (2020), 186.

[33] Ziyao Huang,WeiweiWu, Feng Shan, Yuxin Bian, Kejie Lu, Zhenjiang Li, Jianping
Wang, and Jin Wang. 2020. CoUAS: Enable Cooperation for Unmanned Aerial
Systems. ACM Transactions on Sensor Networks (TOSN) 16, 3 (2020), 1–19. https:

//doi.org/10.1145/3388323
[34] Casidhe Hutchison, Milda Zizyte, Patrick E Lanigan, David Guttendorf, Michael

Wagner, Claire Le Goues, and Philip Koopman. 2018. Robustness testing of
autonomy software. In 2018 IEEE/ACM 40th International Conference on Software

Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE, 276–285.
https://doi.org/10.1145/3183519.3183534

[35] Félix Ingrand. 2019. Recent trends in formal validation and verification of au-
tonomous robots software. In 2019 Third IEEE International Conference on Robotic

Computing (IRC). IEEE, 321–328. https://doi.org/10.1109/IRC.2019.00059
[36] Florida Space Institute. 2020. EZ-RASSOR. https://github.com/FlaSpaceInst/EZ-

RASSOR.
[37] Luca Iocchi, Daniele Nardi, and Massimiliano Salerno. 2000. Reactivity and

deliberation: a survey on multi-robot systems. In Workshop on Balancing Re-

activity and Social Deliberation in Multi-Agent Systems. Springer, 9–32. https:
//doi.org/10.1007/3-540-44568-4_2

[38] Alex Jinlei. 2018. Autonomous UAVs Swarm Mission. https://github.com/
AlexJinlei/Autonomous_UAVs_Swarm_Mission.

[39] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal testing:
understanding defects’ root causes. In Proceedings of the ACM/IEEE 42nd Inter-

national Conference on Software Engineering (Seoul, South Korea) (ICSE ’20).
Association for Computing Machinery, New York, NY, USA, 87–99. https:
//doi.org/10.1145/3377811.3380377

[40] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. 2012. Libdft: Practical Dynamic Data Flow Tracking for Commodity
Systems. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual

Execution Environments (London, England, UK) (VEE ’12). ACM, New York, NY,
USA, 121–132. https://doi.org/10.1145/2151024.2151042

[41] Dohyeong Kim, Yonghwi Kwon, Peng Liu, I. Luk Kim, David Mitchel Perry,
Xiangyu Zhang, and Gustavo Rodriguez-Rivera. 2016. Apex: Automatic Program-
ming Assignment Error Explanation. In Proceedings of the 2016 ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Languages,

and Applications (Amsterdam, Netherlands) (OOPSLA 2016). Association for Com-
putingMachinery, New York, NY, USA, 311–327. https://doi.org/10.1145/2983990.
2984031

[42] kitz. 2021. Position controller instability at yaw angles close to 180 degrees.
https://forum.bitcraze.io/viewtopic.php?t=4079.

[43] Jinkyu Koo, Charitha Saumya, Milind Kulkarni, and Saurabh Bagchi. 2019. Pyse:
Automatic worst-case test generation by reinforcement learning. In 2019 12th

IEEE Conference on Software Testing, Validation and Verification (ICST). IEEE,
136–147. https://doi.org/10.1109/ICST.2019.00023

[44] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA, USA. https://doi.org/10.
1007/BF00175355

[45] C Ronald Kube and Hong Zhang. 1993. Collective robotics: From social insects
to robots. Adaptive behavior 2, 2 (1993), 189–218. https://doi.org/10.1177/
105971239300200204

[46] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan
Saltaformaggio, Xiangyu Zhang, andDongyanXu. 2016. LDX: Causality Inference
by Lightweight Dual Execution. In Proceedings of the Twenty-First International

Conference on Architectural Support for Programming Languages and Operating

Systems (Atlanta, Georgia, USA) (ASPLOS ’16). Association for Computing Ma-
chinery, New York, NY, USA, 503–515. https://doi.org/10.1145/2872362.2872395

[47] Xuan-Bach D Le, Corina Pasareanu, Rohan Padhye, David Lo, Willem Visser,
and Koushik Sen. 2019. SAFFRON: Adaptive grammar-based fuzzing for worst-
case analysis. ACM SIGSOFT Software Engineering Notes 44, 4 (2019), 14–14.
https://doi.org/10.1145/3364452.3364455

[48] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011.
Genprog: A generic method for automatic software repair. Ieee transactions on
software engineering 38, 1 (2011), 54–72. https://doi.org/10.1109/TSE.2011.104

[49] Eric Liu. 2019. Crazyflie cannot be stable when take off, it flipped onto the ground.
https://github.com/USC-ACTLab/crazyswarm/issues/150.

[50] Yang Liu. 2019. Swarm formation sim. https://github.com/yangliu28/swarm_
formation_sim.

[51] Yang Liu. 2020. Swarm robot ros sim. https://github.com/yangliu28/swarm_
robot_ros_sim.

[52] Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher.
2019. Formal specification and verification of autonomous robotic systems: A
survey. ACM Computing Surveys (CSUR) 52, 5 (2019), 1–41. https://doi.org/10.
1145/3342355

[53] Li Ma, Weidong Bao, Xiaomin Zhu, Meng Wu, Yuan Wang, Yunxiang Ling,
and Wen Zhou. 2020. O-Flocking: Optimized Flocking Model on Autonomous
Navigation for Robotic Swarm. In International Conference on Swarm Intelligence.
Springer, 628–639. https://doi.org/10.1007/978-3-030-53956-6_58

[54] N Harris McClamroch and Danwel Wang. 1987. Feedback stabilization and
tracking of constrained robots. In 1987 American Control Conference. IEEE, 464–
469. https://doi.org/10.1109/9.1220

[55] Dejan Milutinović and Pedro Lima. 2006. Modeling and optimal centralized
control of a large-size robotic population. IEEE Transactions on Robotics 22, 6

https://doi.org/10.1098/rsif.2019.0853
https://doi.org/10.1017/S026357471200032X
https://www.bitcraze.io/products/loco-positioning-system/
https://www.bitcraze.io/products/loco-positioning-system/
https://www.bitcraze.io/products/crazyflie-2-1/
https://doi.org/10.1007/s10846-015-0300-5
https://github.com/szebedy/autonomous-drone
https://github.com/szebedy/autonomous-drone
https://github.com/choward1491/SwarmAlgorithms
https://doi.org/10.1109/TRO.2018.2857475
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/2815400.2815409
https://cran.r-project.org/web/packages/shotGroups/index.html
https://cran.r-project.org/web/packages/shotGroups/index.html
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1109/IECON.2006.347299
https://doi.org/10.1109/IECON.2006.347299
https://doi.org/10.1007/978-3-030-03421-4_8
https://doi.org/10.1007/978-3-030-03421-4_8
https://doi.org/10.1109/MRA.2013.2252996
https://github.com/jan-dufek/multi-uav-surveillance
https://github.com/jan-dufek/multi-uav-surveillance
https://github.com/merosss/VRepRosQuadSwarm
https://github.com/merosss/VRepRosQuadSwarm
https://github.com/Kshitij08/Drone-Simulation
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1109/ICRA.2012.6225328
https://doi.org/10.1145/3296979.3192387
https://doi.org/10.1145/3395363.3397387
https://doi.org/10.1145/3388323
https://doi.org/10.1145/3388323
https://doi.org/10.1145/3183519.3183534
https://doi.org/10.1109/IRC.2019.00059
https://github.com/FlaSpaceInst/EZ-RASSOR
https://github.com/FlaSpaceInst/EZ-RASSOR
https://doi.org/10.1007/3-540-44568-4_2
https://doi.org/10.1007/3-540-44568-4_2
https://github.com/AlexJinlei/Autonomous_UAVs_Swarm_Mission
https://github.com/AlexJinlei/Autonomous_UAVs_Swarm_Mission
https://doi.org/10.1145/3377811.3380377
https://doi.org/10.1145/3377811.3380377
https://doi.org/10.1145/2151024.2151042
https://doi.org/10.1145/2983990.2984031
https://doi.org/10.1145/2983990.2984031
https://forum.bitcraze.io/viewtopic.php?t=4079
https://doi.org/10.1109/ICST.2019.00023
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
https://doi.org/10.1177/105971239300200204
https://doi.org/10.1177/105971239300200204
https://doi.org/10.1145/2872362.2872395
https://doi.org/10.1145/3364452.3364455
https://doi.org/10.1109/TSE.2011.104
https://github.com/USC-ACTLab/crazyswarm/issues/150
https://github.com/yangliu28/swarm_formation_sim
https://github.com/yangliu28/swarm_formation_sim
https://github.com/yangliu28/swarm_robot_ros_sim
https://github.com/yangliu28/swarm_robot_ros_sim
https://doi.org/10.1145/3342355
https://doi.org/10.1145/3342355
https://doi.org/10.1007/978-3-030-53956-6_58
https://doi.org/10.1109/9.1220

Swarmbug: Debugging Configuration Bugs in Swarm Robotics ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

(2006), 1280–1285. https://doi.org/10.1109/TRO.2006.882941
[56] Yogeswaran Mohan and SG Ponnambalam. 2009. An extensive review of research

in swarm robotics. In 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC). IEEE, 140–145. https://doi.org/10.1109/NABIC.2009.5393617
[57] Luong A Nguyen, Thomas L Harman, and Carol Fairchild. 2019. Swarmathon: a

swarm robotics experiment for future space exploration. In 2019 IEEE International
Symposium on Measurement and Control in Robotics (ISMCR). IEEE, B1–3. https:
//doi.org/10.1109/ISMCR47492.2019.8955661

[58] Reza Olfati-Saber. 2006. Flocking for multi-agent dynamic systems: Algorithms
and theory. IEEE Transactions on automatic control 51, 3 (2006), 401–420. https:
//doi.org/10.1109/TAC.2005.864190

[59] Ori. 2020. DroneSimLab. https://github.com/orig74/DroneSimLab.
[60] Yash Vardhan Pant, Houssam Abbas, Rhudii A Quaye, and Rahul Mangharam.

2018. Fly-by-logic: control of multi-drone fleets with temporal logic objectives.
In 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS).
IEEE, 186–197. https://doi.org/10.1109/ICCPS.2018.00026

[61] Jungwon Park. 2020. Trajectory generation and simulation for multi-agent swarm.
https://github.com/qwerty35/swarm_simulator.git.

[62] Jungwon Park, Junha Kim, Inkyu Jang, and H Jin Kim. 2020. Efficient multi-
agent trajectory planning with feasibility guarantee using relative bernstein
polynomial. In 2020 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 434–440. https://doi.org/10.1109/ICRA40945.2020.9197162
[63] David M Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang. 2019.

SemCluster: clustering of imperative programming assignments based on quan-
titative semantic features. In Proceedings of the 40th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation. 860–873. https:
//doi.org/10.1145/3314221.3314629

[64] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017. Slow-
fuzz: Automated domain-independent detection of algorithmic complexity vul-
nerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. 2155–2168. https://doi.org/10.1145/3133956.3134073
[65] Peyje. 2020. SWARMulator. https://github.com/Peyje/SWARMulator.
[66] James A Preiss, Wolfgang Honig, Gaurav S Sukhatme, and Nora Ayanian.

2017. Crazyswarm: A large nano-quadcopter swarm. In 2017 IEEE Interna-

tional Conference on Robotics and Automation (ICRA). IEEE, 3299–3304. https:
//doi.org/10.1109/ICRA.2017.7989376

[67] Feng Qin, ChengWang, Zhenmin Li, Ho-Seop Kim, Yuanyuan Zhou, and Youfeng
Wu. 2006. LIFT: A Low-Overhead Practical Information Flow Tracking System for
Detecting Security Attacks. Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, 135–148. https://doi.org/10.1109/MICRO.2006.
29

[68] Nishanth Rao. 2019. ROS-Quadcopter-Simulation. https://github.com/
NishanthARao/ROS-Quadcopter-Simulation.

[69] Jeremias Roβ ler, Gordon Fraser, Andreas Zeller, and Alessandro Orso. 2012.
Isolating failure causes through test case generation. In Proceedings of the 2012

international symposium on software testing and analysis. 309–319. https://doi.
org/10.1145/2338965.2336790

[70] Dibyendu Roy, Arijit Chowdhury, Madhubanti Maitra, and Samar Bhattacharya.
2018. Multi-robot virtual structure switching and formation changing strategy in
an unknown occluded environment. In 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 4854–4861. https://doi.org/10.1109/
IROS.2018.8594438

[71] Charitha Saumya, Jinkyu Koo, Milind Kulkarni, and Saurabh Bagchi. 2019.
XSTRESSOR: Automatic generation of large-scale worst-case test inputs by infer-
ring path conditions. In 2019 12th IEEE Conference on Software Testing, Validation

and Verification (ICST). IEEE, 1–12. https://doi.org/10.1109/ICST.2019.00011
[72] Fabrizio Schiano and Paolo Robuffo Giordano. 2017. Bearing rigidity mainte-

nance for formations of quadrotor UAVs. In 2017 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 1467–1474. https://doi.org/10.1109/
ICRA.2017.7989175

[73] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich. 2020.
Swarm Robotic Behaviors and Current Applications. Frontiers in Robotics and AI

7 (2020), 36. https://doi.org/10.3389/frobt.2020.00036
[74] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. 2018.

Rescue: Crafting regular expression dos attacks. In 2018 33rd IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE). IEEE, 225–235.
https://doi.org/10.1145/3238147.3238159

[75] Coati Software. 2020. Sourcetrail. https://www.sourcetrail.com/.
[76] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung

Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.

2008. BitBlaze: A New Approach to Computer Security via Binary Analysis. In
Information Systems Security, R. Sekar and Arun K. Pujari (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–25. https://doi.org/10.1007/978-3-540-89862-
7_1

[77] Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020. SwarmLab: a Matlab
Drone Swarm Simulator. (2020), 8005–8011. https://doi.org/10.1109/IROS45743.
2020.9340854

[78] Siddharth Swaminathan, Mike Phillips, and Maxim Likhachev. 2015. Planning for
multi-agent teams with leader switching. In 2015 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 5403–5410. https://doi.org/10.1109/
ICRA.2015.7139954

[79] swarm5. 2020. ESTKALMAN: State out of bounds, resetting. https://github.com/
USC-ACTLab/crazyswarm/issues/259.

[80] swarm5. 2021. The motor has inconsistent performance. https://github.com/USC-
ACTLab/crazyswarm/issues/289.

[81] Swarmathon. 2019. NASA Swarmathon. http://nasaswarmathon.com/.
[82] Swarmbug. 2021. Source Code Release. https://github.com/swarmbug/src.
[83] Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz, Jam Marcos Her-

nandez, and Claire Le Goues. 2018. Crashing simulated planes is cheap: Can
simulation detect robotics bugs early?. In 2018 IEEE 11th International Con-

ference on Software Testing, Verification and Validation (ICST). IEEE, 331–342.
https://doi.org/10.1109/ICST.2018.00040

[84] Luca Della Toffola, Michael Pradel, and Thomas R Gross. 2018. Synthesizing
programs that expose performance bottlenecks. In Proceedings of the 2018 In-

ternational Symposium on Code Generation and Optimization. 314–326. https:
//doi.org/10.1145/3168830

[85] Jackson State University. 2018. Swarmathon Code of Team JSU. https://github.
com/BCLab-UNM/Swarmathon-JSU-Public.

[86] Gábor Vásárhelyi, Csaba Virágh, Gergő Somorjai, Tamás Nepusz, Agoston E
Eiben, and Tamás Vicsek. 2018. Optimized flocking of autonomous drones in
confined environments. Science Robotics 3, 20 (2018). https://doi.org/10.1126/
scirobotics.aat3536

[87] Tamas Vicsek. 2019. Autonomous Mission Control of Drone Flocks. Technical
Report. EOTVOS Lorand Tudomanyegetem Budapest Hungary.

[88] Anthony De Bortoli Victor Delafontaine, Andrea Giordano. 2020. A drone swarm
simulator written in Matlab. https://github.com/lis-epfl/swarmlab.

[89] Di Wang and Jan Hoffmann. 2019. Type-guided worst-case input generation.
Proc. ACM Program. Lang. 3, POPL, Article 13 (Jan. 2019), 30 pages. https:
//doi.org/10.1145/3290326

[90] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, align, and repair:
data-driven feedback generation for introductory programming exercises. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language

Design and Implementation. 481–495. https://doi.org/10.1145/3192366.3192384
[91] Shirley Wang, Nicholas Anselmo, Miller Garrett, Ryan Remias, Matthew Trivett,

Anders Christoffersen, and Nicola Bezzo. 2020. Fly-Crash-Recover: A Sensor-
based Reactive Framework for Online Collision Recovery of UAVs. In 2020 Systems

and Information Engineering Design Symposium (SIEDS). IEEE, 1–6. https://doi.
org/10.1109/SIEDS49339.2020.9106654

[92] William Warke. 2019. Crazyflie 2.1 rotating frantically and crashing at specific
Yaw-Angle. https://github.com/USC-ACTLab/crazyswarm/issues/149.

[93] Frank Willeke. 2021. FlockModifier. https://github.com/FlaSpaceInst/EZ-
RASSOR.

[94] Sean Wilson, Paul Glotfelter, Li Wang, Siddharth Mayya, Gennaro Notomista,
Mark Mote, and Magnus Egerstedt. 2020. The robotarium: Globally impactful op-
portunities, challenges, and lessons learned in remote-access, distributed control
of multirobot systems. IEEE Control Systems Magazine 40, 1 (2020), 26–44.

[95] Kun Xiao, Lan Ma, Shaochang Tan, Yirui Cong, and Xiangke Wang. 2020. Imple-
mentation of UAV Coordination Based on a Hierarchical Multi-UAV Simulation
Platform. arXiv preprint arXiv:2005.01125 (2020).

[96] Yxiao 2020. SwarmSim. https://github.com/yxiao1996/SwarmSim.
[97] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-

Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183–200. https://doi.
org/10.1109/32.988498

[98] Ganwen Zeng and Ahmad Hemami. 1997. An overview of robot force control.
Robotica 15, 5 (1997), 473–482. https://doi.org/10.1017/S026357479700057X

[99] Hai Zhu, Jelle Juhl, Laura Ferranti, and Javier Alonso-Mora. 2019. Distributed
Multi-Robot Formation Splitting and Merging in Dynamic Environments. In 2019

International Conference on Robotics and Automation (ICRA). IEEE, 9080–9086.
https://doi.org/10.1109/ICRA.2019.8793765

https://doi.org/10.1109/TRO.2006.882941
https://doi.org/10.1109/NABIC.2009.5393617
https://doi.org/10.1109/ISMCR47492.2019.8955661
https://doi.org/10.1109/ISMCR47492.2019.8955661
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.1109/TAC.2005.864190
https://github.com/orig74/DroneSimLab
https://doi.org/10.1109/ICCPS.2018.00026
https://github.com/qwerty35/swarm_simulator.git
https://doi.org/10.1109/ICRA40945.2020.9197162
https://doi.org/10.1145/3314221.3314629
https://doi.org/10.1145/3314221.3314629
https://doi.org/10.1145/3133956.3134073
https://github.com/Peyje/SWARMulator
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1109/MICRO.2006.29
https://github.com/NishanthARao/ROS-Quadcopter-Simulation
https://github.com/NishanthARao/ROS-Quadcopter-Simulation
https://doi.org/10.1145/2338965.2336790
https://doi.org/10.1145/2338965.2336790
https://doi.org/10.1109/IROS.2018.8594438
https://doi.org/10.1109/IROS.2018.8594438
https://doi.org/10.1109/ICST.2019.00011
https://doi.org/10.1109/ICRA.2017.7989175
https://doi.org/10.1109/ICRA.2017.7989175
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.1145/3238147.3238159
https://www.sourcetrail.com/
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1109/IROS45743.2020.9340854
https://doi.org/10.1109/IROS45743.2020.9340854
https://doi.org/10.1109/ICRA.2015.7139954
https://doi.org/10.1109/ICRA.2015.7139954
https://github.com/USC-ACTLab/crazyswarm/issues/259
https://github.com/USC-ACTLab/crazyswarm/issues/259
https://github.com/USC-ACTLab/crazyswarm/issues/289
https://github.com/USC-ACTLab/crazyswarm/issues/289
http://nasaswarmathon.com/
https://github.com/swarmbug/src
https://doi.org/10.1109/ICST.2018.00040
https://doi.org/10.1145/3168830
https://doi.org/10.1145/3168830
https://github.com/BCLab-UNM/Swarmathon-JSU-Public
https://github.com/BCLab-UNM/Swarmathon-JSU-Public
https://doi.org/10.1126/scirobotics.aat3536
https://doi.org/10.1126/scirobotics.aat3536
https://github.com/lis-epfl/swarmlab
https://doi.org/10.1145/3290326
https://doi.org/10.1145/3290326
https://doi.org/10.1145/3192366.3192384
https://doi.org/10.1109/SIEDS49339.2020.9106654
https://doi.org/10.1109/SIEDS49339.2020.9106654
https://github.com/USC-ACTLab/crazyswarm/issues/149
https://github.com/FlaSpaceInst/EZ-RASSOR
https://github.com/FlaSpaceInst/EZ-RASSOR
https://github.com/yxiao1996/SwarmSim
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://doi.org/10.1017/S026357479700057X
https://doi.org/10.1109/ICRA.2019.8793765

	Abstract
	1 Introduction
	2 Motivating example
	3 Backgrounds, goals, and scope
	3.1 Mobile Robot Software
	3.2 Swarm Algorithms
	3.3 Goals and Scope

	4 Design
	4.1 Behavior Causal Analysis
	4.2 Fix Validation
	4.3 Fix Prioritization

	5 Evaluation
	5.1 Effectiveness
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

