
RACEDB: Detecting Request Race Vulnerabilities in Database-Backed Web
Applications

An Chen
University of Georgia
an.chen25@uga.edu

Yonghwi Kwon
University of Maryland

yongkwon@umd.edu

Kyu Hyung Lee
University of Georgia

kyuhlee@uga.edu

Abstract—Request race vulnerabilities in database-backed web
applications pose a significant security threat. These vulnera-
bilities can lead to data inconsistencies, unexpected behavior,
and even unauthorized access. Existing automated detection
techniques often fall short due to the complexity of race
conditions and the intricate interplay between application logic
and database interactions.

This paper introduces RACEDB, a novel system that tackles
these challenges through two key innovations. Application-
aware Request Race Detection (ARD) provides a comprehen-
sive analysis of data dependencies, considering not only the
database query but also the application code. This allows
RACEDB to identify subtle race conditions that might be
missed by existing approaches. Furthermore, RACEDB em-
ploys an automated verification technique using replay-based
execution. This technique efficiently isolates true races from
false positives and generates definitive exploits for verified
vulnerabilities. We evaluated RACEDB on a dataset of 14
real-world PHP web applications. The results demonstrate the
effectiveness of RACEDB compared to existing tools. RACEDB
achieved a superior detection rate, identifying 21 known vul-
nerabilities and discovering 18 new vulnerabilities, significantly
exceeding the performance of existing tools while also achieving
a lower rate of false positives. Finally, we responsibly reported
all newly discovered vulnerabilities to the corresponding de-
velopers, and 7 of them have been assigned CVE IDs.

1. Introduction

Modern web applications heavily rely on databases to
store and manage data. These applications receive requests
from remote users as input, process the requests, and update
the database accordingly. Remote requests can occur con-
currently, which can lead to unpredictable and inconsistent
behavior if not handled properly. Race conditions, dead-
locks, and database corruption are potential consequences of
inadequate concurrency control. Several prominent incidents
highlight the criticality of addressing race conditions. For in-
stance, vulnerabilities in Instacart, Starbucks, Flexcoin, and
GitLab led to issues like double coupon redemption [33],
duplicate balance transfers [68], wallet overdraw [21] that
lead Flexcoid bankruptcy, and account hijacking [15]. The
GitLab account hijacking [15] in 2023 affects multiple ver-

sions of the application. This vulnerability allows attackers
to exploit the request race condition to forge verified emails
and potentially take over third-party accounts when GitLab
is used as an OAuth provider [15]. The attack leverages the
lack of proper synchronization during the email verification
process, enabling malicious actors to intercept and manipu-
late the verification flow, leading to unauthorized access to
user accounts.

These incidents underscore the critical importance of
addressing request race conditions in web applications to
prevent similar high-impact failures. Hence, testing web
server applications to identify and fix concurrency bugs is
critical to building secure web services. Various automated
concurrency bug-finding techniques exist. Many of them fo-
cus on exploring different interleavings between executions
(e.g., threads) to identify specific sequences of interleavings
causing inconsistent behaviors. For example, a large body
of existing work mainly explores different thread schedules
by testing various permutations of threads via customized
schedulers or delay injection [12], [20], [24], [40], [43], [69].

In web server applications, interleavings typically occur
between request handlers. If resources like variables or
database content are not properly protected during request
handling, concurrent access can corrupt their values. Unlike
local program variables, database content can be accessed
and modified by any execution, leading to significantly
more potential content states to consider. In addition, recent
studies have introduced novel request race attacks, such
as the Timeless Timing Attack [23], which manipulates
shared resource timing to exploit race conditions without
depending on network latency. Additionally, the Single-
Packet Attack [38] leverages HTTP/2 multiplexing to bundle
multiple requests into a single TCP packet, ensuring simul-
taneous processing and exposing race vulnerabilities in web
applications. These approaches demonstrate the evolving so-
phistication of request race exploitation across modern web
systems. This is further compounded by complex database
queries and diverse user requests. Existing techniques often
struggle with this complexity, as database content plays a
crucial role in race conditions but has received less attention
in prior research.

In this paper, we propose RACEDB, that systemati-
cally analyzes database-backed web server applications for

race condition issues. RACEDB goes beyond existing ap-
proaches [39], [59], [71] by analyzing dependencies not
only between database fields or tables but also within the
application context. It identifies dependencies introduced by
the web application logic, such as inter-table dependencies
mediated by application variables. This comprehensive anal-
ysis empowers RACEDB to detect silent data corruption
within the database that could be missed by conventional
methods.

Utilizing the identified dependencies, RACEDB employs
a graph-based race detection algorithm [71] to detect po-
tential race conditions involving user requests. To further
refine the analysis and reduce false positives, RACEDB
offers automated verification capabilities. This verification
phase leverages a replay execution technique to isolate true
races among the identified candidates. As a result, RACEDB
can generate definitive exploits that demonstrate the vul-
nerabilities, leading to a higher accuracy in identifying and
addressing real request race vulnerabilities.

We demonstrate the effectiveness of RACEDB by con-
ducting a comprehensive study using a dataset of 14 real-
world web applications. We compared RACEDB against
existing tools [39], [59] in terms of both detection capa-
bility and false positive rates across all applications, where
RACEDB consistently outperforms existing tools across all
assessed applications. Specifically, RACEDB successfully
identified a total of 39 request race vulnerabilities within
the 14 applications. Among the identified vulnerabilities,
18 were previously unknown. The new vulnerabilities were
confirmed by developers, and 7 of them have already been
assigned CVE IDs.

Our contributions are summarized as follows:

• We propose RACEDB, an automated system designed to
detect and verify request race vulnerabilities, including
intricate and silent race in database-backed web appli-
caitons.

• We introduce Application-aware Request Race Detection
(ARD), which can identify data dependencies within the
web application and the database queries (e.g., inter-table
dependencies through application variables).

• We present an automated verification technique that uti-
lizes replay-based execution. This approach effectively
detects divergences between serialized and concurrent
executions, significantly reducing false positives. Addi-
tionally, it provides comprehensive information for ver-
ified races, enabling deeper analysis and facilitating the
reproduction of the race conditions.

• Our evaluation of 14 real-world PHP web applications
shows that RACEDB outperforms existing state-of-the-
art techniques. RACEDB successfully detects 21 known
request race cases and 18 new cases, whereas existing
tools detect only 13 known cases and 6 new cases.

• We responsibly reported 18 of new vulnerabilities from
6 applications to the corresponding developers and 7 of
them have been assigned with CVE numbers.

• We will release RACEDB source code and data at https:
//github.com/sscf224/racedb.

Threat Model. Request race vulnerabilities arise when con-
current requests lead to unintended behaviors or data states
due to timing issues. Assets at risk include user data, such
as personal information, payment details, and credentials,
as well as the overall system integrity. Adversaries com-
prise external attackers who exploit race conditions to gain
financial profit or manipulate data, and benign users who
may accidentally trigger the request race and suffer financial
loss or encounter unexpected application behavior.

Attack vectors include sending multiple simultaneous
requests to the same or different API endpoints that modify
the same data entity through application GUI or manually
crafted. Security assumptions include the possibility that ad-
versaries might have valid credentials and that basic network
security measures like HTTPS are in place, focusing on
application-level vulnerabilities. Potential impacts involve
data corruption due to inconsistent data states, and unau-
thorized transactions leading to overpayment or duplicates.

2. Motivating Example

We use a request race vulnerability found by RACEDB
on CE Phoenix Cart [3], an open-source web e-commerce
application, to illustrate how RACEDB detects and verifies
the vulnerability, where existing tools failed.
Vulnerable Code under Testing. Figure 1-(a) shows sim-
plified code snippets for processing order with a coupon. A
request race can occur if two users use the same coupon
which should be used only once simultaneously.

The SELECT query at line 1 counts the number of
rows in the customers_to_discount_codes table that
record the coupon usage (at line 10). Then, at line 3, if
the coupon is never used (i.e., the first query returns no
record), it sets $coupon[‘max_usage’] to ‘0’, so that the
if branch at line 6 takes the true branch. At line 6, it
checks whether the coupon can be used by checking the fol-
lowing two conditions: (1) the coupon has unlimited usage
(i.e., $coupon[‘max_usage’] is zero), or (2) the coupon’s
current usage record is less than its usage limit (i.e.,
($coupon[‘total_usage’]<$coupon[‘max_usage’]). If
the coupon can be used, it checks other conditions, such
as whether the coupon has not expired and whether the
current order satisfies the minimum order amount to use
the current coupon by running a SELECT query with a long
WHERE clause at line 7. At line 8, it checks whether the query
returns a row (i.e., whether there is a coupon that satisfies
the conditions). If so, it obtains the discount code’s id at
line 9 and then records the coupon’s usage at line 10 via an
INSERT query.

Typically, after a coupon is successfully used, its usage
is recorded at line 10, which is checked at line 1 to prevent
a coupon from being used more than its use limit (i.e.,
$coupon[‘max_usage’] at line 6). However, a request race
can happen if two concurrent requests execute the queries
at lines 1, 7, and 9 before one of the requests executes the
query at line 10 (i.e., executing 1A → 7A → 9A → 1B →
7B → 9B → 10A → 10B where the subscripts represent
the two different requests A and B).

https://github.com/sscf224/racedb
https://github.com/sscf224/racedb

$count = tep_db_query("SELECT count(*) AS total_usage, dc.max_usage FROM discount_codes dc, customers_to_discount_codes c2dc
WHERE dc.discount_codes_id = c2dc.discount_codes_id AND

dc.discount_codes='".$_SESSION['sess_discount_code']."'");
if (mysqli_num_rows($count) == 0)

$coupon['max_usage'] = 0;
else

$coupon = $count->fetch_assoc();

if ($coupon['max_usage'] == 0 ? 1 : ($coupon['total_usage'] < $coupon['max_usage'] ? 1 : 0)) {
$condition = tep_db_query("SELECT * FROM discount_codes WHERE discount_codes = '%s' AND

IF(expires_date='0000-00-00', date_format(date_add(now(), ...), '%%Y-%%m-%%d'), expires_date)
>= date_format(now(), '%%Y-%%m-%%d') AND minimum_order_amount <= '%s' AND status = '1'");

if (mysqli_num_rows($condition) != 0) {
...
$codes = tep_db_query("SELECT discount_codes_id FROM discount_codes

WHERE discount_codes='".$_SESSION['sess_discount_code']."'");
tep_db_query("INSERT INTO customers_to_discount_codes(customers_id, discount_codes_id)

VALUES ('".$_SESSION['customer_id']."', '".$codes->fetch_assoc()."')");

(c) Request B Query Trace

SELECT count(*) AS total_usage, dc.max_usage
FROM discount_codes dc, customers_to_discount_codes c2dc
WHERE dc.discount_codes_id = c2dc.discount_codes_id

AND dc.discount_codes='CODE24'
SELECT * FROM discount_codes WHERE discount_codes='CODE24'

AND ...
...
SELECT discount_codes_id FROM discount_codes

WHERE discount_codes='CODE24'
INSERT INTO customers_to_discount_codes(customers_id,

discount_codes_id) VALUES ('1', '3')

B1

B2

B3

B4

SELECT count(*) AS total_usage, dc.max_usage
FROM discount_codes dc, customers_to_discount_codes c2dc
WHERE dc.discount_codes_id = c2dc.discount_codes_id

AND dc.discount_codes='CODE24'
SELECT * FROM discount_codes WHERE discount_codes='CODE24'

AND ...
...
SELECT discount_codes_id FROM discount_codes

WHERE discount_codes='CODE24'
INSERT INTO customers_to_discount_codes(customers_id,

discount_codes_id) VALUES ('2', '3')

(b) Request A Query Trace

A1

A2

A3

A4

1

2
3
4
5

6
7

8

9

10

(a) Program Source Code For Order Processing

Figure 1: Motivation Example

Scenario Triggering the Request Race. A malicious user
first logs on to the service running CE Phoenix Cart with
two browsers and two different accounts. Then, the user
proceeds to the payment page, which allows the user to
redeem the coupon. On the payment page, the user puts
the same coupon code which can be only used once. Then,
the user confirms the order (with the coupon) on the two
browsers at the same time to cause the request race.

Figure 1-(b) and (c) show the query trace of the two
requests A and B when the request race happens. The query
A1 and B1 (line 1), in this example, would return the same
value before executing the query A4 or B4 (line 10). As
a result, both requests are processed successfully, allowing
the malicious user to use the coupon twice.

Assume that the two requests are not concurrently ex-
ecuted, meaning that the entire request A is completed
before the request B. Then, a usage record inserted by the
query A4 will make the query B1 return a row inserted
by A4, resulting the $coupon[‘total_usage’] to be 1.
Since $coupon[‘max_usage’] is 1 (i.e., the coupon can be
used once), the second condition at line 6 is not satisfied,
preventing the coupon from being over-used.
Existing Request Race Detection. Existing techniques [22],
[39], [54], [59], [71], [76] mainly focus on detecting races
on database queries operating on the same database field
such as concurrent requests reading and writing the same
field of a table. Hence, they miss this request race as
the race is caused between different fields: count and
discount_codes_id. Specifically, we further explain how

the two of the most recent approaches, Raccoon [39] and
ReqRacer [59], miss the race. In particular, it is challenging
to identify that the first query (line 1) and the last query (line
10) can be the target of request race, as their relationships
are expressed in two different ways. First, at line 1, the
WHERE clause and the count operation together indicates the
relationship between the two tables discount_codes and
customers_to_discount_codes. Second, at lines 9 and
10, the relationship between the two tables are established
by the discount_codes_id from the discount_code table
being used in the INSERT query at line 10. Both Racoon
and ReqRacer miss them because (1) they operate on the
SQL traces, which do not include the concrete values of the
WHERE clause (at line 1), and (2) they target values appearing
across multiple queries to identify queries potentially caus-
ing races while the queries A1 and A4 use two different
values to indicate the same coupon, discount_codes and
discount_codes_id respectively.

RACEDB on the Motivating Example. RACEDB lever-
ages its concolic execution engine to identify (1) inter-
table relationship between the discount_codes_id fields of
the discount_codes and customers_to_discount_codes
tables, and (2) the dependency between the first query’s
return ($count) and the conditional statements at line 6.
The dependencies suggest to create a database with the
discount_codes table with discount_codes equal to the
coupon’s code stored in the session variable, as well as
database items with the same discount_codes_id in the

two tables1. More importantly, RACEDB identifies another
inter-table relationship that the number of rows returned
from the first query (i.e., total_usage) should be less than
the max_usage in the same query, in order to take the true
branch at line 6. Furthermore, to reach the vulnerable query
at line 10, the database must satisfy the SELECT query at
line 7 with the condition at line 8. RACEDB synthesizes
the corresponding database item by examining the WHERE
clause at line 7. In lines 9 and 10, RACEDB discovers the
inter-table dependency between the discount_codes and
discount_codes_id from the query return at line 9 being
used in line 10’s query construction.

To this end, RACEDB identifies that the program con-
ditions and database operations (e.g., SELECT and INSERT
queries) are all dependent on the first query returning
$count. Hence, RACEDB marks the ‘count(*)’ field at
line 1 as a sensitive field, meaning its value should not
diverge between different interleavings. RACEDB identifies
the following two executions resulting in a different values
at the end of the execution.

• 1A → 7A → 9A → 1B → 7B → 9B → 10A → 10B ,
resulting in 2.

• 1A → 7A → 9A → 10A → 1B , resulting in 1.
With the executions leading to different values on the

sensitive field, RACEDB confirms it as a true positive.

3. Design

Request race vulnerabilities arise from various non-
determinism occurring during concurrent execution. As
there are many sources of non-determinism and their many
combinations, static analysis tools [36], [46], [66], [76] are
ineffective in identifying and detecting request races. As a
result, there exist techniques leveraging traces collected from
runtime executions [39], [54], [59], [71]. While they advance
the state-of-the-art, they rely on data gathering and lack
the dynamic analysis capabilities necessary to identify and
reason the program execution and database states, missing
various potential request race vulnerabilities.
Objective. RACEDB automatically detects and verifies re-
quest race vulnerabilities in database-backed web server
applications. RACEDB aims to solve three fundamental
challenges. First, database-backed web server applications
often have complex dependencies on database contents, pre-
venting execution from reaching the code blocks vulnerable
to request races. RACEDB analyzes program and database
states to generate a database that can reach the vulnerable
code. Second, there exist tables and fields that are closely
related, such as storing identical values or related values,
which, if not correctly operating in a concurrent execution,
can cause a request race. RACEDB comprehensively ana-
lyzes various dependencies in the program or query lan-
guage logic to reveal such inter-table dependencies. Third,
existing techniques [39], [71] often produce many false
positives, requiring substantial manual effort in testing and
validating the race candidates, preventing them from being

1. The discount_codes and customers_to_discount_codes tables.

practical. RACEDB implements a replay-based validation
technique to automatically identify true positive request
races along with a concrete input and a database.
Overview. Figure 2 presents the high-level system overview
of RACEDB. First, the trace generation component leverages
a concolic execution engine to explore the execution paths
of a target application and identifies the required program
and database states (§ 3.1). Second, the application-aware re-
quest detection component constructs an Application-aware
Request Race Detection (ARD) graph by analyzing execu-
tion traces (§ 3.2). Then, it runs a request race candidate
detection algorithm to identify race candidates for testing
with the ARD graph. Third, the candidates are passed to
the race verification component that compares the serialized
and concurrent executions to detect divergences between the
executions to identify true positive request races from the
candidates (§ 3.3).

3.1. Trace Generation via Concolic Execution

Concolic Execution Engine. Recently, SynthDB [10] pro-
posed a database synthesization technique to aid database-
backed web applications. Their technique is based on a con-
colic execution engine developed for PHP applications. We
obtained the implementation of SynthDB from the authors
and utilized it as a foundation for RaceDB. Specifically, we
used their concolic execution engine to generate query traces
and employed a modified version of SynthDB to generate
synthesized database states, allowing us to reach the code
base related to request races.

We made a few changes to the SynthDB. First, we
modify its concolic execution engine to generate a database
that can fulfill a given remote request successfully. In other
words, to complete a request, the database should include
all the values that would satisfy all the path conditions
during the execution of the request. Specifically, while Syn-
thDB aims to create a single database that maximizes code
coverage, RACEDB generates multiple databases for each
request’s execution path, where each path executes multiple
database queries that might cause a request race. Second,
we enhance SynthDB’s dependency analysis between the
queries. Specifically, RACEDB focuses on tracking depen-
dencies between SELECT queries and UPDATE or INSERT
queries, that are essentially database read and write oper-
ations. RACEDB enhances SynthDB to support complex
dependencies between multiple tables expressed in WHERE
clauses and values passed between the queries via program
variables. For example, in Figure 1-(a) at line 1, the WHERE
clause’s highlighted condition indicates the two tables are
closely related. In addition, at lines 9 and 10, the discount
code’s id returned from the SELECT query is used in the
INSERT query, revealing the relationship between the two
tables. With the above dependencies, RACEDB can identify
the SELECT count(*) and the INSERT queries at lines 1
and 10 can be a request race candidate.
Database Operations. RACEDB extracts database read and
write operations issued during execution from the execu-
tion traces. For each database operation, RACEDB records

Application-aware
Request Race

Detection
(Section 3.2)

Source Code
and

DB Schema

RACEDB

Input, Database,
and Trace for
Dependencies

Trace Generation
(Section 3.1)

Concolic Execution
Engine

Database Operation
Analysis

ARD Graph

Extended 2AD
Request Race

Candidates
(Requests + DB)

Candidate
Verification
(Section 3.3)

Replaying
Requests

Divergence
Detector

Request Race
Vulnerability

Report
(with Input + DB)

Figure 2: System Overview of RACEDB.

the database fields—such as tables and columns—affected
by the operation. Analyzing the program dependencies re-
lated to the database operations (e.g., program statements
and queries dependent on SELECT query’s return values)
allows RACEDB to identify implicit inter-table relation-
ships. For example, in Figure 1-(a), the SELECT query
return value at line 9 is eventually used during the con-
struction of the INSERT query at line 10. This inter-
table usage, including the WHERE clause at line 9, implies
three related database field pairs: (1) discount_codes_id
and (2) discount_codes of discount_codes and (3)
customers_to_discount_codes.discount_codes_id.

Note that identifying interdependent tables extends the
search space of request race candidates. Specifically, pre-
vious approaches focus on finding races between accesses
to the same table and field, while RACEDB discovers the
interdependent tables and includes them in the search space
of request races.
Trace Generation Outcomes. This step has three outputs:
(1) synthesized remote input such as $_POST and $_GET
values, (2) a synthesized database, and (3) a trace for
database operations and the corresponding affected database
fields, including revealed inter-table usages. The outputs
will be used to identify relationships between the database
operations that can potentially cause request races in § 3.2.

3.2. Application-aware Request Race Detection

This section introduces our application-aware request
race detection algorithm. Previous studies have proposed
request race detection algorithms based on dependency
graphs [39], [59], [71]. In particular, they focus on database
traces and request history to identify dependencies between
database queries and detect potential race conditions. Un-
fortunately, they do not consider application logic, such
as dependencies introduced within the web application and
the database queries (e.g., inter-table dependencies through
application variables), missing various request races.
Graph Construction. To construct the application-aware
request race detection (ARD) graph, we collect a set of
concrete execution traces generated by concolic execution.
The ARD graph is a finite multigraph, allowing multiple
edges between the same pair of nodes. An ARD graph
consists of two types of nodes, operation nodes and request
nodes, and two types of edges, r-w edge and w-w edge. An

Request B

B1 SELECT…

B2 SELECT…

B3 SELECT…
4

3

Request A

A1 SELECT…

A2 SELECT…

A3 SELECT…
2

1
r-w

r-w

r-w r-w

r-wr-w

r-w

r-wA4 INSERT… B4 INSERT…

w-w w-w

7

86

5

9 9

Figure 3: ARD graph generated the motivation example.

operation node represents a database operation (e.g., an SQL
query), and a request node represents a request received
by the application. A request node acts as a supernode,
encapsulating all the operations executed within that request.
Both r-w and w-w edges are undirected edges. The r-w edge
represents data dependencies between two operations where
one of them is a write operation, while the w-w edge shows
data dependencies between two write operations.

To create an ARD graph, we first create an operation
node for each database operation and a request node for
each request execution. Then, we group the operations by
execution of a request. We consider two database operations
to be a potential request race candidate if they access
the correlated data field (i.e., the same table/column or a
relationship identified through application-level data depen-
dencies) and, at least one of the operations is a modification
(i.e., a write). For each identified potential race between two
operations, we create an r-w edge if one is a read and the
other is write, and add an w-w edge if both are writes.

Figure 3 shows an ARD graph generated from the
motivating example § 2. There are two requests (Request
A and B) in this example, where each request containing
four database operations (A1∼A4 and B1∼B4). Thus, the
graph contains 2 request nodes and 8 operation nodes.
Next, RACEDB identifies the data dependencies between
the database operations (i.e., queries).

Specifically, we derive an r-w edge between A1
and A4 (1) through two dependencies: (1) the inter-
table dependency between the discount_codes and
customers_to_discount_codes tables through the
discount_codes_id field in A1, and (2) the dependency
through the return value of A1 (i.e., the count(*) query on
the two tables) being dependent on the number of records

inserted by A4. Next, as discussed in § 2, we introduce
an r-w edge (2) from the identified data dependency
between queries A3 and A4 through the application variable
$codes at line 9 in Figure 1. Note that the dependencies
between A1 and A4 as well as between A3 and A4 exist
in the B1, B3, and B4, introducing the r-w edge 3 and
4 . Moreover, between two requests, there exist cross

request dependencies such as between A1 and B4 as well as
between A3 and B4, introducing the edges 5 and 6 . Also,
the vice versa holds, adding the edges 7 and 8 . Lastly, as
previously discussed, all write operations have a self-loop
w-w edge (9).
Extending 2AD Algorithm for Race Detection. To identify
potential race conditions within request sequences, we lever-
age the Abstract Anomaly Detection (2AD) algorithm [71]
with a slight extension. Unlike traditional approaches re-
lying on concrete concurrent traces [4], 2AD generalizes
the reasoning of potential races. It analyzes collected serial
requests to determine if vulnerabilities could arise from
potential concurrent execution scenarios. 2AD reasons about
the space of possible concurrent interleavings by analyzing
a finite graph representing a given trace.

RACEDB extends the concept of edges in the 2AD
algorithm by incorporating application-level dependencies,
such as inter-table relationships. This allows us to capture
a richer context for potential request races. Fortunately, the
core race detection algorithm from 2AD remains directly
applicable to our enhanced detection graph. Therefore, we
leverage 2AD’s algorithm to identify race candidates within
our constructed detection graph. For a detailed explanation
of the algorithm, we refer readers to the original paper [71].
Detecting Cycles in Request Nodes. We apply the 2AD
algorithm to identify request race candidates. Specifically,
we identify the cycles between the request nodes in an ARD
graph. For example, from the motivating example (Figure 3),
we check whether there are edges forming cycles between
the request A and B nodes, by following the steps below.
First, RACEDB randomly selects the query A4 and attempts
to build a cycle between request nodes (i.e., Request A and
B), which can indicate a potential request race. We can
then traverse edges (7 - 8), (6 - 8), (5 - 6) or (5 - 7) to
form an inter-request cycle between the request A and B,
resulting in a candidate pair. Note that the cycle (5 - 7) is
the root cause of the request race case discussed in § 2.
Additionally, we can traverse edge (1 or 2) and the dotted
self-edge (9) to form an intra-request cycle, indicating that
two requests A can also race with each other, making them
another candidate. In the end, we can identify three request
race candidates: (1) Request A and B, (2) Two requests A,
and (3) Two requests B. Along with the edges used to form
the cycle, these candidates will be examined in the next
phase of candidate verification.

3.3. Candidate Verification with Replay Execution

Unlike Raccoon [39] and ReqRacer [59], which focus on
database access patterns or rely on error messages for ver-
ification, RACEDB employs an automated approach based

on detecting execution divergence across different interleav-
ings. Specifically, RACEDB uses an automated technique to
verify race candidates identified by ARD graph. RACEDB
achieves this by executing each candidate race in both
serialized and concurrent manners. We then monitor each
execution to detect divergences across the executions to de-
tect a request race. The divergences can include differences
in the following data:

• Database State: Inconsistencies in the actual data stored
in the database after serialized and concurrent executions
are a clear indicator of a race condition. However, com-
paring complete database states (including all tables and
fields) can lead to false positives due to fields that are
not relevant to the potential race. This can occur due
to non-determinism (e.g., random value-involved fields)
or values dependent on timing (e.g., timestamp-related
fields), changing values regardless of the race condition.
To avoid such false positives, we leverage the data-
dependence analysis results obtained during the construc-
tion of the ARD graph. RACEDB focus only on database
fields that are data-dependent on or may modified by one
or more other writing operations, identified by the edges
in the detection graph. Values of these fields are directly
affected by race conditions and provide a more targeted
comparison for identifying true races.

• Application State: This encompasses variations in the
application’s internal state, such as error messages gener-
ated during execution or application crashes.

• Database Access Patterns: Divergences in how the
application accesses the database during serialized and
concurrent executions can also signify a race condition.
For instance, if a serialized execution performs a single
read operation, while a concurrent execution performs
multiple reads followed by a write, this difference in
access patterns could lead to inconsistencies.

Replaying Serialized Requests. For each pair of requests
(r1, r2) identified as a race candidate, RACEDB prepares
the required database state to replay the requests. To collect
results from an execution without a request race, RACEDB
replays the requests by serializing each request’s execution.
Specifically, it first executes the request r1 and waits until
it finishes. Upon r1’s completion, it executes the request r2
(r1→r2). Additionally, RACEDB collects results from the
(r2→r1) execution order as well. This process results in
two serialized executions generating two database states Ds

1

and Ds
2: Ds

1 from r1→r2 and Ds
2 from r2→r1.

Replaying Concurrent Requests. Now, RACEDB aims to
try all possible interleavings of the database operations in
r1 and r2. Specifically, RACEDB controls the execution
of individual database operations in r1 and r2 to examine
all possible interleavings between operations identified as
a cycle in the graph. To control the order of database
operations (i.e., queries), RACEDB leverages a library called
ProxySQL [58], which can insert delays in each query’s
execution. We assign delays to each query to enforce these
interleavings during replay.

For example, consider the motivating example where

RACEDB identified three request race candidates: (1) Re-
quest A and B, two request As, and two request Bs. Fo-
cusing on the race candidate involving requests A and B,
the detection graph contains multiple cycles (represented by
edges (7 - 8), (6 - 8), (5 - 6), or (5 - 7). For each cycle, a
limited number of interleavings exist between the involved
operations. Take the cycle formed by edges (5 7). The
operations involved are A1, A4, B1, and B4 and the possible
interleavings include: (A1, B1, A4, B4), (B1, A1, B4, A4),
(A1, B1, B4, A4), and (B1, A1, A4, B4). We can exclude
(A1, A4, B1, B4) and (B1, B4, A1, A4) as they are equivalent
to serialized execution. Additionally, (A1, B1) and (B1, A1)
involve only read operations. Hence, swapping their order
will not introduce races. By executing each of these valid
interleavings, RACEDB obtain four database states from the
concurrent executions: Dc

1, Dc
2, Dc

3, and Dc
4.

Finally, we compare these database states from the con-
current executions (Dc

1∼4) with the database states from
serialized executions (Ds

1∼2). If Dc
1 and Dc

2 matches one of
the database states from the serialized executions (Ds

1∼4),
it indicates no race occurred. However, if any one of Dc

1∼4

diverges from both of Ds
1 or Ds

2, it suggests the execution
order led to a race condition.

In the motivating example, RACEDB successfully de-
tected such a divergence between serialized and concurrent
database states. Consequently, it reports the race to the user,
providing complete information for reproduction, includ-
ing requests involved, database states, and exact order of
database query executions.

4. Evaluation

This section details the evaluation of RACEDB’s effec-
tiveness in detecting request race vulnerabilities. In § 4.1,
we describe the evaluation methodology, including the
dataset of real-world web applications, collecting reported
vulnerabilities, and the configuration of compared tools.
§ 4.2 evaluates RACEDB’s ability to identify vulnerabil-
ities compared to existing tools (e.g., Raccoon [39], Re-
qRacer [59]). To illustrate RACEDB’s capabilities in de-
tail, § 4.3 discusses two specific vulnerabilities detected
by RACEDB. § 4.4 analyzes false positives reported by
RACEDB and compares them to the false positive rates of
existing tools.

4.1. Experimental Setup

To demonstrate the feasibility of our methodology in
a practical setting, we developed a prototype of RACEDB
in Python. RACEDB is designed to integrate seamlessly
into existing web application testing procedures. Its design
principles are applicable to any PHP web application that
utilizes MySQL for persistent data storage. Our current
implementation specifically targets web applications based
on the LAMP stack (Linux, Apache, MySQL, PHP). This
choice reflects the widespread popularity of LAMP as a web
application deployment method [18], [35], [50]. We discuss

future extension plans to broaden support for additional web
application frameworks and database technologies in § 6.
Application Selection. To thoroughly evaluate RACEDB,
we selected 14 popular web server applications that are
tightly connected to databases. Our selection criteria include:
1) popularity, 2) complexity and reliance on databases, and
3) previous evaluation by other studies [39], [59]. We first
chose four popular categories of web server applications:
Ecommerce platforms, Online forums, Content Manage-
ment Systems, and Web Games. To assess the real-world
popularity and adoption rates of these technologies, we
leverage data from BuiltWith.com [7], a website profiler
that tracks backend technologies and analytics. For example,
web applications such as WordPress [74], phpBB [57], In-
voicePlane [34], and Zen Cart [3] have thousands of deploy-
ments on the Internet. We also included web applications
previously tested by other studies [39], [59], such as Open
Cart [51], MyBB [49], OXID eShop [53], Moodle [48], and
Drupal [2]. In addition, we include SchoolMate, which has
been popularly evaluated by previous studies as evidenced
by more than 1,000 search results from Google Scholar [25]
since 2020.

We excluded certain applications despite their popu-
larity or previous evaluations. First, some applications are
too simple to contain race vulnerabilities or have limited
database interactions. Such applications are not suitable for
our evaluation, which focuses on race conditions caused by
database interactions. Additionally, several applications are
outdated and not supported by the current implementation of
RACEDB. For instance, MediaWiki-1.19 [59] and Moodle-
2.0.10 [59] only run on PHP 5.2 or earlier versions, which
have become obsolete since 2011 and are not supported
by RACEDB. Furthermore, we encountered a few outdated
applications that could not be installed due to unresolved
dependency issues.

In this paper, we include 14 web applications, as shown
in Table 1, containing 23,403 files and 1263k Logic Lines
of Code (LLoC). We installed these web applications in
our testbed and initialized the databases with default or
recommended settings. When necessary, we created admin
and/or user accounts, which were primarily used for our
automated authentication phase discussed in § 3.3. Our
testbed runs on Ubuntu 22.04 with a 20-core Intel i7 CPU
and 32GB RAM.
Vulnerability Collection. For the 14 applications, we
collect reported request race vulnerabilities from various
sources, including the CVE repository [13], official vul-
nerability reports for each application, and GitHub issue
pages. We used specific search keywords, such as “request
race”, “race condition”, and “.php race”, to identify request
race vulnerabilities along with the version information of
the target applications.

We excluded 11 reported races from our evaluation due
to the following reasons. Some reports lacked sufficient
details or contained inaccuracies, some races relied on in-
teractions with real payment gateways (e.g., Paypal, BOA)
which were outside the scope of our simulated environment.
Finally, a few races involved resources other than databases

Table 1: List of PHP Applications.

Id Application
Source Code Database # SQL Query

Description
Files LLOC # Tables # Columns INSERT UPDATE SELECT Total

s1 SchoolMate-1.5.4 [64] 63 1,587 15 95 17 32 214 263 Content management system

s2 PHP7-Webchess [73] 29 1,505 7 48 14 20 60 94 Web game

s3 OsCommerce-2.4.0 [52] 422 15,809 49 343 529 10 377 916 Ecommerce platform

s4 CE Phoenix Cart-1.0.7 [1] 1,361 23,938 55 369 149 101 436 686 Ecommerce platform

s5 OpenCart-3.0.3.8 [51] 1,932 60,515 136 834 246 111 586 943 Ecommerce platform

s6 MyBB-1.8.15 [49] 312 49,390 75 824 133 379 2,330 2,842 Online forum

s7 OXID eShop-6.0.2 [53] 663 29,021 38 397 43 58 795 896 Ecommerce platform

s8 Moodle-3.11.8 [48] 11,695 741,387 444 4,077 2,138 1,849 12,219 16,206 Ecommerce platform

s9 Drupal-7.6.9 [2] 148 3,315 62 488 230 140 496 866 Content management system

s10 SMF-2.1.2 [65] 316 45,641 73 525 7 270 929 1,206 Online forum

s11 Zen Cart-1.5.7 [3] 1,829 74,960 103 848 394 215 1,311 1,920 Ecommerce platform

s12 phpBB-3.3.8 [57] 1,091 40,612 69 601 64 341 938 1,343 Online forum

s13 WordPress-5.1.2 [74] 901 84,891 12 94 12 32 271 315 Content management system

s14 InvoicePlane-1.5.11 [34] 2,641 91,036 41 292 29 44 243 316 Ecommerce platform

Total 23,403 1263k 1,179 9,835 4,005 3,602 21,205 28,812

(e.g., file or cache), which our system is not currently
designed to analyze.

Additionally, we included request races reported by
previous studies. In total, we identified 21 request race
vulnerabilities from 8 applications. For the remaining six
applications, we could not find any reported request race
vulnerabilities as of May 2024.

Note that ReqRacer can detect request races in the
cache. However, this requires modifying the application’s
cache API, necessitating non-trivial manual effort and a
understanding of application-specific details. Additionally,
a recent study [61] reports that request races caused by the
cache represent a smaller portion (7.2%, 18 out of 249 races
they studied) of request races compared to database races
(71.5%, 178/249). Considering the combined challenges of
cache analysis complexity and the substantial human effort
required for modifications, we have opted to exclude them
from the scope of this work. Our evaluation will therefore
focus on request races arising from the database.
Setup Tools from Previous Studies. To compare RACEDB
with previous studies, we first obtained the implementations
of Raccoon and ReqRacer from their official sites [62] and
installed them in our testbed. We followed the instructions
provided on their official sites and in their respective papers.

Raccoon collects database query logs for each request
and analyzes them to identify pairs of queries with intersect-
ing read and write columns. It then conducts replay-based
verification by running the flagged request consecutively and
concurrently against the web application to exploit potential
vulnerabilities. By inserting a delay before the vulnerable
writing query, the oracle counts the occurrences of the writ-
ing query in both serialized and concurrent executions. If the
count is higher in the concurrent execution, a vulnerability
is confirmed.

In contrast, ReqRacer uses the open-source tool Gor [26]
to capture and replay HTTP requests. Reqracer leverages
this collected information to identify shared-resource ac-

cesses, reason about the happen-before relationship between
requests, and enable execution replay. It then replays the
inferred racing request candidates, enforcing the identified
unserializable interleavings, and observes their effects. Only
request races that trigger error messages are reported.

We leveraged the collected known vulnerabilities to eval-
uate RACEDB and compare it with previous studies [39],
[59]. Additionally, we evaluated the total 14 applications
with RACEDB to identify any new request race vulnerabil-
ities. The results are reported in the following sections.

4.2. Detection Results

Table 2 presents the request race vulnerability detec-
tion results from the 14 applications we tested. Overall,
RACEDB successfully detected all 21 previously reported
vulnerabilities and identified 18 new vulnerabilities from
14 applications. Meanwhile, Raccoon detected 12 known
vulnerabilities out of 21 and identified 6 previously unknown
vulnerabilities. Reqracer detected 13 known vulnerabilities
and 4 new vulnerabilities. Notably, all vulnerabilities de-
tected by Raccoon and Reqracer were also successfully
detected by RACEDB.

In Table 2, we provide detailed information for each vul-
nerability identified. The first column shows the application
id where the vulnerability resides, and the second column
lists a simplified ID for the vulnerability. The third column
indicates the type of vulnerability (i.e., inter-request race or
intra-request race) as discussed in § 3.2. The next column
displays the number of database tables involved in each
race. The fifth column shows the type of data divergences
detected during the verification phase, as discussed in § 3.3.
The subsequent three columns present the detection results
of each tool tested. The ninth column indicates whether
the vulnerability is already reported or newly detected. For
new vulnerabilities, we also note the status of our CVE
submission: "Known" for already reported vulnerabilities,

Table 2: List of Detected Vulnerabilities

Vul. Race # Tables Detected divergence Raccoon ReqRacer RACEDB Reported Vul? Brief descriptiontype involved (Abusable?)

s1 v1 Intra 2 Database state ✓ CVE submitted (N) incorrect grades

v2 Intra 1 Access pattern/Database state ✓ ✓ CVE submitted (N) incorrect points

v3 Intra 1 Access pattern/Error message ✓ ✓ ✓ CVE submitted (Y) DB insertion error

v4 Inter 2 Database state ✓ CVE submitted (N) incorrect parent/student pair

v5 Intra 1 Access pattern/Error message ✓ ✓ ✓ CVE submitted (Y) DB insertion error

v6 Inter 1 Error message ✓ ✓ CVE submitted (Y) DB insertion error

s2 v7 Inter 2 Database state ✓ CVE submitted (Y) 2 queens or game freezed

v8 Intra 1 Access pattern/Error message ✓ ✓ ✓ CVE submitted (Y) DB insertion error

s3 v9 Intra 1 Access pattern/Database state ✓ ✓ CVE assigned (Y) download more than its limitation

v10 Inter 1 Database state ✓ CVE assigned (Y) oversell

s4 v11 Inter 2 Database state ✓ CVE assigned (Y) coupon overusage

s5 v12 Intra 1 Access pattern/Error message ✓ ✓ ✓ Known (Y) incorrect login attempts

v13 Intra 1 Access pattern/Database state ✓ ✓ Known (Y) coupon overusage

v14 Intra 1 Access pattern/Database state ✓ ✓ Known (Y) coupon overusage

s6 v15 Intra 1 Access pattern ✓ ✓ Known (Y) post spam

v16 Intra 1 Access pattern ✓ ✓ Known (Y) post spam

v17 Intra 1 Access pattern ✓ ✓ Known (Y) post spam

v18 Intra 1 Access pattern/Error message ✓ ✓ ✓ Known (Y) pm spam

v19 Intra 1 Access pattern/Error message ✓ ✓ ✓ Known (Y) pm spam

s7 v20 Intra 1 Access pattern/Database state ✓ ✓ Known (Y) coupon overusage

s8 v21 Inter 1 Error message ✓ ✓ Known (Y) DB insertion error

v22 Intra 1 Error message ✓ ✓ Known (Y) DB insertion error

v23 Inter 1 Error message ✓ ✓ Known (Y) DB fetch error

v24 Inter 1 Error message ✓ ✓ Known (Y) DB insertion error

s9 v25 Inter 1 Error message ✓ ✓ Known (Y) DB fetch error

s10 v26 Inter 1 Error message ✓ ✓ Known (Y) delete before create

s11 v27 Inter 2 Database state ✓ CVE assigned (Y) coupon overusage

v28 Inter 2 Database state ✓ CVE assigned (N) lost credits

v29 Inter 2 Database state ✓ CVE assigned (Y) extra credits through gifting coupon

v30 Intra 1 Database state ✓ CVE assigned (Y) extra credits through gifting coupon

s12 v31 Inter 1 Error message ✓ ✓ Known (Y) app error

s13 v32 Inter 1 Database state/Error message ✓ ✓ Known (Y) incorrect rating

v33 Intra 1 Access pattern/Error message ✓ ✓ ✓ Known (Y) incorrect subscribing

v34 Intra 1 Access pattern/Database state ✓ ✓ Known (Y) incorrect votes

v35 Intra 1 Access pattern/Database state ✓ ✓ Known (Y) incorrect votes

v36 Inter 1 Database state/Error message ✓ ✓ Known (Y) incorrect rating

s14 v37 Inter 2 Database state ✓ CVE submitted (Y) incorrect payment

v38 Intra 1 Access pattern/Database state ✓ ✓ CVE submitted (Y) incorrect payment

v39 Inter 2 Database state ✓ CVE submitted (Y) incorrect payment

Total 18 17 39

"CVE submitted" for confirmed vulnerabilities with CVEs
submitted, and "CVE assigned" for submitted and assigned
CVEs (due to anonymity, CVE numbers are not disclosed
in this submission). The next column indicates whether the
race can be abused and exploited by a malicious actor to
gain an advantage, or if it only negatively impacts legitimate
users. The last column provides a brief description of the
vulnerability.

We observed limitations in both Raccoon and Re-
qRacer’s ability to detect vulnerabilities involving multiple
database tables. These limitations appear to stem from their

specific design choices. First, both tools primarily rely on
analyzing the WHERE clauses of SQL statements to identify
interleaving database operations. This approach, while effec-
tive in cases they focused, overlooks dependencies that exist
between tables at the application level (as discussed in § 2).
These application-level dependencies can create additional
interleaving opportunities that lead to race conditions. Con-
sequently, this limitation can lead to missed vulnerabilities.
9 out of 39 vulnerabilities involve multiple DB tables, thus
both Raccoon and ReqRacer failed to detect them.

Additionally, Raccoon’s design appears to focus primar-

ily on a specific type of request race vulnerability, Guarded
Race Conditions (GRC). This focus could potentially lead
to missing other types of vulnerabilities, such as those
involving distinct requests (inter-request race). 18 out of
39 cases belonged to these categories, and Raccoon failed
to detect them. In addition, Raccoon’s detection strategy
primarily relies on comparing database access patterns, such
as the number of write operations, between serialized and
concurrent executions. While this approach can be effective
in some cases, it has limitations. If the database access
patterns happen to be identical between the two scenarios,
Raccoon fails to detect potential race conditions. This lim-
itation becomes evident in our evaluation. For example, in
case of vulnerability v21, both the serialized and concurrent
executions invoke the exact same number of database write
operations. Consequently, Raccoon fails to detect this race
condition. § 4.3.2 discusses a similar case, v30, in detail.

ReqRacer’s detection relies on error messages from the
database and application, which resulted in it failing to
detect five cases (v9, v10, v15, v16, v17, v34, v35 and
v38) that corrupt data without emitting any errors. Also,
we observe three cases (v13, v14, and v20) that evade Re-
qRacer’s detection algorithm. ReqRacer effectively detects
interleavings between database accesses when both read and
write operations utilize the same WHERE clause. However,
the three identified cases employ different WHERE clauses
in the read and write queries (e.g., using “coupon_code”
for read and “coupon_id” for write), and the dependencies
are introduced through the application variables. This allows
them to bypass ReqRacer’s detection mechanism. These
results demonstrate that RACEDB outperforms existing tools
in detecting request races in real-world applications, thereby
enhancing the security of web applications.

As discussed in the previous section, some of the tested
applications are not the most recent versions, as we used
the same versions that previous studies [10], [39], [59] have
tested, for fair comparison (s3∼s11, s14). In addition, we
chose slightly older versions of applications s12 and s13 due
to the availability of race bug reports. For these older ver-
sions of applications, we studied whether the request races
detected by RACEDB still exist in the most recent versions.
We found that vulnerabilities v1∼v11 and v26∼v30 still
exist in the new versions of the applications, but others
(v12∼v25 and v31∼v39) have been fixed by the developers.

4.3. Case Study

In this section, we present detailed analyses of two vul-
nerability cases (v7 and v39) and compare the performance
of RACEDB against previous techniques [39], [59].

4.3.1. Webchess Game-breaking (v7). RACEDB identified
a request race vulnerability in Webchess [73], an open-
source web chess game, that can lead to game corruption.
This vulnerability arises during pawn promotion, a chess
rule that allows a pawn reaching the final rank to be up-
graded to another piece (e.g., queen). In Webchess, when
a white pawn reaches the final rank, the game pauses for

Figure 4: Webchess - Black Player has extra queen.
1 <?
2 $history = mysqli_query($dbh, "SELECT * FROM history WHERE gameID =

(...)");↪→
3 if ($isMoving){
4 $tmpQuery = "INSERT INTO history (...) VALUES (...)";
5 doMove();
6 saveGame();
7 }
8 elseif($history[$numMoves]['curPiece'] == 'pawn' &&

$history[$numMoves]['promotedTo'] == null)↪→
9 {

10 if($history[$numMoves]['toRow'] == 7 ||
$history[$numMoves]['toRow'] == 0)↪→

11 {
12 mysqli_query($dbh, "UPDATE history SET promotedTo =

'".getPieceName($_POST['promotion'])."' WHERE gameID =
".$_SESSION['gameID']." AND timeOfMove =
'".$history[$numMoves]['timeOfMove']."'");

↪→
↪→
↪→

13 saveGame();
14 }
15 }
16

17 function saveGame(){
18 $values[] = collect_pieces_information();
19 // clear old data, then insert new data
20 mysqli_query($dbh, "DELETE FROM pieces WHERE gameID =

".$_SESSION['gameID']);↪→
21 mysqli_query($dbh, "INSERT INTO pieces (gameID, color, piece,

row, col) VALUES ($values));↪→
22 }

Listing 1: Vulnerable code in Webchess game (v7).

the white player to choose the promotion piece. While the
white player makes this decision, the black player cannot
make moves through the WebChess interface. However, the
server still accepts requests from the black player during
this window. An attacker (playing black) can exploit this
by crafting a network request to move one of their pieces
which is straightforward due to the absence of encryption in
Webchess. This creates a race condition between the black
player’s move request and the white player’s promotion
request. If the race is successfully exploited, one of the
following two scenarios can occur. 1) the black player gains
an additional piece (e.g., extra queens) as shown in Figure 4.
2) The game becomes permanently frozen and cannot be
resumed. This vulnerability allows the black player to gain
an unfair advantage by manipulating the game state during
white’s pawn promotion. White players expecting to pro-
mote a pawn typically have a strategic advantage, making
this exploit particularly disruptive.

Listing 1 shows a code snippet from WebChess that
illustrates the race condition. When the white player selects
a promotion piece, Webchess reads the current game infor-

mation from the history table (line 2). Then updates the
promotion information in the database, reflecting the white
player’s choice (line 12). Finally, the saveGame() function
is called (line 17). At this point, the attacker (black player)
crafts and sends a move request. This request also fetches
the current game information (line 2). The black player’s
move is then updated in the database (line 4), followed by
calling saveGame() (line 6). Following these initial actions,
the white player’s promotion request executes queries at
lines 20 and 21. These queries are designed to update the
board state in the database. Specifically, they might delete
the old board information from the piece table and insert
a new entry representing the all pieces on the board, which
includes the newly promoted piece. However, due to the
race condition, the black player’s move request might also
execute these same queries (lines 20 and 21) concurrently.
This creates the potential for data corruption. Specifically,
both requests insert the entire board state into the piece
table, resulting in two entries with distinct information in the
table. After the race, the application tries to resume the game
by retrieving information from the history and piece
tables. If the application successfully resumes the game from
this corrupted data, the black player might has extra pieces
(queen) due to the distinct information in the piece table.
In another scenario, the corrupted data retrieved from the
database might prevent the application from successfully
resuming the game, leading to a permanent game freeze.

This vulnerability presents three challenges that hinder
detection by existing tools like Raccoon and ReqRacer. First,
these tools are primarily designed to identify race conditions
in a single database table. However, in this case, the race
condition involves two separate tables: history and piece.
This multi-table aspect falls outside the scope of what
these tools are designed to handle. Second, the vulnerability
exploits an inter-request race condition. It involves two
distinct types of requests: the black player’s move request
and the white player’s promotion request. Raccoon’s focus
on single-request type races makes it unsuitable for detecting
this. Third, ReqRacer relies on detecting error messages
from the application or database to identify race condi-
tions. Unfortunately, this vulnerability does not generate
any such error messages. This limitation in ReqRacer’s
approach prevents it from detecting this race. Furthermore,
this case requires message crafting by the attacker, making
it challenging to collect query traces without analyzing the
application code, a capability unique to RACEDB. Although
we provided query traces that included the crafted message
to Raccoon and ReqRacer for a conservative comparison,
they still failed due to the aforementioned reasons.

RACEDB successfully identified this race condition due
to the following reasons. First, sys’s ARD technique effec-
tively captured the data dependence across the two tables,
history and piece, through its dependency analysis graph.
Then, the verification phase of RACEDB played a key role
in confirming the race. It successfully detected a divergence
in the piece table between the serialized and concurrent
executions. This divergence provides concrete evidence of a
race condition that could lead to data inconsistencies.

1 <?php
2 $q2 = $db->Execute("SELECT * FROM COUPON_GC_CUSTOMER WHERE

customer_id='".$_SESSION['customer_id']."'");↪→
3 $new_amount = $q2['amount'] - $_POST['amount'];
4 if ($new_amount < 0) {
5 zencart_redirect('error (gift credits not enough)');
6 }
7 $db->Execute("UPDATE COUPON_GC_CUSTOMER SET amount='".$new_amount."'

WHERE customer_id='".$_SESSION['customer_id']."'");↪→
8 $db->Execute("INSERT INTO COUPONS (..., coupon_code, coupon_amount,

...) VALUES ...");↪→
9 $insert_id = $db->Insert_ID();

10 $db->Execute("INSERT INTO COUPON_EMAIL_TRACK(coupon_id,
customer_id_sent,...) VALUES ... ");↪→

11 ...

Listing 2: Request Race in Zen Cart (v30).

4.3.2. Zen Cart Double Gifts (v30). Zen Cart, a popular e-
commerce platform used by over 6,900 stores [14], is vulner-
able to a request race vulnerability identified by RACEDB.
This vulnerability allows an attacker to exploit the system
and send credit coupons to multiple accounts while only
deducting the credit value once from their own account. The
process of sending gift credit in Zen Cart involves creating
a new coupon and sending the code to the recipient, and the
sender’s credit balance is adjusted accordingly. However, an
attacker can exploit a race condition in this process to send
multiple coupon codes (to accounts they control) while only
deducting the credit value once from their own account.

As shown in Listing 2, a potential race condition exists
due to the execution of a SELECT query (line 2) and a
subsequent UPDATE query (line 7) that relies on the previous
SELECT result. The code executes a SELECT query (line
2) to retrieve the sender’s current credit balance from the
COUPON_GC_CUSTOMER table. The retrieved value is stored
in $q2. A new variable, $new_amount, is calculated by
subtracting the sending amount from the retrieved credit
balance. The code then attempts to update the sender’s credit
balance in the database (line 7), followed by creating a new
coupon for the recipient (line 8). Finally, an email containing
the coupon information (line 10) is sent to the recipient.

Imagine an attacker with $100 credit attempting to send
$50 to two accounts they control. Both requests would
concurrently read the same initial credit balance (e.g., $100)
from the database due to the SELECT query (line 2). Based
on the initial balance, both requests would calculate a new
balance of $50 (original balance - sending amount). The race
condition arises because the update to the sender’s credit
balance (line 7) might not occur before both requests pro-
ceed. This could result in both requests using the outdated
balance of $100, leading to an update of $50 instead of $0.
Consequently, both requests might successfully create new
coupons for the intended recipients, essentially duplicating
the credit transfer. This leaves the sender’s account with only
$50 instead of the expected $0 balance.

While this vulnerability appears straightforward, existing
tools like Raccoon and ReqRacer fail to detect it. Raccoon’s
detection mechanism relies on identifying differences in the
number of database write queries between serialized and
concurrent executions of the query trace. However, if the

Table 3: Manifested and False Positives (TP represents
exploitable true positives; M denotes manifested races; FP
indicates false positives).

Raccoon ReqRacer RACEDB

TP M FP(%) TP M FP(%) TP M FP(%)

s1 3 8 10 (47.6%) 3 0 4 (57.1%) 6 3 4 (30.8%)

s2 1 5 2 (25.0%) 1 1 1 (33.3%) 2 3 1 (16.7%)

s3 1 5 4 (40.0%) 0 3 6 (66.7%) 2 5 4 (36.4%)

s4 0 1 1 (50.0%) 0 2 2 (50.0%) 1 2 2 (40.0%)

s5 3 1 1 (20.0%) 1 0 1 (50.0%) 3 6 1 (10.0%)

s6 5 3 1 (11.1%) 2 0 4 (66.67%) 5 6 2 (15.4%)

s7 1 0 1 (50.0%) 0 1 4 (80.0%) 1 1 1 (33.3%)

s8 0 8 15 (65.2%) 4 2 1 (14.3%) 4 4 1 (11.1%)

s9 0 11 15 (57.7%) 1 0 1 (50.0%) 1 1 1 (33.3%)

s10 0 7 5 (41.7%) 1 0 2 (66.7%) 1 2 0 (0%)

s11 0 10 9 (47.4%) 0 1 4 (80.0%) 4 2 1 (14.3%)

s12 0 2 3 (60.0%) 1 2 6 (66.7%) 1 4 3 (37.5%)

s13 3 2 5 (50.0%) 3 1 4 (50.0%) 5 3 2 (20.0%)

s14 1 1 1 (33.3%) 0 0 4 (100%) 3 1 1 (20.0%)

Total 18 64 73 (47.1%) 17 13 44 (59.5%) 39 43 24 (22.6%)

attacker’s credit balance exceeds the total amount they are
sending, both concurrent and serialized executions would
result in the same number of writes, causing Raccoon to
miss the issue. ReqRacer, on the other hand, depends on
error messages emitted by the application or database to
detect races. In this scenario, no errors occur regardless of
the race, causing ReqRacer to fail as well.

4.4. Analysis of False Positives

We discuss false positive cases reported by RACEDB
and compare them with Raccoon and ReqRacer. As shown
in Table 3, RACEDB identified 106 potential request race
bugs. Through manual analysis, we confirmed 39 of these to
be actual race conditions that could lead to permanent data
corruption, application errors, or database errors. Addition-
ally, 43 of them caused deviations in execution states or
data corruption, however, we failed to confirm any negative
consequences resulting from these deviations. We mark
them as manifested races because, although we could not
exploit them, they signal unintended behavior and could
become exploitable in the future. The remaining 24 out of
106 reports were classified as false positives as we could
not observe clear deviations in execution or data corruption.

We further investigated the root causes of these man-
ifested and false positive races and identified two main
factors.

First, as discussed in § 3.2, RACEDB employs auto-
mated program analysis to identify data dependencies. These
dependencies are crucial in identifying races that cause data
corruption. However, without application-specific knowl-
edge, it is difficult to fully understand the consequences of
this data corruption. We have observed cases where data
corruption does not result in any negative consequences
for users or the application, and we classify these cases as

1 <?
2 $counter_query = "select startdate, counter from COUNTER";
3 $counter = $db->Execute($counter_query);
4 if ($counter->RecordCount() > 0) {
5 ...
6 $counter_now = ($counter->fields['counter'] + 1);
7 $sql = "update COUNTER set counter = '".$counter_now."'";
8 $db->Execute($sql);
9 }

Listing 3: Manifested Race Example - Zen Cart

false positives. For example, in Listing 3, RACEDB analyzes
application-level data dependency in Zen Cart application,
appeared at lines 3, 6, and 7. The return value of the SELECT
query at line 3 is used to modify a variable ($counter_now
at line 6) and then the variable is used in the UPDATE
query at line 7. This creates a data dependency where the
update relies on the initial retrieved value. During the replay
phase of analysis, RACEDB monitors a specific database
field, counter in COUNTER table, for any discrepancies
between serialized and concurrent executions. For instance,
imagine the initial value of the counter is ‘1’, and two
requests execute the code concurrently. Both read ‘1’ from
the table (line 1), and store the incremented value of ‘2’ in
$counter_now. Then, update the counter in the database at
line 7. In this scenario, the final counter value would be ‘2’.
However, in a serialized execution, the final value would be
‘3’ since each request updates the counter independently.

This example demonstrates a race condition that corrupts
the counter value. However, RACEDB categorizes it as a
manifested rather than a race vulnerability for the following
two reasons. First, despite the data corruption, we fail to
identify observable consequences for users or the applica-
tion. Also, we observe that the counter value is routinely
reset, suggesting that the inconsistency is temporary.

Second, RACEDB utilizes a static analysis technique to
identify error handling-logic within an application. It then
checks for specific error messages via text matching. This
approach can lead to false positives as error messages can
differ across different applications. For instance, consider
a false positive scenario in the WebChess application. The
relevant code snippet is listed in Listing 4. The WebChess al-
lows the user to send a refresh request (executing loadGame
at line 7) to update the board state. Suppose a white player
moves a piece, triggering saveGame at line 2 to clear old
data and insert the new data. Concurrently, a refresh request
arrives from the black player, causing SELECT at line 8
to execute right after the DELETE at line 3 but before the
INSERT at line 4. This might lead to an error message
at line 14, which would not occur in serialized execution.
According to the definition, RACEDB detects this scenario
as a race due to the error message which only occurs in the
concurrent execution. However, this essentially is a warning
message, it cannot be abused by a malicious user.

Table 3 also presents manifested and false positive races
reported by Raccoon and ReqRacer. Raccoon identified a
total of 155 races, of which only 18 were confirmed to
be actual races (resulting in 64 manifested and 73 false
positives). Similarly, ReqRacer reported 74 cases, with 17

1 <?
2 function saveGame(){
3 mysqli_query($dbh, "DELETE FROM pieces WHERE gameID =

".$_SESSION['gameID']);↪→
4 mysqli_query($dbh, "INSERT INTO pieces '(...) VALUES (...);")
5 }
6

7 function loadGame(){
8 $pieces = mysqli_query("SELECT * FROM pieces WHERE gameID =

$_SESSION['gameID']");↪→
9 isInCheck();

10 }
11 function isInCheck(){
12 if($findking){return true;}
13 else{
14 echo("CRITICAL ERROR: KING MISSING!");
15 return false;
16 }
17 }

Listing 4: False Positive Example - Webchess

confirmed races, 43 manifested, and 24 false positives.

4.5. Performance Evaluation

The setup process for evaluating each application typ-
ically required between 2 to 4 hours of effort by a single
person. This process involved the following steps:
1. Installation: Installing the target application following

the vendor’s instructions.
2. Account Creation: For applications requiring user ac-

counts, setting up at least two regular user accounts and
one administrator account.

3. Operation Simulation: Simulating standard operations
within the web application using each created account.
For example, for e-commerce applications, this included
actions such as adding items to the cart, completing or-
ders, and redeeming coupons. For forums, this involved
posting topics and commenting on discussions.

These steps were essential for SynthDB’s concolic execu-
tion [10], as we used its implementation to generate query
traces and synthesize database states. Additionally, note
that both Raccoon [39] and ReqRacer [59] require manual
collection of query traces as part of their setup procedures.

For the performance evaluation, we excluded the manual
setup steps described above. Figure 5 presents the results.
On average, RACEDB takes 77.3 minutes to test each ap-
plication, compared to 34.9 minutes for Raccoon and 19.8
minutes for ReqRacer. As expected, RACEDB requires more
time because it identifies a greater number of potential data
races and verifies them through replay-based techniques.

5. Related Work

Concurrency Bugs in Web Applications. Throughout this
paper, we comprehensively discuss the most closely related
works, Raccoon [39] and ReqRacer [59], and their lim-
itations. In addition to these two, there are a few other
works focusing on race detection in web applications. The
approaches and algorithms proposed in earlier works [54],
[71] have been adopted in Raccoon. Zheng et al. [76]

proposed a static approach to detect race problems in server-
side scripts. Furthermore, recent studies [60], [61] have con-
ducted thorough investigations into concurrency problems,
including races [61] and deadlocks [60], and their effects on
web applications.
Traditional Race Detection. Race conditions have been
widely studied in multi-threaded applications [6], [19], [44]
and distributed systems [9], [11], [30]. Thread-race detection
techniques typically focus on identifying data races in shared
memory, while process-race detection techniques target race
conditions across distributed nodes in cloud environments.

However, advancements in thread-level and process-level
race detection are not directly applicable to database-backed
web applications. The key challenge lies in the fundamental
difference between concurrency models used in web applica-
tions (often centered around database interactions) and those
employed in multi-threaded or distributed systems.
Web Application Testing Techniques. Static code scanning
is a widely used technique for identifying security vulnera-
bilities in web applications [5], [16], [29], [32], [41], [47],
[70], [72], [75]. This approach analyzes the application code
without executing it, thus not requiring dynamic resources
such as databases. However, static analysis tools often strug-
gle with web applications written in dynamic languages
like PHP due to the inherent challenges of interpreting
code behavior without actual execution. Dynamic testing
involves executing the web application and analyzing its
behavior for vulnerabilities [8], [17], [27], [28], [31], [37],
[45], [55], [56], [56], [63], [67], [77]. This method can
effectively analyze dynamic execution environments and
user interactions. However, dynamic testing has difficulty
achieving high code coverage due to the lack of dynamic
resources like databases.

To address the limitations of dynamic analysis, Syn-
thDB [10] proposes a technique for generating synthetic
databases. SynthDB leverages concolic execution to identify
interactions between web applications and databases, gen-
erating synthetic database states. These states can then be
used to execute the application code and potentially reveal
vulnerabilities that rely on specific database interactions,
including request races. Our work uses SynthDB to generate
synthesized database states for testing web applications.
This approach allows us to access the web application code
related to request races and generate query traces caused
by these requests. In addition, R3 [42] proposed a record-
and-replay technique for database-backed web applications,
faithfully replaying concurrent bugs.

6. Discussion and Future Work

Request Race in Other Resource Types. The current
design of RACEDB focuses on verifying request races by
detecting divergences between serialized and concurrent ex-
ecutions. This verification process considers database state,
application error messages, and database access patterns.
However, if the impact of a race condition does not directly
affect the data we monitor, RACEDB might miss it. As
discussed in § 4.1, an example of this limitation is the

0

50

100

150

200

250

300

350

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 Avg.

M
in
u
te
s

Raccoon ReqRacer RaceDB

Figure 5: Performance Evaluation Results.

inability to detect cache-related races. Existing tools like
ReqRacer [59] can address cache-based races, but they often
require non-trivial manual effort to modify the application’s
cache API. To overcome this limitation, we plan to ex-
plore automated techniques for identifying cache data to
be monitored. This involves leveraging program analysis
techniques to automatically pinpoint cache data that needs
to be monitored during verification. This investigation into
automated cache data identification is one of our long-term
development roadmap for RACEDB.
False Positive Issues. As discussed in § 4.4, RACEDB
currently generates some manifested races and false posi-
tives even after the automated verification step. These cases
primarily come from non-harmful request races. In man-
ifested cases, although a race condition is detected and
a divergence is observed in the database or application
states, we could not confirm any exploitations that negatively
impact user functionality. False positives are cases where we
could not observe any clear deviations in execution or data
corruption. Distinguishing between truly harmful and non-
harmful races remains a significant challenge. To address
this, we plan to leverage concolic execution as a mitigation
strategy. This technique involves systematically exploring
different execution paths from the identified race condition.
During this exploration, we will track the divergent data and
observe whether its inconsistency disappears automatically
or persists. Additionally, we will monitor the downstream
impacts of the corrupted data to infer potential damage to
the application or user experience.
Undirected Graphs in ARD. In our approach, ARD
(Application-Aware Request-race Detection) graphs are
undirected. These graphs represent potential conflicts be-
tween database operations that interact with overlapping
rows, without specifying the exact order of these inter-
actions. This conservative modeling helps RACEDB avoid
false negatives, as any of these interactions could potentially
lead to a request race. Potential false positives are further
filtered out during dynamic verification. This design choice
is inherited from the 2AD framework, as discussed earlier in
the paper. Extending ARD to directed graphs could improve
accuracy by capturing the precise order of operations. We
leave this enhancement as a future work.
Support Other Languages and DBMS. RACEDB lever-
ages SynthDB [10] for concolic execution and database
synthesis. Consequently, RACEDB inherits SynthDB’s lim-
itations in terms of language and database support. Cur-
rently, RACEDB is limited to PHP applications and MySQL

databases. Throughout this project, we gained a clear under-
standing of SynthDB’s implementation details, which instills
confidence in our ability to extend its capabilities. We plan
to address these limitations by extending the capabilities of
SynthDB. Specifically, we plan to develop an instruction-
level trace and parser specifically for JavaScript applications.
We also plan to enhance the current query analyzer to
support PostgreSQL databases in addition to MySQL. By
expanding SynthDB’s functionalities, we aim to significantly
broaden the applicability of RACEDB to a wider range of
web application and database.

7. Conclusion

We propose RACEDB, a novel system that automatically
detects and verifies request races in database-backed web
applications. RACEDB analyzes diverse data dependencies
within both the application and database, enabling the iden-
tification of intricate race conditions. Furthermore, auto-
mated verification with replay-based execution significantly
reduces false positives. Evaluation on 14 real-world web
applications demonstrates that RACEDB outperforms state-
of-the-art techniques in terms of detection rate, encom-
passing both known and new vulnerabilities, with a lower
false positive rate than existing tools. By automating race
condition detection and verification, RACEDB is expected
to enhance the security of web applications.

Acknowledgment

The authors would like to express their appreciation to
the anonymous reviewers for their valuable and constructive
feedback, as well as to the shepherd for their guidance in
improving the paper during the revision process. The au-
thors gratefully acknowledge the support of NSF 1916500,
2426653, and 2427783. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
sponsor.

References

[1] “CE Phoenix Cart,” https://phoenixcart.org/.

[2] “Drupal,” https://www.drupal.org/.

[3] “Zen Cart,” https://www.zen-cart.com/.

[4] A. Adya, “Weak consistency: a generalized theory and optimistic
implementations for distributed transactions,” 1999.

https://phoenixcart.org/
https://www.drupal.org/
https://www.zen-cart.com/

[5] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and flexible discovery of php application vulnerabilities,”
IEEE EuroS&P’17, pp. 334–349.

[6] M. D. Bond, K. E. Coons, and K. S. McKinley, “Pacer: Proportional
detection of data races,” in Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). ACM, 2010, pp. 255–268.

[7] “BuiltWith,” 2024, https://builtwith.com/.

[8] A. Bulekov, R. Jahanshahi, and M. Egele, “Saphire: Sandboxing PHP
applications with tailored system call allowlists,” in 30th USENIX
Security Symposium (USENIX Security 21).

[9] Y. Cao, X. Zhang, H. Chen, and B. Zang, “Racer: Effective data race
detection for the cloud,” in Proceedings of the 2020 ACM SIGPLAN
International Conference on Programming Language Design and
Implementation (PLDI). ACM, 2020, pp. 1–14.

[10] A. Chen, J. Lee, B. Chaulagain, Y. Kwon, and K. H. Lee, “Synthdb:
Synthesizing database via program analysis for security testing of
web applications.” in NDSS, 2023.

[11] G. Chen, S. Lu, S. Krishnan, S. Xanthos, and S. Thummalapenta,
“Pacer: Proportional detection of data races,” in Proceedings of
the 2019 ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI). ACM, 2019, pp.
255–268.

[12] H. Chen, S. Guo, Y. Xue, Y. Sui, C. Zhang, Y. Li, H. Wang,
and Y. Liu, “MUZZ: Thread-aware grey-box fuzzing for effective
bug hunting in multithreaded programs,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug.
2020, pp. 2325–2342. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/chen-hongxu

[13] “CVE,” https://cve.mitre.org/.

[14] “Store Leads,” https://storeleads.app/reports/zencart.

[15] “CVE-2022-4037,” 2023, https://nvd.nist.gov/vuln/detail/
CVE-2022-4037.

[16] J. Dahse and T. Holz, “Static detection of second-order vulnerabilities
in web applications,” in USENIX Security Symposium, 2014.

[17] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the
state: A state-aware black-box web vulnerability scanner,” in 21st
USENIX Security Symposium, Aug. 2012, pp. 523–538.

[18] M. Elahi, F. Jahan, M. R. Shahriar, and M. Ahsan, “Performance eval-
uation of web servers for lamp stack web applications,” International
Journal of Computer Applications, vol. 166, no. 11, pp. 20–24, 2017.

[19] C. Flanagan and S. Freund, “Fasttrack: Efficient and precise dynamic
race detection,” in Proceedings of the 30th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI).
ACM, 2009, pp. 121–133.

[20] C. Flanagan and S. N. Freund, “Fasttrack: efficient and precise
dynamic race detection,” in Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 121–133. [Online]. Available:
https://doi.org/10.1145/1542476.1542490

[21] “Withdrawal vulnerabilities enabled bitcoin
theft from flexcoin and poloniex.” 2014,
https://www.pcworld.com/article/444202/withdrawal-vulnerabilities-
enabled-bitcoin-theft-from-flexcoin-and-poloniex.html.

[22] M. Gligoric and R. Majumdar, “Model checking database applica-
tions,” in Tools and Algorithms for the Construction and Analysis
of Systems: 19th International Conference, TACAS 2013, Held as
Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings
19. Springer, 2013, pp. 549–564.

[23] T. V. Goethem, C. Pöpper, W. Joosen, and M. Vanhoef,
“Timeless timing attacks: Exploiting concurrency to leak secrets
over remote connections,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
1985–2002. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/van-goethem

[24] S. Gong, D. Peng, D. Altınbüken, P. Fonseca, and P. Maniatis,
“Snowcat: Efficient kernel concurrency testing using a learned
coverage predictor,” in Proceedings of the 29th Symposium on
Operating Systems Principles, ser. SOSP ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 35–51. [Online].
Available: https://doi.org/10.1145/3600006.3613148

[25] “Google Scholar,” https://scholar.google.com/.

[26] “Gor,” 2024, https://github.com/adjust/gor.

[27] W. G. J. Halfond, A. Orso, and P. Manolios, “Wasp: Protecting
web applications using positive tainting and syntax-aware evaluation,”
IEEE Transactions on Software Engineering, vol. 34, pp. 65–81,
2008.

[28] B. Hawkins and B. Demsky, “Zenids: Introspective intrusion detection
for php applications,” IEEE/ACM 39th International Conference on
Software Engineering, pp. 232–243, 2017.

[29] M. Hills, P. Klint, and J. J. Vinju, “An empirical study of php
feature usage: a static analysis perspective,” Proceedings of the 2013
International Symposium on Software Testing and Analysis, 2013.

[30] X. Huang, J. Chen, W.-C. Chuang, and Y. Shoshitaishvili, “Order-
aware race detection in distributed systems,” in Proceedings of the
2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE/ACM, 2021, pp. 250–262.

[31] Y.-W. Huang, C.-H. Tsai, T.-P. Lin, S.-K. Huang, D. T. Lee, and S.-Y.
Kuo, “A testing framework for web application security assessment,”
Comput. Networks, vol. 48, pp. 739–761, 2005.

[32] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and S.-Y.
Kuo, “Securing web application code by static analysis and runtime
protection,” in WWW ’04, 2004.

[33] “Jack cable. [n.d.]. race condition in redeeming coupons.” 2016,
.https://hackerone.com/reports/157996.

[34] “InvoicePlane,” https://www.invoiceplane.com/.

[35] P. Jayaweera and S. Perera, “Implementation of lamp stack for cloud
computing,” in 2014 International Conference on Advances in ICT
for Emerging Regions (ICTer). IEEE, 2014, pp. 181–188.

[36] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis
tool for detecting web application vulnerabilities,” in 2006 IEEE
Symposium on Security and Privacy (S&P’06). IEEE, 2006, pp.
6–pp.

[37] S. Kals, E. Kirda, C. Krügel, and N. Jovanovic, “Secubat: a web
vulnerability scanner,” in WWW ’06, 2006.

[38] J. Kettle, “Smashing the state machine: The true potential of web race
conditions,” in BlackHat USA 2023, https://www.blackhat.com/us-
23/briefings/schedule/index.htmlsmashing-the-state-machine-the-
true-potential-of-web-race-conditions-31712.

[39] S. Koch, T. Sauer, M. Johns, and G. Pellegrino, “Raccoon: automated
verification of guarded race conditions in web applications,” in Pro-
ceedings of the 35th Annual ACM Symposium on Applied Computing,
2020, pp. 1678–1687.

[40] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, “Efficient
scalable thread-safety-violation detection: finding thousands of
concurrency bugs during testing,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, ser. SOSP ’19. New
York, NY, USA: Association for Computing Machinery, 2019,
p. 162–180. [Online]. Available: https://doi.org/10.1145/3341301.
3359638

[41] P. Li and W. Meng, “Lchecker: Detecting loose comparison bugs in
php,” Proceedings of the Web Conference 2021, 2021.

https://builtwith.com/
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hongxu
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hongxu
https://cve.mitre.org/
https://storeleads.app/reports/zencart
https://nvd.nist.gov/vuln/detail/CVE-2022-4037
https://nvd.nist.gov/vuln/detail/CVE-2022-4037
https://doi.org/10.1145/1542476.1542490
https://www.pcworld.com/article/444202/withdrawal-vulnerabilities-enabled-bitcoin-theft-from-flexcoin-and-poloniex.html
https://www.pcworld.com/article/444202/withdrawal-vulnerabilities-enabled-bitcoin-theft-from-flexcoin-and-poloniex.html
https://www.usenix.org/conference/usenixsecurity20/presentation/van-goethem
https://www.usenix.org/conference/usenixsecurity20/presentation/van-goethem
https://doi.org/10.1145/3600006.3613148
https://scholar.google.com/
https://github.com/adjust/gor
. https://hackerone.com/reports/157996
https://www.invoiceplane.com/
https://www.blackhat.com/us-23/briefings/schedule/index.html#smashing-the-state-machine-the-true-potential-of-web-race-conditions-31712
https://www.blackhat.com/us-23/briefings/schedule/index.html#smashing-the-state-machine-the-true-potential-of-web-race-conditions-31712
https://www.blackhat.com/us-23/briefings/schedule/index.html#smashing-the-state-machine-the-true-potential-of-web-race-conditions-31712
https://doi.org/10.1145/3341301.3359638
https://doi.org/10.1145/3341301.3359638

[42] Q. Li, P. Kraft, M. Cafarella, c. Demiralp, G. Graefe, C. Kozyrakis,
M. Stonebraker, L. Suresh, X. Yu, and M. Zaharia, “R3: Record-
replay-retroaction for database-backed applications,” Proc. VLDB
Endow., vol. 16, no. 11, p. 3085–3097, jul 2023. [Online]. Available:
https://doi.org/10.14778/3611479.3611510

[43] C. Liu, D. Zou, P. Luo, B. B. Zhu, and H. Jin, “A heuristic
framework to detect concurrency vulnerabilities,” in Proceedings
of the 34th Annual Computer Security Applications Conference,
ser. ACSAC ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 529–541. [Online]. Available:
https://doi.org/10.1145/3274694.3274718

[44] U. Mathur and M. Viswanathan, “Optimal prediction of
synchronization-preserving races,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM, 2020, pp. 257–271.

[45] S. McAllister, E. Kirda, and C. Krügel, “Leveraging user interactions
for in-depth testing of web applications,” in RAID, 2008.

[46] I. Medeiros, N. Neves, and M. Correia, “Dekant: a static analysis tool
that learns to detect web application vulnerabilities,” in Proceedings
of the 25th international symposium on software testing and analysis,
2016, pp. 1–11.

[47] M. Monshizadeh, P. Naldurg, and V. Venkatakrishnan, “Mace: De-
tecting privilege escalation vulnerabilities in web applications,” Pro-
ceedings of the ACM CCS’14.

[48] “Moodle,” https://moodle.org/.

[49] “MyBB,” https://mybb.com/.

[50] E. Naramore, J. Gerner, Y. L. Scouarnec, J. Stolz, and M. Glass,
Beginning PHP5, Apache, MySQL Web Development. John Wiley
& Sons, 2005.

[51] “OpenCart,” https://www.opencart.com/.

[52] “OsCommerce,” https://www.oscommerce.com/.

[53] “OXID eShop,” https://www.oxid-esales.com/en/.

[54] R. Paleari, D. Marrone, D. Bruschi, and M. Monga, “On race vulnera-
bilities in web applications,” in Detection of Intrusions and Malware,
and Vulnerability Assessment: 5th International Conference, DIMVA
2008, Paris, France, July 10-11, 2008. Proceedings 5. Springer,
2008, pp. 126–142.

[55] G. Pellegrino and D. Balzarotti, “Toward black-box detection of logic
flaws in web applications,” in NDSS, 2014.

[56] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow,
“Deemon: Detecting csrf with dynamic analysis and property graphs,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017, p. 1757–1771.

[57] “phpBB,” https://www.phpbb.com/.

[58] “proxySQL,” https://proxysql.com/.

[59] Z. Qiu, S. Shao, Q. Zhao, and G.Jin, “Understanding and detecting
server-side request races in web applications,” in Proceedings of
the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 842–854. [Online].
Available: https://doi.org/10.1145/3468264.3468594

[60] Z. Qiu, S. Shao, Q. Zhao, and G. Jin, “A characteristic study
of deadlocks in database-backed web applications,” in 2021 IEEE
32nd International Symposium on Software Reliability Engineering
(ISSRE), 2021, pp. 510–521.

[61] Z. Qiu, S. Shao, Q. Zhao, H. A. Khan, X. Hui, and G. Jin, “A deep
study of the effects and fixes of server-side request races in web
applications,” in 2022 IEEE/ACM 19th International Conference on
Mining Software Repositories (MSR), 2022, pp. 744–756.

[62] “Reqracer artifact,” 2024, https://github.com/caseqiu213/reqracer_
fse_artifact.

[63] P. Saxena, D. A. Molnar, and B. Livshits, “Scriptgard: automatic
context-sensitive sanitization for large-scale legacy web applications,”
in CCS ’11, 2011.

[64] “SchoolMate,” https://sourceforge.net/projects/schoolmate/files/
SchoolMate/.

[65] “Simple Machines Forum,” 2022, https://www.simplemachines.org/.

[66] J. Smith, L. N. Q. Do, and E. Murphy-Hill, “Why can’t johnny
fix vulnerabilities: A usability evaluation of static analysis tools for
security,” in Sixteenth Symposium on Usable Privacy and Security
(SOUPS 2020), 2020, pp. 221–238.

[67] S. Son, K. S. McKinley, and V. Shmatikov, “Diglossia: detecting code
injection attacks with precision and efficiency,” Proceedings of the
ACM conference on Computer & communications security, 2013.

[68] “Egor homakov. [n.d.]. hacking starbucks for unlimited coffee.” 2015,
https://sakurity.com/blog/2015/05/21/starbucks.html.

[69] B. A. Stoica, S. Lu, M. Musuvathi, and S. Nath, “Waffle: Exposing
memory ordering bugs efficiently with active delay injection,” in
Proceedings of the Eighteenth European Conference on Computer
Systems, ser. EuroSys ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 111–126. [Online]. Available:
https://doi.org/10.1145/3552326.3567507

[70] F. Sun, L. Xu, and Z. Su, “Detecting logic vulnerabilities in e-
commerce applications,” in NDSS, 2014.

[71] T. Warszawski and P. Bailis, “Acidrain: Concurrency-related attacks
on database-backed web applications,” in Proceedings of the 2017
ACM International Conference on Management of Data, 2017, pp.
5–20.

[72] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in PLDI ’07, 2007.

[73] “Webchess,” https://github.com/halojoy/PHP7-Webchess.

[74] “WordPress,” https://wordpress.com/.

[75] Y.Zheng and X.Zhang, “Path sensitive static analysis of web ap-
plications for remote code execution vulnerability detection,” 35th
International Conference on Software Engineering, pp. 652–661,
2013.

[76] Y. Zheng and X. Zhang, “Static detection of resource contention prob-
lems in server-side scripts,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. IEEE Press,
2012, p. 584–594.

[77] Y. Zhou and D. Evans, “Ssoscan: Automated testing of web applica-
tions for single sign-on vulnerabilities,” in USENIX Security’14.

https://doi.org/10.14778/3611479.3611510
https://doi.org/10.1145/3274694.3274718
https://moodle.org/
https://mybb.com/
https://www.opencart.com/
https://www.oscommerce.com/
https://www.oxid-esales.com/en/
https://www.phpbb.com/
https://proxysql.com/
https://doi.org/10.1145/3468264.3468594
https://github.com/caseqiu213/reqracer_fse_artifact
https://github.com/caseqiu213/reqracer_fse_artifact
https://sourceforge.net/projects/schoolmate/files/SchoolMate/
https://sourceforge.net/projects/schoolmate/files/SchoolMate/
https://www.simplemachines.org/
 https://sakurity.com/blog/2015/05/21/starbucks.html
https://doi.org/10.1145/3552326.3567507
https://github.com/halojoy/PHP7-Webchess
https://wordpress.com/

Appendix A.
Meta-Review

A.1. Summary of Paper

The paper presents RaceDB, a tool for finding database
races in web applications. RaceDB builds on and extends
SynthDB and the 2AD algorithm to detect races between
parts of the database related via the program code. The
detected potential races are then subjected to an automatic
verification technique based on ProxySQL to replay the
race to single out the actual races that cause differences
in the database state, application state, or database access
patterns. Multiple CVEs in popular PHP web applications
demonstrate the tool’s practical impact.

A.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability

A.3. Reasons for Acceptance

1) The paper provides a valuable step forward in an
established field. It contributes to improving the area
of race condition vulnerability detection by introducing
an approach that combines concolic execution, code
and database data dependency analysis, and dynamic
testing by replaying execution traces and recording
discrepancies.

2) The paper creates a new tool to enable future science.
The dual-context analysis that underlines the tool pro-
vides a more thorough detection mechanism compared
to traditional methods.

3) The paper identifies multiple vulnerabilities in popular
open-source PHP web applications. Some of these con-
firm known vulnerabilities while others report newly
discovered vulnerabilities leading to freshly assigned
CVEs.

4) Authors plan to release the tool for reproducibility and
future science.

A.4. Noteworthy Concerns

1) One reviewer has raised concerns about the limited
scale of evaluation, as the paper includes only a small
selection of applications assessing false negatives.

	Introduction
	Motivating Example
	Design
	Trace Generation via Concolic Execution
	Application-aware Request Race Detection
	Candidate Verification with Replay Execution

	Evaluation
	Experimental Setup
	Detection Results
	Case Study
	Webchess Game-breaking (v7)
	Zen Cart Double Gifts (v30)

	Analysis of False Positives
	Performance Evaluation

	Related Work
	Discussion and Future Work
	Conclusion
	References
	Appendix A: Meta-Review
	Summary of Paper
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

