
PMP: Cost-effective Forced Execution with Probabilistic Memory Pre-planning

Wei You1, Zhuo Zhang1, Yonghwi Kwon2, Yousra Aafer1, Fei Peng1, Yu Shi1, Carson Harmon1, Xiangyu Zhang1
1Department of Computer Science, Purdue University, Indiana, USA

2Department of Computer Science, University of Virginia, Virginia, USA
Email: {you58, zhan3299, yaafer, pengf, shi442, harmon35, xyzhang}@purdue.edu, yongkwon@virginia.edu

Abstract—Malware is a prominent security threat and exposing
malware behavior is a critical challenge. Recent malware often
has payload that is only released when certain conditions are
satisfied. It is hence difficult to fully disclose the payload by
simply executing the malware. In addition, malware samples
may be equipped with cloaking techniques such as VM detectors
that stop execution once detecting that the malware is being
monitored. Forced execution is a highly effective method to
penetrate malware self-protection and expose hidden behavior, by
forcefully setting certain branch outcomes. However, an existing
state-of-the-art forced execution technique X-Force is very heavy-
weight, requiring tracing individual instructions, reasoning about
pointer alias relations on-the-fly, and repairing invalid pointers
by on-demand memory allocation. We develop a light-weight and
practical forced execution technique. Without losing analysis pre-
cision, it avoids tracking individual instructions and on-demand
allocation. Under our scheme, a forced execution is very similar
to a native one. It features a novel memory pre-planning phase
that pre-allocates a large memory buffer, and then initializes
the buffer, and variables in the subject binary, with carefully
crafted values in a random fashion before the real execution.
The pre-planning is designed in such a way that dereferencing
an invalid pointer has a very large chance to fall into the
pre-allocated region and hence does not cause any exception,
and semantically unrelated invalid pointer dereferences highly
likely access disjoint (pre-allocated) memory regions, avoiding
state corruptions with probabilistic guarantees. Our experiments
show that our technique is 84 times faster than X-Force, has
6.5X and 10% fewer false positives and negatives for program
dependence detection, respectively, and can expose 98% more
malicious behaviors in 400 recent malware samples.

I. INTRODUCTION

The proliferation of new strains of malware every year
poses a prominent security threat. Recently reported attacks
demonstrate the emergence of new attacking trends, where
malware authors are designing for stealth and leaving lighter
footprints. For example, Fileless malware [5] infects a target
host through exploiting built-in tools and features, without
requiring the installation of malicious programs. Clickless
infections [1] avoid end-user interaction through exploiting
shared access points and remote execution exploits. Cryptocur-
rency malware [4] allow attackers to generate huge revenues
by illegally running mining algorithms using victim’s system
resources. According to [3], a massive cryptocurrency mining
botnet has generated $3 million revenue in 2018. Under this
new threatscape, malicious payloads have evolved and look
much different than traditional ones. Thus, a critical challenge
the security community is facing today is to understand and
analyze emerging malware’s behavior in an effort to prevent
potentially epidemic consequences.

A popular approach to understanding malware behavior is to
run it in a sandbox. However, a well-known difficulty is that
the needed environment or setup may not be present (e.g.,
C&C server is down and critical libraries are missing) such
that the malware cannot be executed. In addition, recent mal-
ware often makes use of time-bomb and logic-bomb that define
very specific temporal and contextual conditions to release
payload, and some samples even use cloaking techniques such
as packing, and VM/debugger detectors that prevent execution
when the malware is being monitored.

Researchers in [32] proposed a technique called forced-
execution (X-Force) that penetrates these malware self-
protection mechanisms and various trigger conditions. It works
by force-setting branch outcomes of some conditional instruc-
tions. (e.g., those checking trigger conditions). As forcing
execution paths could lead to corrupted states and hence
exceptions, X-Force features a crash-free execution model
that allocates a new memory block on demand upon any
invalid pointer dereference. However, X-Force is a very
heavy-weight technique that is difficult to deploy in practice.
Specifically, in order to respect program semantics, when X-
Force fixes an invalid pointer variable (by assigning a newly
allocated memory block to the variable), it has to update
all the correlated pointer variables (e.g., those have constant
offsets with the original invalid pointer). To do so, it has
to track all memory operations (to detect invalid accesses)
and all move/addition/subtraction operations (to keep track of
pointer variable correlations/aliases). Such tracking not only
entails substantial overhead, but also is difficult to implement
correctly due to the complexity of instruction set and the
numerous corner situations that need to be considered (e.g., in
computing pointer relations). As a result, the original X-Force
does not support tracing into library functions.

In this paper, we propose a practical forced execution
technique. It does not require tracking individual memory or
arithmetic instructions. Neither does it require on demand
memory allocation. As such, the forced execution is very
close to a native execution, naturally handling libraries and
dynamically generated code. Specifically, it achieves crash-
free execution (with probabilistic guarantees) through a novel
memory pre-planning phase, in which it pre-allocates a region
of memory starting from address 0, and fills the region with
carefully crafted random values. These values are designed in
such a way that (1) if they are interpreted as addresses and
further dereferenced, the addresses fall into the pre-allocated
region and do not cause exception; (2) they have diverse

1

random values such that semantically unrelated pointer vari-
ables unlikely dereference the same random address and avoid
causing bogus program dependencies and corrupted states. An
execution engine is developed to systematically explores dif-
ferent paths by force-setting different sets of branch outcomes.
For each path, multiple processes are spawned to execute the
path with different randomized memory pre-planning schemes,
further reducing the probability of coincidental failures. The
results of these processes are aggregated to derive the results
for the particular path. The engine then moves forward to the
next path.

Our contributions are summarized as follows.

� We develop a practical forced-execution engine that does
not entail any heavy-weight instrumentation.

� We propose a novel memory pre-planning scheme that
provides probabilistic guarantees to avoid crashes and
bogus program dependencies. The execution under our
scheme is very similar to a native execution. Once the
memory is pre-planned and initialized at the beginning,
the execution just proceeds as normal, without requiring
any tracking or on the fly analysis (e.g., pointer correla-
tion analysis).

� We have implemented a prototype called PMP and eval-
uated it on SPEC2000 programs (which include gcc),
and 400 recent real-world malware samples. Our results
show that PMP is a highly effective and efficient forced
execution technique. Compared to X-Force, PMP is 84
time faster, and the false positive (FP) and false negative
(FN) rates are 6.5X and 10% lower, respectively, regard-
ing dependence analysis; and detect 98% more malicious
behaviors in malware analysis. It also substantially super-
sedes recent commercial and academic malware analysis
engines Cuckoo [2], Habo [10] and Padawan [8].

II. MOTIVATION

In this section, we use an example to motivate the problem,
explain the limitations of existing techniques, and illustrate our
idea. The code snippet in Figure 1 simulates the command and
control (C&C) behavior of a variant of Mirai [7], a notorious
IoT malware that launches distributed denial of service attacks
when receiving commands from the remote C&C server. In
particular, it reads the maximum number of destination hosts
(to attack) from a configuration file (line 9), and allocates
a Cmd object with sufficient memory to store destination
information in the Dest objects (lines 10-12). When the
C&C server is connectable (line 15), the malware scans the
local network for the destination hosts (line 16), receives the
requested command (line 17), and performs the corresponding
actions on the destination hosts (lines 18-22).

To expose such malicious behavior, analysts could run the
sample in a sandbox and monitor its system call sequences
and network flows [8]. Unfortunately, a naive execution-based
analysis is incomplete and hence cannot reveal all the mali-
cious payloads, especially those that are condition-guarded and
environment-specific. In our example, if the configuration file

does not exist or the C&C server is not connectable, the mali-
cious behavior will not be exposed at all. One may consider to
construct an input file and simulate the network data. However,
such a task is time-consuming and not practical for zero-
day malware whose input format and network communication
protocol are unknown. In addition, recent malware samples are
increasingly equipped with anti-analysis mechanism, which
prevents these samples from execution even if they are given
valid inputs (please refer to Section IV for real-world cases).
This poses great difficulties for dynamic analysis.

Forced execution [32] provides a practical solution to sys-
tematically explore different execution paths (and, hence reveal
different program behaviors) without any input or environment
setup. It works by force-setting branch outcomes of a small set
of predicates and jump tables. One critical problem faced by
forced execution is invalid memory accesses due to the absence
of necessary memory allocations and initializations, which
are present in normal execution. Without appropriate handling
of invalid memory accesses, the program is most likely to
crash before reaching any malicious payload. In our example,
the malicious behaviors were supposed to be exposed, if the
predicate in line 15 is forced to take the true branch, and
the jump table in line 18 is forced to iterate different entries.
However, the forced execution fails in line 30, because cmd is
not properly allocated and its dests field is not initialized.

X-Force. In X-Force [32], researchers show that simply ignor-
ing exceptions does not work as that leads to cascading failures
(i.e., more and more crashes), they propose to recover from
invalid memory accesses by performing on-demand memory
allocation. In particular, X-Force monitors all memory oper-
ations (i.e., allocate, free, read and write) to maintain a list
of valid memory addresses. If an accessed memory address is
not in the valid list, a new memory block will be allocated
on demand for the access. To respect program semantics,
when a pointer variable holding an invalid address x is set
to the address of the allocated memory, all the other pointer
variables that hold a value denoting the same invalid address
or its offset (e.g., x + c with c some constant) need to be
updated. X-Force achieves this through linear set tracing,
which identifies linearly correlated pointer variables that are
induced by address offsetting. When a pointer variable is
updated, all the correlated pointers in its linear set need to
be updated accordingly based on their offsets.

Assume in an execution instance, line 8 takes the false
branch and line 15 is forced to take the true branch. In this
execution, cmd is a NULL pointer, hence the dests pointer
in line 27 points to 0x8 (the offset of dests field is 8). The
rounded rectangle in Figure 1 illustrates what X-Force does
for the memory access of dests[0]->ip in line 30. Linear
sets are maintained for each register and each memory address.
In particular, SR(r) and SM(a) are used to denote the linear
set of register r and address a, respectively. After executing
instruction �, the linear set of register rbx is updated to be
the same as that of &dests, i.e., SR(rbx)← SM (&dests)
such that SR(rbx)=SM (&dests)={0x7ffdfffffed0}, which

2

01 typedef struct{char ip[16]; long port;} Dest;
02 typedef struct{long act; Dest* dests[0];} Cmd;
03
04 int main(int argc, char *argv[]) {
05 Cmd *cmd = NULL;
06 int max = 0;
07
08 if (config_file_exists()) {
09 max = read_from_config_file();
10 cmd = malloc(sizeof(Cmd) + max*sizeof(Dest*));
11 for (int i = 0; i < max; i++)
12 cmd->dests[i] = malloc(sizeof(Dest));
13 }
14 ...
15 if (cnc_server_connectable()) {
16 scan_intranet_hosts(cmd, max);
17 cmd->act = get_action_from_cc_server();
18 switch (cmd->act) {
19 case 1: do_action_1(cmd->dest, max); break;
20 case 2: do_action_2(cmd->dest, max); break;
21 ...
22 }
23 }
24 ...
25 }

26 void scan_intranet_hosts(Cmd *cmd, int max) {
27 Dest **dests = cmd->dests;
28 for (int i = 0; i < max; i++) {
29 struct sockaddr_in *host = iterate_host();

30 inet_ntop(host->ip, dests[i]->ip);

31 dests[i]->port = ntohl(host->port);
32 }
33 }

�. mov rbx, [rbp - 0x10] // rbx = [rbp - 0x10] = [0x7ffdfffffed0] = 0x8
/* Validate Memory Address: get accessible(0x7ffdfffffed0) = true */
/* Update Linear Set: SR(rbx) SM (&dests) = f0x7ffdfffffed0g */

�. mov ecx, [rbp - 0x14] // ecx = [rbp - 0x14] = [0x7ffdfffffecc] = 0x0
/* Validate Memory Address: get accessible(0x7ffdfffffed4) = true */
/* Update Linear Set: SR(rcx) SM (&i) = f0x7ffdfffffeccg */

. lea rdx, [rbx + 8*rcx] // rdx = rbx + 8*rcx = 0x8
/* Update Linear Set: SR(rdx) SR(rbx) = f0x7ffdfffffed0g */

�. mov rax, [rdx] // rax = [rdx] = [0x8]
/* Validate Memory Address: get accessible(0x8) = false (invalid read on 0x8) */
/* Allocate Memory Block: malloc(BLOCK SIZE) = 0x2531000 */
/* Update Reference: rdx = *(0x7ffdfffffed0) = 0x2531000 + 0x8 = 0x2531008 */

�. mov rax, [rax] // rax = [rax] = [0x0]
/* Validate Memory Address: get accessible(0x0) = false (invalid read on 0x0) */
/* Allocate Memory Block: malloc(BLOCK SIZE) = 0x2532000 */
/* Update Reference: rdx = *(0x7ffdfffffed0) = 0x2532000 + 0x8 = 0x2532008 */

Fig. 1: Motivation example. The assembly code here is functionally equivalent with the original one for easy understanding.

is the address of dests. Intuitively, the pointer value in rbx
is linearly correlated to that in dests. Hence, fixing either
one entails updating the other. The linear correlation is further
propagated to register rdx after executing instruction
, since
its value is derived from rbx by address offsetting (i.e.,
&dests[0] = &dests + 0). When executing instruction �,
X-Force detects an invalid access through the pointer denoted
by rdx (i.e., &dests[0]), holding an invalid address 0x8.
Hence, it allocates a memory block with address 0x2531000
and initializes it with zero values. Register rdx is then
updated to 0x2531008. The value of &dest should also be
updated, since it linearly correlates with rdx. Similar memory
recovery operations are needed for instruction � that accesses
dests[0]->ip through an invalid memory address 0x0.

As we can see that each memory operation should be
intercepted by X-Force for memory address validation and
linear set tracing. Upon the recovery of an (invalid) pointer
variable, all the linearly correlated variables need to be updated
accordingly. This causes substantial performance degradation.
It was reported that X-Force has 473 times runtime overhead
over the native execution [32]. Furthermore, since many library
functions such as string functions in glibc can lead to linear
set explosion (due to substantial heap array operations), X-
Force chose not to trace into library functions to update linear
sets. As a result, its memory recovery is incomplete (see
Section IV for a real-world example).

Our technique. We propose a novel randomized memory pre-
planning technique (called PMP) to handle invalid memory
accesses with probabilistic guarantees. Instead of allocating
new memory blocks on demand, PMP pre-allocates a large
memory block with a fixed size (e.g., 16KB) when the
program is loaded. The pre-allocated memory area (PAMA)
is filled with carefully crafted random values such that if these
values are interpreted as memory addresses, the corresponding

accesses still fall into PAMA. We call this self-contained
memory behavior (SCMB). In addition, these random val-
ues are designed in a way that they are self-disambiguated.
That is, it is highly unlikely that two semantically unrelated
memory operations access the same random address, causing
bogus dependencies. We call this self-disambiguated memory
behavior (SDMB). For example, the simplest way to achieve
SCMB is to pre-allocate a chunk of memory starting at 0x00
and fill it with 0x00. As such, dereferences of null pointers
(e.g., ∗p with p = 0) or pointers with some offset from null
(e.g., ∗(p+ 8)), yield value 0x00 due to the initialization.
If the yielded value 0x00 is further interpreted as a pointer,
its dereference continues to yield 0x00, without causing any
memory exception. However, such a scheme leads to sub-
stantial bogus program dependencies as semantically unrelated
memory operations through uninitialized/invalid pointer vari-
ables all end up accessing address 0x00. For example, assume
p and q are not properly initialized and both have a null value
due to forced execution and there are two pointer dereference
statements “1: ∗ p = :::; 2: ::: = ∗q”. A bogus dependence
will be introduced between 1 and 2. Such bogus dependencies
further lead to highly corrupted program states. SDMB is to
ensure that unrelated pointer variables have a high likelihood
to contain disjoint addresses such that it is like they were all
properly allocated and initialized. Intuitively, PMP diversifies
the values filled in the pre-allocated large memory region such
that dereferences at different offsets yield different values.
Consequently, follow-up dereferences (of these values) can
continue to disambiguate themselves.

In addition to the aforementioned pre-planning, during
execution, PMP also initializes global, local variables, and
heap regions allocated by the original program logic with
random values pointing to PAMA. Note that otherwise they
are initialized to 0 by default. As such, when these variables
are interpreted as pointers and dereferenced without being

3

Fig. 2: Pre-allocated memory area. The data is presented in
the little-endian format for the x8664 architecture. The bytes
in gray are free to be �lled with 8-multiple random values.

properly initialized along some forced path, the accesses still
fall in PAMA and also have low likelihood to collide (on
the same address). Through SCMB, PMP enables crash-free
memory operations, which are critical for forced execution.
Since it does not require tracing memory operations or per-
forming on-demand allocation, it is84 times faster than X-
Force (Section IV). Through SDMB, PMP respects program
semantics such that it can faithfully expose (hidden) program
behaviors with probabilistic guarantees. As shown in our
evaluation (Section IV), PMP has fewer false positives (FP)
and false negatives (FN) than X-Force as well.

Figure 2 illustrates a 64-KB pre-allocated memory area
mapped in the address space from 0x0 to 0xffff. Note that
although this memory region may overlap with some reserved
address ranges, we leverage QEMU's address mapping to
avoid such overlap (see Section III-E). It is �lled with crafted
random values that ensure both SCMB and SDMB. For our
motivation example, instruction� reads the memory unit at
address 0x8 (i.e.,&dests[0]) and gets the value 0x3850.
Subsequently, the instruction� uses 0x3850 as the address
to accessdests[0]->ip . These two accessed addresses
(0x8, 0x3850) are contained in the PAMA, hence no memory
exception occurs. The data dependence between these two
addresses are also faithfully exposed, without undesirable
address collision. Observe that there is no memory validation
and linear set tracing required.

We want to point out while SCMB and SDMB can be
effectively ensured in forced execution, they may not be as
effective in regular execution. Otherwise, dynamic memory
allocation could be completely avoided. The reason is that
forced execution aims to achieve good coverage to expose
program behaviors such that it bounds loop iterations [32].
As a result, linear scannings of large memory regions are
mostly avoided, allowing to establish SCMB and SDMB
effectively and ef�ciently. Intuitively, one can consider that
our design is equivalent to pre-allocating many small regions
that are randomly distributed. This is particularly suitable for
heap accesses in forced-execution as they tend to happen in
smaller memory regions. Even if over�ows might happen, the
likelihood of critical data being over-written is low due to the
random distribution.

III. D ESIGN

A. Overview

Figure 3 presents the architecture of PMP, which consists
of three components: the path explorer, the dispatcher and the

Fig. 3: Architecture of PMP.

executors. Given a target binary, the path explorer systemat-
ically generates a sequence of branch outcomes to enforce,
including the PCs of the conditional instructions and their
true/false values. We call it apath scheme. Note that like
X-Force, PMP does not enforce the branch outcome of all
predicates, but rather just a very small number of them (e.g.,
less than 20). The other predicates will be evaluated as usual.
PMP operates in rounds, each round executing a path scheme.
For each path scheme, PMP further generates multiple versions
of variable initializations, each having different initial values
but satisfying both SCMB and SDMB. We call themmemory
schemes. The reason of having multiple memory schemes is
to reduce the likelihood of coincidental address collisions.
A process is forked for each path and memory scheme and
distributed to an executor for execution. At the end of a round,
the dispatcher aggregates the results from the executors (e.g.,
coverage). Another path scheme is then computed by the path
explorer to get into the next round, based on the results from
previous rounds.

Path Explorer. In essence, path exploration is a search process
that aims to cover different parts of the subject binary. In each
round, a new path scheme is determined by switching ad-
ditional/different predicates, or enforcing additional/different
jump table entries, to improve code coverage. Since the search
space of all possible paths is prohibitively large for real-world
binaries, PMP follows the same path exploration strategies in
X-Force [32], including the linear search, the quadratic search
and the exponential search. In particular in each round, the
linear search selects a new predicate or jump table entry to
enforce, which is usually the last one that does not have all its
branches covered in previous rounds. The exponential strategy
aims to explore all combinations of branch outcomes and is
hence the most expensive. It is only used to explore some
critical code regions. Quadratic search falls in between the
two. Since these are not our contributions, interested readers
are referred to the X-Force project [32].

Dispatcher. The dispatcher aggregates execution results (e.g.,
code coverage and program dependencies) of multiple ex-
ecutors in a conservative fashion. Speci�cally, it considers
a result valid if and only if it is agreed byn executors,
with n con�gurable. In our experience,n = 2 is good
enough in practice. Such aggregation further improves our

4

Fig. 4: Work�ow of Memory-preplanning.

probabilistic guarantees. Intuitively, assume PMP ensures that
a reported result has lower thanp 2 [0; 1] probability to be
incorrect during a single execution (on an executor), due to
the inevitable accidental violations of SCMB or SDMB. The
aggregation further reduces the probability topn if the memory
schemes on the various executors are truly randomized (and
hence independent).

Executors. All executors are forked from the same main
process with the same initialized PAMA. Each executor then
enforces a given path and memory scheme assigned to it. Such
a design avoids the redundant initialization of PAMA. Note
that all memory accesses must start from some variable, whose
value is fully randomized across executors.

The rest of this section will explain in details the memory
pre-planning step and the probability analysis for SCMB and
SDMB guarantees. Execution result aggregation is omitted due
to its simplicity.

B. Memory Pre-planning

Overview. Figure 4 presents the work�ow of memory pre-
planning. When a program is loaded, a pre-allocated memory
area (PAMA) is prepared by invoking themmapsystem call
to map a crafted �le to the program address space. The �le
content is randomly generated beforehand. During execution,
program variables (including global, local variables and heap
regions) are initialized by PMP with random eight-multiple
values pointing to PAMA. Speci�cally, PMP intercepts: 1) the
program entry point for initializing global variables; 2) call
instructions for initializing local variables; and 3) memory
allocations for initializing heap regions. Note that PAMA
preparation happens a priori and incurs negligible runtime
overhead, while variable initialization occurs on-the-�y during
execution. Both are generic and do not require case-by-case
crafting. We further discuss these steps in the following.

PAMA Preparation. PAMA is mapped at the lower part of
the address space starting from 0x0, in order to accommodate
null pointers or pointers with invalid small values. The word-
aligned addresses within PAMA (i.e., those having 0 at the
lowest three bits) are �lled with carefully crafted random
values, such that if these values are interpreted as addresses,
they fall within PAMA. As such, the range of random values
that we can �ll is dependent on the size of PAMA. For a
64-KB PAMA (i.e., in the address range of [0, 0xffff]), the
�rst two least-signi�cant bytes of a �lling value are free to
be set with a random eight-multiple value. Other bytes are
�xed to zero. Note that such a value is essentially a valid

word-aligned address in PAMA. For a 64-MB PAMA, the
�rst three least-signi�cant bytes of a �lling value can be set
randomly, providing better SDMB. The maximum PAMA can
be as large as 128 TB, as a larger PAMA would overlap with
the kernel space. While a feasible design is to change the entire
virtual space layout (by changing kernel), it would hinder the
applicability of our technique. In practice, we �nd that 4-MB
of PAMA provides a good balance of SCMB and SDMB.

Global Variable Initialization. In an ELF binary, the unini-
tialized or zero-initialized global variables are stored in the
.bss segment. During loading, PMP reads the offset and size
information of the.bss segment from the ELF header. PMP
then initializes the segment like a heap region.

Heap Initialization. Pre-planning heap regions that are dy-
namically allocated by instructions in the subject binary is
relatively easier. PMP intercepts all memory allocations and
set the allocated regions to contain random word-aligned
PAMA addresses. Note that PMP writes these values to each
word-aligned address in the heap region. If a regular compiler
is used to generate the subject binary, the compiler would
enforce pointer-related memory accesses to be word-aligned
through padding. However, malware may intentionally intro-
duce pointer accesses that are not word-aligned. Section III-E
will discuss how PMP handles such cases. In the following
discussion, we always assume word alignment.

Local Variable Initialization. Initializing local variables is
more complex. After initializing PAMA and before spawning
the executors, PMP initializes the entire stack region like a
heap region. Note that stack frames are pushed and popped
frequently and the same stack address space may be used by
many function calls. As such, the stack space may need to be
re-initialized. A plausible solution is to identify stack frame
allocations (e.g., updates ofrsp register) and conduct initial-
ization after each allocation. However, due to the �exibility
of stack allocations, it is dif�cult to precisely identify them.
Inspired by stack canaries used to detect stack over�ows, PMP
uses the following design to initialize stack regions. It inter-
cepts each function invocation. Then starting from the current
address denoted byrsp, it randomly checks eight1 unevenly
distributed addresses lower than thersp address (i.e., the
potential stack space to be allocated), in the order from high
to low, to see if they are PAMA addresses (meaning that they
were not overwritten by previous function invocations). We
also call these addressescanarieswithout causing confusion in
our context and useCi to denote thei th canary. PMP identi�es
the lowest (last) canary that is not PAMA address, sayCt , and
then re-initializes [Ct +1 , rsp] (note that stack grows from high
address to low address). If all eight canaries are overwritten,
PMP continues to check the next eight. Observe that since
stack writes may not be continuous, the detection scheme has
only probabilistic guarantees. In practice, our scheme is highly

1Eight is an empirical choice and works well in our evaluation. The number
and the distribution of canaries are con�gurable.

5

	Introduction
	Motivation
	Design
	Overview
	Memory Pre-planning
	Other PAMA Memory Behavior and Interference with Regular Memory Operations.
	Probability Analysis
	Implementation

	Evaluation
	Experiment Setup
	SPEC2000
	Malware Analysis
	blackTime Distribution

	Related Work
	Conclusion
	References
	Appendix
	Spec2000 Benchmark
	Time Distribution
	Details of Malware Analysis Result

