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Abstract—In the current online advertisement delivery, an ad
slot on a publisher’s website may go through multiple layers of
bidding and reselling until the final ad content is delivered. The
publishers have little control on the ads being displayed on their
web pages. As a result, website visitors may suffer from unwanted
ads such as malvertising, intrusive ads, and information disclo-
sure ads. Unfortunately, the visitors often blame the publisher for
their unpleasant experience and switch to competitor websites.
In this paper, we propose a novel programming support system
for ad delivery, called PAD, for publisher programmers, who
specify their policies on regulating third-party ads shown on
their websites. PAD features an expressive specification language
and a novel persistent policy enforcement runtime that can self-
install and self-protect throughout the entire ad delegation chain.
It also provides an ad-specific memory protection scheme that
prevents malvertising by corrupting malicious payloads. Our
experiments show that PAD has negligible runtime overhead. It
effectively suppresses a set of malvertising cases and unwanted
ad behaviors reported in the real world, without affecting normal
functionalities and regular ads.

I. INTRODUCTION

Web advertisements (ads) are probably the most ubiquitous
mashups nowadays and are still growing substantially. The
annual revenue of US online advertising increased from 12.5
billion (2005) to 59.6 billion (2015), demonstrating a stunning
17% compound annual growth [44]. They are the main source
of income for many Internet companies (e.g. Google and
Facebook) and nourish various online services (e.g., news and
social networks). Web ads have been widely deployed on most
high-traffic websites. In 2017, more than 1.97 million popular
websites participate in advertising campaigns [45].

Under the hood, a gigantic digital advertising system con-
nects various parties and fulfills the complicated transactions
among them. Websites join the ecosystem as publishers. They
offer pre-allocated slots to ad networks and deliver bootstrap-
ping JavaScript libraries hosted by the network to visitors.
These ad loading snippets are executed in visitor’s browser.
They collect and send the visitor/website profiles to the ad
exchange. This information is further shared with participating
advertisers/networks before the ad exchange conducts a pay-
per-impression auction. Advertisers evaluate its value based
on the profiles and bid for a particular impression. Finally,
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Fig. 1. Ad network system.

additional JavaScript snippets are returned to the visitor and
eventually load the actual ad content (e.g. Adobe Flashes,
videos, images or texts) from the auction winner.

However, the impedance mismatch between mashup soft-
ware devOps and software engineering [59] has already re-
sulted in several challenging issues. The nature of dynamically
including source-code from all over the world makes the
traditional software engineering (e.g. modularity and security
guidelines) less applicable. In the context of web ads, although
the ad exchange and impression bidding approach greatly
improves the efficiency of the advertising business, it brings
risks to publishers because websites don’t know the auction
winners. They have to blindly trust and deliver any contents
from the ad networks to their visitors without any control.
Undesired Ads. Even though reputable ad networks filter
malformed ads, visitors still receive undesired ads that cause
negative user experience or even endanger visitors’ systems.
Such obnoxious practices easily alienate visitors and irrepara-
bly damage websites’ reputations [41]. Besides, a recent study
[52] shows that while undesired ads can bring in 0.10-0.80
USD, they cost publishers 1.53 USD per thousand impres-
sions, meaning that websites are actually losing money by
running such bad ads. To make things even worse, attackers are
gaming the system and using this channel to spread malware.
As shown in Fig. 1, attackers join the network and act as
normal advertisers. However, instead of sending ads, they trick
the network and attempt to deliver malicious code to the
website visitors. Exploiting the open nature of ad network,
attackers can even bid for high-value targets based on their
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operating systems, browser versions, country locations and
other identifying features. By paying a small amount of money,
attackers can easily “select” the right type of targets from a
huge number of Internet users all over the world.

Malvertising campaigns are becoming a prominent threat.
According to Cyphort Labs, “by 2013 malvertising increased
to over 209, 000 incidents and generated over 12.4 billion
malicious ad impressions, which is more than four per each
person using the Internet”. During 2014, a 325% increase in
malvertising attacks has been observed [39]. In addition, it’s
believed that leveraging zero-day exploits has made malvertis-
ing more effective. In March 2016, visitors of the NY Times,
the BBC, Newsweek, The Hill, MSN.com, Aol.com, the Weather
Network, the HNL, and Realtor.com have seen ads trying
to install malicious ransomware and Trojans. These popular
websites have billions of visitors every month [43]. “The
websites themselves weren’t compromised. The problem was
that the ad networks these sites use - Google, AppNexus, AOL,
Rubicon - were tricked into serving the malicious ads, which
would lead users to sites hosting an exploit kit” [46]. The
exploit kit then attempts to leverage browser vulnerabilities,
penetrate the sandbox and get into the target’s computer.

In response to the chaos, Ad-block software are widely
used by website visitors. According to a survey by PageFair,
an anti-adblocking authority, over 600 million devices run
Ad-blocking software globally in 2016 [47]. Although Ad-
blockers can mitigate some of the problems caused by third
party ads, in the long run simply blocking ads will devastate
the economic structure underlying the Internet. Without the
monetary revenue gained from ads, various web services
would go out of business, which is to no one’s benefit. As
such, ad-blocking is not a desirable solution to the problem.
Our approach. In this paper, we propose PAD, a novel
technique that allows publishers to program their policies to
regulate ads rendered on their websites. Such regulations aim
to protect website visitors from undesired ad related behaviors
such as malvertising or intrusive ads, and protect publishers
from detrimental client-side behaviors such as ad blocking.
The protection is enforced during the entire life-cycle of the
ad delivery, disregarding layers of reselling and delegation.

PAD allows publisher programmers to compose their regu-
lation logic using an expressive language. It further compiles
policies to JavaScript (JS) code that executes on a novel
persistent runtime, which can self-install in each delegation
layer and execute preemptively before any third-party script.
The runtime also features a novel memory randomization
mechanism that protects memory accesses to block malware
at the entry points. PAD can be configured to disable certain
regular JS functionalities (e.g., pop-ups) based on the runtime
context (e.g., the advertiser’s domain). PAD integrates the
recent advances in web page randomization [62] to allow the
publishers to randomize specified ad content, instead of the
entire web page as in [62], to circumvent ad-blocking.

In summary, we make the following contributions.
• We propose the novel idea of allowing publishers to pro-

gram their regulation of ads displayed on their websites.

• We develop a simple yet expressive language to program
regulation policies. Policies are transparently compiled to
JS code that enforces the regulation.

• We develop a novel subversion-resilient runtime that en-
sures persistent regulations throughout the life-cycle of ad
delivery and features a novel memory protection technique
to prevent malvertising.

• Our evaluation on Alexa Top 200 Global Sites shows that
PAD has reasonable overhead and does not affect normal
contents. It successfully prevents a large set of real incidents
of malvertising and undesired ads we have reproduced.

II. MOTIVATION

In this section, we illustrate undesired ads by examples and
motivate our approach.

A. Malvertising

Like normal advertisers, attackers can also participate in
the impression bidding. However, instead of delivering ads,
they distribute malware. When a website visitor satisfies the
conditions (geographic location, browser versions, etc.), she
will receive the malicious code via the ad network. To fly
under the radar, such code usually runs various checks on the
execution context (e.g. existences of debuggers and vulnerable
components) before attempting to infect the victim.

Recently, a sophisticated campaign named AdGholas was
reported [40]. According to a cybersecurity company Proof-
point [42], the attackers used 22 ad networks to distribute
malicious code. It affected 113 legitimate sites including
The New York Times, Le Figaro, The Verge, PCMag, IB-
Times, ArsTechnica, Daily Mail, Telegraaf, La Gazetta dello
Sport, CBS Sports, Top Gear, Urban Dictionary, Playboy,
Answers.com, Sky.com, etc. It was highly effective and infected
thousands of victims per day. Depending on locations, different
malwares were delivered and installed on victim’s computer.
Gozi (targeting at Internet Solutions for Business) was dropped
in Canada, Terdot.A (aka DELoader) in Australia, Godzilla
loaded Terdot.A in UK, and Gootkit in Spain.

These malware have caused massive damages. For exam-
ple, the banking Trojan Gozi steals banking information to
automate the procedure of robbing online banking customers.
According to the indictment by the US Department of Justice
[38], Gozi alone infected more than 1 million computers and
caused tens of millions of dollars in losses. When an infected
visitor logs into the online banking system, the Trojan injects
form fields (e.g., Fig. 2) that request additional information.
These sensitive financial data will be sent to the attackers.
Gozi also allows attackers to spoof the victim’s bank balance.
After transferring all available money , Gozi forces the victim’s
browser to display the original balance before the robbery [42].

Now, let’s inspect how the AdGholas campaign can effec-
tively infect so many victims without being caught for such a
long time. Fig. 3 shows the key steps, which involve multiple
parties, redirections and anti-monitoring checks. The standard
ad network bidding details are omitted.
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Fig. 2. Gozi injects forms to steal sensitive financial information [42].
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Fig. 3. AdGholas campaign (Dec. 2016) [40]

After receiving the “sniffering” scripts from the ad network,
visitors are profiled and filtered by a third-party website
browser-defence.com. If they are from the targeted regions,
they will get a banner with malicious code.

The next step is critical for evasion. AdGholas checks
the client-side environment and makes sure it’s not being
monitored. This is done by executing a JS snippet using
the Internet Explorer vulnerability CVE-2016-0162. However,
AdGholas follows a special and innovative design. Instead of
retrieving the code explicitly, it hides this malicious script
using steganography techniques. In particular, this JS snippet
is encoded in the alpha channel of the banner image, which
defines the transparency of each pixel. Then, The JS snippet
is decoded from the image and reconstructed on the fly.

If monitoring utilities such as anti-virus software are not
detected, the visitor will be silently redirected to the landing
page of the real exploit kit. The kit is designed to target
specific versions of the Flash players. If present, the exploited
Flash player will download binary executables of backdoors,
spyware or trojans and execute them without user consents.

B. Annoying Ads

Besides malvertising, some ads are not deliberately harmful.
However, they may blink, float around, pop open a new win-
dow or automatically play sounds, which are irritating. Hub-
Spot Research conducted a survey on annoying ads [41]. They
interviewed 1, 055 Internet users in the US, UK, Germany
and France in 2016, and found that pop-ups and video ads
are the most undesired ads. 83% agree that some ads should
be disallowed. 85% say obnoxious ads damage publisher’s
reputation and should be filtered out.

There are already efforts [50], [56], [61], [60] on detecting
undesired ads based on the observed behaviors. Ad-blockers
powered by predefined blacklists are widely used. But they
are not sufficient as they cannot suppress malvertising until
their patterns are discovered and modeled. Instead, we argue
that allowing publishers to persistently regulate third-party
contents is a better solution. Particularly, publishers may
specify regulations for an ad slot, which will be enforced for
all transactions and delegations introduced by the ad slot.

Fig. 4(a) shows a sample policy supported by PAD for the
ad tag ad_btf. It disallows any ad with sound after the
delegation chain becomes longer than 3 steps (we assume
the top-level ads vendors deliver multimedia ads properly).
Fig. 4(b) shows the ads without PAD, where sound related
resources are highlighted by 1 . Fig. 4(c) shows the ads loaded
with PAD enabled, where sound related tags are removed.

(b) Ad playing noisy sound

<html>...
<div id="ad_btf" ...>
  <iframe ...><iframe ...><iframe ...>
          <audio autoplay="autoplay">
             <source src="macalert.mp3" 
                     type="audio/mpeg">
          </audio> ...
  </iframe></iframe></iframe>
</div>...</html>

(a) Enforcing Policy Rule with PAD
<pad> if (depth > 3) then block SOUND </pad>

<html>...
<div id="ad_btf" ...>
  <iframe ...><iframe ...><iframe ...>
     <!--
        <audio> tag is removed
        <source> tag is removed
     -->
  </iframe></iframe></iframe>
</div>...</html>

1

(c) Ad without noisy sound

2

Fig. 4. Preventing Ads Playing Sound

III. PROBLEM STATEMENT

The current ads system has a very open policy: anyone can
bid for (and win) an ad slot and can resell the slot to other
parties. The current system is fundamentally vulnerable to ma-
licious/undesired ads that are intentionally or unintentionally
delivered by bidders. We study and classify the commonly
seen undesired ad behaviors in Table I.

TABLE I
COMMONLY SEEN UNDESIRED AD BEHAVIORS

Category (Type) Description/Examples
Malvertising (U1) Delivering malicious software via ads
Intrusive Ads (U2) Disrupt navigation behavior (e.g., popup)
Information Access private information for tracking
Disclosure (U3) Fingerprinting browser/system versions
Inappropriate ads (U4) Ads with inappropriate contents (e.g., violence)
Nontransparent Ads with encrypted/encoded flashes
ads (U5) Ads delivered through HTTP
Ad-blocking (U6) Blocking legitimate ads

Malvertising uses ad networks to deliver malicious software.
Intrusive ads distract visitors and cause unpleasant experience.
For example, some ads intentionally divert users’ attention
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with audio or video. Information disclosure in ad delivery
leaks sensitive user information. Third party ads often contain
JS code that collects information on the client side and sends
them back to the advertisers. In many cases, sensitive informa-
tion is collected, causing privacy concerns. For example, user
browsing history is often collected to retarget ads. However,
exposing such history to nonreputable advertisers should be
regulated. Examples of inappropriate ads include videos of
violence for kids and ads from the publisher’s competitors
(which should not be displayed on the publisher’s web page).
Although ad networks have rules to prevent inappropriate ad
contents, these rules are usually too general and context-
insensitive. Nontransparent ads use stealthy techniques for
disguising themselves or preventing inspection. For example,
a malicious ad may dynamically construct a (malicious) flash
to avoid being detected. Ad-blocking removes ads from web
pages. While undesired ads are suppressed, ad-blockers also
block legitimate ads, eventually damaging the ecosystem.

While ad networks strive to suppress undesired ads, they
usually lack the necessary context to perform the needed fine-
grained regulation. For example, they may not have enough
information about the publisher site to determine what ads
are deemed inappropriate. They also lack the resources and
mechanism to regulate the huge volume of ads. Note that after
bidding, ads are often loaded directly from the advertisers’
servers to the client, without going through the ad networks.
We consider publishers to be the ideal party to regulate
unwanted ads and third-party contents because they have the
comprehensive contexts. They also have a strong incentive
to deliver relevant ads to the right consumers. In addition,
comparing to having centralized censorship on ad networks, it
is more scalable to do so on the individual client machines.

Therefore, our problem statement is to allow publisher
developers to program their regulation of third party ads
shown on their pages in a reliable and persistent fashion.

IV. OVERVIEW

We propose a novel programming support system for third
party ad censorship called PAD. As shown in Fig. 5, PAD
consists of three main components: the policy specification
language, the policy compiler that compiles specification to
JS code, and a runtime that facilitates regulations.
Policy Specification Language. PAD provides a language
for publisher developers to program their ad censorship. The
developers engineer their regulation logic within an ad tag in
the publisher’s content page using our language. Such tags
indicate the locations of ads, which are populated when the
content page is loaded.

Policy Compiler. The policy compiler compiles censorship
policies in a content page to the corresponding JS code. Only
compiled pages are deployed. Each ad tag has its independent
policy code. In other words, censorship is ad tag specific.
This is because individual tags independently load ads from
different sources at runtime, requiring different regulations.
Programming global censorship (for an entire page or pub-
lisher domain) is possible but we leave it to our future work.
PAD Runtime. PAD runtime consists of 4 modules: Au-
tomated Runtime Installer (ARI) (§V-C1), Memory Protection
(§V-C2), Access Control (§V-C3) and Randomization (§V-C4).
They are essentially JS code that is shipped to the client.
• Automated Runtime Installer (ARI). ARI is the core

engine enforcing the regulating code in all delegation layers.
For multi-layer ad networks, PAD monitors dynamically
generated contents and propagates itself into the next layer.

• Memory Protection. Based on our extensive study on
malvertising campaigns in the wild, we observe that the
manipulation of consecutive memory regions in JS or Ac-
tionScript is the root cause of payload injection. To mitigate
malvertising attacks, PAD prevents payload injection by
perturbing values in consecutive memory regions.

• Access Control. This module allows publishers to restrict
undesired ads such as information leak ads and intrusive
ads. The module essentially intercepts and/or masks some
JS APIs that are critical for undesired ads.

• Randomization. To circumvent client-side Ad-blockers,
our runtime leverages an existing web page randomization
technique WebRanz [62] to bypass Ad-blockers’ blacklist.

V. DESIGN

In this section, we present the design of PAD. We describe
each component in detail and reason about our design choices.

A. Policy Specifications

Program P ::= s
Stmt s ::= s1; s2 | protect sbj | block ca |

randomize a | if (e) then s
Expr e ::= curUrl op u | depth op c |

history contains {u1, u2, u3, ...}
Operator op ::= ! = | == | < | = | >
Subject sbj ::= MEMORY | FLASH
Capability ca ::= GEO-DATA | COOKIE | BROWSER-VERSION |

FLASH-PLAYER-VERSION | EMBEDDED-FLASH |
LOADING | MIMETYPE | POPUP | SOUND |
SRCLESS-IFRAME | REDIRECTION

Attribute a ::= CANVAS-DATA | DOM
Const c ::= {0, 1, 2, ...}
Url curUrl, u

Fig. 6. Language.

The policy specification language is presented in Fig. 6. The
language supports a few statements that specify the actions
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<pad>
   if (curUrl != "doubleClick.com") then

  block BROWSER-VERSION
</pad>
...
<div id = "google_ads"></div>

1
2
3
4
5
6

Fig. 7. Publisher Page Code with Policy Specification

<script>
   ARI({"google_ads"});
</script>
<div id = "google_ads">
   <script>
   if (curUrl != "doubleClick.com") {
      Object.defineProperty(window, "navigator", {
         get: function() {
            return null;
         }
      });
   }    
   </script>
    ...
</div>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fig. 8. Publisher Page with Compiled Policy Code

for undesired ad behaviors, for example, protect memory,
block clients’ cookies or geo-location data from being ac-
cessed by ad scripts, and randomize DOM to circumvent
ad blockers. The language also supports conditional branches
to allow publishers to specify the conditions in which the
above-mentioned actions should be taken. For example, a
publisher may wish to apply memory protection for certain
ad networks by comparing the current domain (curUrl) with
some domain u specified by the publisher. We also support
comparison of delegation history, which records the entire ad
delegation/reselling history. Such history is quite useful. For
example, a cyclic delegation chain (i.e., an ad dealer sells
an ad slot and later buys it back) may suggest abnormal
behavior. Therefore, the current domain, the delegation depth,
and the delegation history are of special interest and explicitly
modeled in the language. Publisher developers can use regular
JS together with our language to achieve maximum feasibility.

B. Policy Compiler

Given a content page with policy specs, PAD parses the
page to a DOM tree using htmlparser2. It first adds the
automated runtime installer at the beginning of the page to
make sure it gets executed before any other elements are
loaded. It then traverses the tree to identify all ad tags and
the corresponding policy specs. The JS statements in the specs
are simply copied to the output page whereas the statements
in our language are translated to the corresponding JS code
to fulfill the specific actions, including updating critical state
variables (e.g., delegation depth) and invoking API functions
provided by our runtime. The details are elided.

Fig. 7 and Fig. 8 illustrate how the policy compiler compiles
a program with access control specs. In Fig. 7, the publisher
includes an ad (with id of “google ads”) at line 6 and inserts
a spec at lines 2-3 to block browser versions from being finger-
printed. In Fig. 8, the compiled policy code is inserted at lines
6-12. The compiled code redefines window.navigator
and changes its getter to returning null when a read attempt
is executed. The code at lines 6-12 is only effective at the
current layer of ad delegation. To propagate the policy code

when inner frames are created, the function ARI at line 2
invokes the automated runtime installer (ARI) to self-install
the policy code along the entire propagation chain. We will
discuss the design of ARI in Sec. V-C1.

C. PAD Runtime

Algorithm 1 Automated Runtime Installer
INPUT : A compiled web app with instrumentation

guarding the 1st layer of each Ad
OUTPUT: Enforcing policy specifications over the entire

delegation chain during runtime
1 procedure ARI(ads)
2 for ad in ads do
3 depth ← 0
4 history ← ∅
5 globalVar ← {depth, history}
6 policyCode ← getPolicyCode(ad)
7 if innerIframeCreated() then
8 propagate(policyCode, globalVar)
9 procedure PROPAGATE(policyCode,globalVar)
10 globalVar.depth ← globalVar.depth + 1
11 globalVar.history ← globalVar.history ∪ curUrl
12 inject(globalVar)
13 inject(policyCode)
14 if innerIframeCreated() then
15 propagate(policyCode, globalVar)

1) Automated Runtime Installer (ARI): ARI provides per-
sistent protection along the ad delegation chain. At each
delegation layer, new content (such as HTML/JS/Flash/inner
frame) can be dynamically generated via JS functions such
as document.write(). ARI propagates PAD’s protection
logic along the delegation chain.

Alg. 1 describes the design of ARI. It takes a compiled
publisher page with ads guarded by instrumentation code. For
each ad within the page, ARI initializes global variables such
as the delegation depth (line 3), domain history (line 4)
and extracts the policy code generated from compiler for each
specification (line 6). When an inner <iframe> is created,
ARI invokes a recursive function propagate() to propagate the
policy code and global variables to the next layer of delegation
(lines 7-8). The recursive function propagate() increments the
delegation depth (line 10) and updates the domain history
to include the current domain (line 11). Then it injects the
updated global variables and policy code into the current layer
(lines 12-13). The recursive procedure continues to propagate
if a next layer of <iframe> is dynamically generated.

<html><head><script src="PAD.js" ...>...</head>...
<div id="div-gtp-ad-..." ...>

</div>
...
</html>

<iframe id="google_ads_iframe_..." ...>
<html><head><script src="PAD.js" ...>...</head>

</html>
</iframe>

<iframe id="ad_creative..." ...>
<html><head><script src="PAD.js" ...>...
    ...
    <script src="ad_content.js"></script>
    ...

</html>
</iframe>

Publisher

Ad network

Advertiser

Publisher's Webpage

Ad request via JS libs

document.write("<iframe ...>...");

Ad request via JS libs

F3

F2

A

B

C

Ad Content

Webpage request F1

ARI rewrites document.write()

2

1

document.write("<iframe ...>...");

ARI rewrites document.write()

3

Fig. 9. Recursively Applied ARI on Multiple Delegations

Fig. 9 depicts the code snippet of how ARI enforces PAD
in the delegation layers. The right side of Fig. 9 shows a
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webpage including dynamically generated ad content during
the ad delivery process. Note that in the example, the pub-
lisher already installed PAD on their webpages by including
<script src="PAD.js" ...> ( A in Fig. 9).

When a user visits the website, the web page with PAD
is loaded ( 1 ). During the page load, an ad request is
initiated to ad networks to retrieve the ad contents (e.g.,
HTML/JS/Flash). The ad contents are dynamically inserted
into the webpage ( 2 ) by creating an inner frame F2 . Note
that the document.write() at 2 is executed within frame
F1 , where PAD is already installed. Hence, PAD intercepts
it at 2 and inserts <script src="PAD.js" ...> ( B )
to install itself within the new inner frame. Similarly, another
layer of delegation is dynamically inserted into the inner page
F2 . At 3 , PAD inserts <script src="PAD.js" ...>

( C ) to install itself into the new inner frame F3 , where the
actual ad is finally delivered. Since PAD is propagated through
delegations, it can enforce the protections persistently.

2) Memory Protection: In this section, we first analyze
memory management related attack vectors in ads. Then,
we introduce our memory protection runtime support which
mitigates malvertising by corrupting malicious payloads.
Memory Management in Web Ads. As ads include JS/Flash
contents, they can allocate and access memory via JS or
ActionScript (AS) interfaces. We first explain different ways
of accessing memory and how malicious ads exploit them.

[0] [1] [2] [3] [4]

[0] [1] [2] [3] [4]

1 2 3 4 5 50...

1.  var ary = [1, 2, 3, 4, 5]; // initialize
2.  ary[4] = 50; // change a value

(a) An example of Array

(b) ary at Line 1:

(d) ary at Line 2:

(c) Memory:

Fig. 10. Immutable Object

• Immutable Objects. Immutable Objects are objects whose
previously stored values on the memory are not overwritten.
Fig. 10(a) illustrates a simple JS/AS program that initializes
an array and updates its fifth element. Fig. 10(b-c) show
how the array is allocated in the memory. Note that Array
in JS is actually implemented as a hash table and a set
of pointers to elements. More importantly, it is immutable,
meaning that changing a value in the array does not change
the previously stored value. Instead, as shown in Fig. 10(c),
a new memory buffer is allocated for the new value.

• Mutable Objects (MO). Some JS and AS objects
can access memory directly. We call such objects mu-
table objects. Unlike immutable objects, mutable objects
allow overwriting previously stored values in memory.
More importantly, the buffer allocated for a mutable ob-
ject is consecutive. TypedArray (e.g., Uint8Array,
Uint16Array and Uint32Array) and DataView in
JS and ByteArray/Vector in AS are popular classes

that can create mutable objects. Besides, Canvas in JS
and ImageData are used to access image data (e.g., pixel
colors). They can create mutable objects too. Indeed, many
exploits leverage them to directly write consecutive memory
by changing image data (e.g., pixel colors in RGBA format).

• Consecutive Immutable Objects (CIO). We call multiple
immutable objects that may be allocated in consecutive
memory consecutive immutable object. For example, in
modern browsers (e.g., Firefox and Chrome), Array ob-
jects in JS are allocated in consecutive buffers when they
hold a primitive type (e.g., integer). String objects are
also allocated in consecutive buffers.

Attacks on Memory in Malvertising. We analyze popular
malvertising campaigns and exploit kits used in attacks and
find that most attacks exploit vulnerabilities in JS/AS memory
management. In particular, they use mutable objects to inject
and trigger malicious payloads. In the following paragraphs,
we explain details of such attacks and their root causes.
• Payload Injection and Triggering via Mutable Objects.

Mutable objects are widely used to inject and trigger
malicious payloads by overwriting critical values in memory
(e.g., return addresses). Specifically, upon the allocation of
a mutable object, a new buffer is allocated and the corre-
sponding memory address and length are stored in memory.
When the mutable object is used, the address pointing to
the start of the buffer is retrieved in order to compute the
address for the access. If the address or the length of the
allocated buffer is compromised, an attacker can access
arbitrary memory just like accessing this mutable object.
Such compromise is often achieved through vulnerabilities
such as type confusion [25].

• Payload Injection via CIO. As consecutive memory
buffers are allocated for CIO, they can be leveraged to inject
payloads like heap spraying. However, immutable objects
cannot be directly used to write arbitrary memory and
heap spraying itself does not trigger the injected payload.
Therefore, to launch an attack, the attacker must rely on
another vulnerability to trigger the injected code.

Algorithm 2 Memory Protection via Value Randomization
INPUT : A JS statement such as new Uint32Array([21, 3, 15])
OUTPUT: A Uint32Array object with value encoded

1 procedure OVERLOADED UINT32ARRAY(values)
2 valuesInMemory ← Uint32Array(values.length)
3 for i = 0; i < values.length ; i++ do
4 valuesInMemory[i] ← encode(values[i])
5 this.values ← Uint32Array(valuesInMemory)
6 return this

INPUT : A JS statement such as u32arr.indexOf(15)
OUTPUT: Return the index of “15” from [21, 3, 15]

7 procedure OVERLOADED INDEXOF(elem)
8 valuesInMemory ←this.values
9 for i = 0; i < valuesInMemory.length ; i++ do
10 values[i] ← decode(valuesInMemory[i])
11 return this.indexOf(values)

Mitigating Malvertising via Memory Protection. We mit-
igate malvertising via memory protection, which is driven by
the procedure of attacks being launched using mutable objects
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and consecutive immutable objects. Malvertising attacks are
conducted in two critical steps. First, a malicious payload
is injected into the victim’s memory via legitimate channels
(e.g., loading an image with a payload prepared by an exploit
kit), and heap spraying is often used due to address space
randomization techniques. Later, the payload is triggered and
executed by exploiting vulnerabilities. As these two steps are
essential to its success, malvertising can be suppressed by
breaking either step. We describe how we achieve this via
value and data layout randomization.
• Value Randomization (Encoding/Decoding Values). PAD

breaks a malicious payload by perturbing values in memory.
In particular, it encodes values written to memory via
MO and CIO, and decodes them upon retrieval using
the same key employed in encoding. In this scenario,
malicious payload is encoded before being injected to
memory. However, since a malicious payload is always
executed natively, without going through the JS/AS in-
terfaces, it is not properly decoded before execution and
hence broken. Alg. 2 illustrates how value randomization
is realized for Uint32Array objects. Specifically, when
a new Uint32Array object is created, instead of storing
the arguments ([21, 3, 15]) as array values, the overloaded
constructor (lines 1-6) encodes each element and the
encoded values are stored in memory. When the statement
invokes indexOf(15) on the previously created object,
the Uint32Array.indexOf is overloaded (lines 7-11).
To return the index of element “15” (i.e., 2), the values in
memory are decoded and the native implementation of
indexOf is invoked to return (lines 9-11).

• Data Layout Randomization. PAD also randomizes the
underlying memory layout for JS/AS objects to break a
malicious payload, which is quite sensitive to memory
structures. In fact, attackers leverage CIOs to inject payloads
mainly because they provide a convenient (and reliable)
way to hold the carefully crafted payload in a consecutive
sequence of buffers. To randomize memory layout, when a
new CIO is created, PAD creates new dummy objects and
inserts them in between the original buffers. For instance,
when a program creates an array [1,2,3], PAD constructs
[1,R,2,R,3] instead, where R represents a random value. As
a result, if an attacker tries to inject malicious ROP payloads
with CIO, the random values placed between ROP gadgets
will break the exploit. Note that the semantics of the array
is not broken as when the array is accessed, we translate
the index of the real values, skipping the inserted R.
3) Access Control: As discussed in Sec. V-B, the policy

compiler compiles the specification program and redefines
objects such as window.navigator to block the access to
particular objects and achieve access control. During runtime,
the redefined getters will be invoked rather than the native
functions. For example, as illustrated in Fig. 8 (line 6-12),
any read access to the browser information from domains other
than doubleclick.com via window.navigator is restricted.
Security sensitive objects and objects related with intrusive
ads are identified and redefined during runtime. We omit

the discussion of other objects as they are similar to above-
mentioned case.

4) Randomization: WebRanz [62] is integrated into PAD.
WebRanz is a web page randomization technique which
protects advertisements from being blocked by ad-blockers.
Specifically, it randomizes URLs and DOM element properties
(e.g., id and name), which ad-blockers rely on to locate
and remove ads. However, WebRanz is not sensitive to ad
tags. Instead, its randomization technique is applied to the
entire page, resulting in a high overhead. PAD only performs
randomization on ad contents within ad tags specified by
publishers. By doing so, publishers can deliver ads without
being blocked by ad-blockers with less overhead. As the
randomization technique is not our focus, details are omitted.

D. Threat Model

PAD assumes publishers and website visitors are benign,
while the ad-networks and advertisers may be malicious. Note
that, in most malvertising campaigns, the malicious party is the
advertiser. While the ad-networks might also be compromised,
protecting compromised publishers is beyond the scope of our
paper. In fact, if a publisher is compromised, any operation in
the compromised page cannot be trusted. Similarly, protecting
visitors with compromised systems (e.g., OS/Kernel/Browser)
is out of our scope.
Accessing Original Definitions. An attacker may try to bypass
PAD by locating and directly using the original functions or
classes. A straightforward way is scanning all variables to find
the ones holding the original versions. For example, window
in JS can be used to enumerate all defined global variables. By
recursively resolving the global variables, one may gain access
to any variable including the variables holding the original
definitions. To prevent this, we disable variable enumerations
via Object.defineProperty() as a part of our runtime
installer. Note that Object.defineProperty() is pro-
tected so an attacker cannot abuse this interface. Moreover,
even though it is not enumerable, if the variable names are
statically defined, they can be directly accessed by names.
Hence, we generate random names for the variables that
contain original definitions. The name is randomized on each
load to make it a moving target.
Removing Our Protection. An attacker may try to remove
our protection by replacing classes and methods overwritten
by PAD with their own version. To prevent this, we use
defineProperty to make classes and methods we mod-
ified read-only. Specifically, we set writable property to
false and override defineProperty to prevent further
changes. As we do it at the very beginning of each delegation,
no JS code including malicious one can disable our definition.
Disabling Automated Runtime Installer. As PAD’s pro-
tection depends on ARI which installs itself and PAD, an
attacker may try to disable ARI. However, to achieve this,
the attacker needs to bypass our methods by calling the
original ones which we made impossible as discussed above.
In brief, one cannot remove our methods as they are read-
only (e.g., writable: false). To prevent any attempts
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TABLE II
CHARACTERISTICS OF MALICIOUS AD CAMPAIGNS

Ad Date Publisher (Ad Networks) First Ad Redirect
1* 17-01-14 [25] N/A (PropellerAds, ClickAdu etc.) N/A
2* 16-12-06 [33] Yahoo, MSN (N/A) broxu.com
3 16-07-25 [10] N/A (RevenueHits) foundationarcet.org
4 16-07-05 [11] N/A (RevenueHits) top4download.org
5* 16-05-25 [32] answers.com (DoubleClick, Zedo etc.) rfihub.com
6 16-03-04 [34] nalsee.com (N/A) 49.238.137.2
7* 15-09-30 [12] Japanese News Sites (N/A) N/A
8 14-11-11 [9] wira-ku.com (N/A) a.horsered.com
9 14-10-06 [8] network-tools.com (N/A) ox.help.org
10 14-09-29 [7] hindustantimes.com (N/A) static.rcs7.org
11 14-09-11 [6] marica.bg (N/A) serve.intelelink.net
12 14-09-05 [5] centralpark.com (N/A) saw.piroscia.com
13 14-08-25 [3] urbantoronto.ca (N/A) reserve.sandystrong.org
14 14-08-22 [4] onlinenewspapers.com (N/A) c.ic.com.au
15 14-06-28 [2] N/A (N/A) zamcheck.org
16 14-06-19 [1] N/A (N/A) stat.litecsys.com

*: Proof-of-Concept (PoC) sample.
N/A: Publisher/Ad traffic is redacted or not included in sample.

to change the writable property of object, we override
defineProperty to disallow change requests.

VI. EVALUATION

PAD is implemented in JavaScript and ActionScript, lever-
aging a set of Node.js utilities. We investigated the following
research questions to evaluate the effectiveness of PAD to reg-
ulate third-party ads over the complex ads delegation process.

RQ1 How effective is PAD on preventing malvertising?
RQ2 How effective is PAD on preventing information leak
ads, non-transparent ads, inappropriate and intrusive ads?
RQ3 How much runtime overhead does PAD incur?

TABLE III
MALICIOUS AD CAMPAIGNS’ ATTACK VECTORS

Ad Exploit Kit Payload CVE Report Attack Vector
1 Neutrino Trojans [26], [27] DataView

2 Stegano Spyware [24], [23], [21], [22] ByteArray

3 Magnitude Cerber* [24] ByteArray

4 Magnitude Cerber* UNREPORTED ByteArray

5 Angler Ransomware [24] ByteArray

6 KaiXin PeCompact2, Trojan [18] Vector

7 Angler Spyware [19], [20] Uint32Array, Vector

8 Angler Poweliks [17], [16], [15] ByteArray

9 Sweet Orange Zemot# [17] Vector

10 Nuclear Cryptowall* [17] Vector

11 Sweet Orange Gimemo Trojan [17] Vector

12 Sweet Orange Zusy Trojan [17] Vector

13 Nuclear Zemot# [17] Vector

14 Nuclear Zusy Trojan [17] Vector

15 Sweet Orange Trojan Dropper [17] Vector

16 Nuclear Zbot, Spyware [17] Vector

*: Ransomware. #: Downloader.

A. Experimental Methodology

To answer the research questions, we run PAD on real
world ad examples. Specifically, we collect 16 malvertising
ad samples (for RQ1) and 15 undesired ads (for RQ2). We
gather the source code of publisher web pages and host them
on our own web server. For the cases in which the publisher
is not reported or intentionally redacted, we set up a test page
to include the undesired ad(s) on our web server.

B. Experimental Results

RQ1: Malvertising Attacks. Table. II and III show the
malicious ad samples and the memory protection enforced.

Column Publisher lists the websites redirecting to malware
through ad networks. First Ad Redirect and Ad Networks
show the first malicious redirect and the ad networks involved
in each malicious campaign.

We collect 12 samples of malvertising in the wild and
4 proof-of-concept (PoC) samples from online malvertising
reports. 15 of them are exploiting Adobe Flash Player, 3
samples for Internet Explorer and 1 for Microsoft Edge. Note
that it is very hard to collect malvertising samples from the
wild, as most malicious campaigns simply change their IPs
or ad networks once they are caught. Moreover, malvertising
attacks that exploit zero-day vulnerabilities make them very
difficult to be detected. We have validated that all attacks can
be suppressed by one line of memory protection specification.
Note that PAD provides a general protection hence it prevents
an unreported case (Ad 4) too.

RQ2: Undesired Ads. We investigate how PAD benefits
the protection against intrusive ads (U2), information disclo-
sure ads (U3), inappropriate ads (U4), and nontransparent ads
(U5). Table. IV summarizes our findings. Column Ad and
Date are the reference and date of the undesired ad. Note
that entries with + are ads that are active as the time of
paper submission. The table also shows the Publisher involved
in each ad campaign and the access control specification
publishers can leverage to suppress each undesired ad.

For example, ad [37] on nytimes.com redirects users to
a malicious page. Developers can leverage our specifica-
tion language block REDIRECTION to disable redirec-
tions. [36] on youtube.com directs users to a flash ad which
fingerprints users’ browser. To prevent users’ browsers be-
ing fingerprinted, Youtube developers can specify block
BROWSER-VERSION with PAD. Preschool sites funology.com
and twistynoodle.com serve inappropriate ads to children via
ad retargeting service. Publishers can use PAD to block
ads from particular domains. Ad [28] serves from ad net-
work domain ero-advertising.com embedded a Flash ad
on stopmalvertising.com to perform DDoS attacks. block
EMBEDDED-FLASH can be used to block such ads.

As shown in the result, all undesired ad behaviors are
prevented by enforcing our access control policies. A detailed
case study is discussed in VI-C3.

Page  
w/o PAD 

Page  
with PAD 

0 1 2 3 4 5 6 7

Average: 1.702 

Average: 1.674 

Std: 4.480 

Std: 4.146 

Fig. 11. Page Load Latency

RQ3: Runtime Overhead. Finally, to understand the
runtime overhead induced by PAD, we study the average
latency of rendering a web page with and without PAD. We
choose Alexa top 200 websites, load each page 10 times and
calculate the average load time. As shown in Fig. 11, a web
browser takes a slightly longer time to render a web page when
it is enforced with our protection. This is because (1) PAD
introduces additional JavaScript and the browser needs extra
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time to parse the code; (2) the self-propagating enforcement
intercepts the multiple layers of ad delivery on the fly. As
the size of additional JavaScript is small and the interception
is lightweight, the overhead of rendering a page with PAD
protection is negligible (1.67%). To avoid different ads being
loaded across runs (of the same website), we save all the
contents, including ads, and host them on our own proxy. We
also used a plugin to check each page load event. The plugin
is designed in such a way that any unsuccessful load causes
the browser to hang forever. In our experiment, we have not
encountered any such cases. This suggests that PAD does not
affect normal functionalities (including ads).

TABLE IV
ACCESS CONTROL ON UNDESIRED AD BEHAVIORS

Type Ad Date Publisher Access Control Spec

U2* + +
watchfomny.tv

block POPUP
torrentz.eu

[37] 09-09-13 nytimes.com block REDIRECTION

U3*

[31] 16-04-12 N/A
block MIMETYPE

[31] 16-02-06 N/A
[36] 14-02-20 youtube.com block BROWSER-VERSION
[29] 12-01-21 fileserve.com block FLASH-PLAYER-VERSION

U4*
+ +

funology.com
twistynoodle.com if curUrl == "xxx.com"

+ + realstreamunited.tv then block LOADING
+ + stream2watch.cc

U5*

[40] 16-12-06 N/A randomize CANVAS-DATA
[14] 15-05-12 N/A block LOADING
[35] 15-05-07 N/A block SRCLESS-IFRAME
[30] 15-02-04 gopego.com

block EMBEDDED-FLASH[13] 15-01-24 N/A
[28] 11-07-22 stopmalvertising.com

+: The ad is active now. N/A: Publisher is redacted or not included in report.

C. Case Study

In this section, we show three case studies to demonstrate
how PAD prevents undesired ad behavior in practice.

1) Type Confusion Vulnerability in Microsoft Edge: Type
confusion vulnerabilities have been reported lately in the JS
Engine (Chakra) of Microsoft Edge. When an ad is delivered,
JS can be injected for logging and dynamic ad delivery. Un-
fortunately, a malicious advertiser can also inject a malicious
JS file to exploit the vulnerabilities to execute malicious code.

1  var dv = new DataView( new ArrayBuffer(8) );
2  Exploit_CVE_2016_7201( ... );  
      ...
3  var ropPtrAddr = ...; // Address of Stack
4  var rop = [ ..., 0x20564D603FA, 0x20560000000, ... ];
5  for (var i = 0; i < rop.length; ++i) {
6    dv.setUint32( retPtrAddr.add(i * 8), rop[i] );
7  }

Contents of Stack Memory (Injected payload)

0x20564D603FA

0x20560000000

0x211D000A2F5

0x211D000A2CD

...

(b) w/o PAD (c) with PAD

0x0101030665D704FB

0x0101030661010101

0x01010312D101A3F6

0x01010312D101A3CE

...

(a) Malicious JavaScript Program (CVE-2016-7200/7201)

 +0x0101...0101

 +0x0101...0101

 +0x0101...0101

 +0x0101...0101

 +0x0101...0101

Fig. 12. Malicious JS Program Exploiting DataView

Fig. 12(a) shows a malicious JS program which exploits
two vulnerabilities (CVE-2016-7200 and CVE-2016-7201). In
particular, it first creates a DataView object which will be
used to inject a malicious payload at Line 1. Then, at Line 2,

it leverages the vulnerabilities to obtain a corrupted DataView
object (dv). Specifically, it exploits CVE-2016-7201 which is
a type confusion vulnerability to obtain the ability to modify
a target address of DataView when it reads and writes. As we
discussed in Sec. V-C2, a DataView object internally stores
a pointer to a buffer which holds its value and the length
of the buffer. CVE-2016-7201 essentially changes the pointer
of the buffer via a type confusion vulnerability. As a result,
after Line 2, the JS program can read and write arbitrary
memory through the corrupted object dv. Specifically, by
changing the first argument of setUint32 which specifies
an offset of the DataView’s buffer for writing a value, an
attacker can overwrite values on any address he/she wants
to. Then, at Line 3, it obtains a stack address containing a
return address by exploiting address information leak. We omit
the detail due to the space limit. At Line 4, it constructs a
malicious ROP payload (rop[]) within an array. Finally, the
program injects the malicious payload at Lines 5-7 through
the setUint32() method. Note that dv is already compro-
mised so that it can point to arbitrary buffer. Therefore, by
providing addresses pointing to the program’s stack, it injects
the malicious payload.

PAD protects the attack by mutating input values
passed to DataView. In particular, PAD overrides the
DataView.setUint32() to mutate any input parameter.
In this example, to make the discussion easier, we mutate
the input by adding 1 to every byte of a value passed to
setUint32(). For example, a 0x64D603FA input value will
be mutated to 0x65D704FB. Note that in our implementation,
we use a one time pad encoding scheme. Hence, we apply
different mutations every time. Fig. 12(c) shows an example
of a corrupted stack with a simple addition (+1 for each byte).
Observe that such a small addition completely breaks the
functionality of the payload and leads the exploit to a crash
as the execution jumps to an unmapped memory.

In addition to overriding setters (e.g., setUint32()),
we do also override getters (e.g., getUint32()) to decode
retrieved values in order to enable seamless execution of
benign program operations via DataView. The decoding
performs the exact reverse operation of the encoding process.
For example, if we encode by adding 0x1 to the values, we
decode by subtracting 0x1 at getters invocation.

2) Pixel Bender Parser Vulnerability in Adobe Flash
Player: Similar to the type confusion attack in Microsoft
Edge, Vector in AS can be corrupted by a vulnerability
on Pixel Bender Parser which is a high-performance graphic
programming interface for image processing.

1  var vt = new Vector.<int>( ... );
2  Exploit_CVE-2014-0515( ... );  
      ...
3  var ropPtrAddr = ...; // Address of Stack
4  var rop = [ ..., 0x70ff016a, 0x70fff870, ... ];
5  for ( ... ) {
6     vt[retPtrAddr + i * 4] = rop[i];
7  }

Fig. 13. Malicious AS Program Exploiting Vector

Fig. 13 shows a malicious flash file which contains AS code
exploiting CVE-2014-0515 vulnerability. At Line 1, the code
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first allocates a Vector. The function at line 2 represents
exploiting the vulnerability in order to overwrite the length
of Vector. Note that Vector in AS and DataView in
JS have similar internal representations and thus share the
same problems of the vulnerable length information. By
overwriting the length of Vector, an attacker can gain
arbitrary memory access. Similar to the Edge case, it prepares
ROP gadgets and stack addresses, then injects the ROP pay-
load at Line 6. Note that it uses the [] operator to inject the
payload, instead of invoking a function. To handle this, PAD
also overrides the operator by using defineProperty with
index (e.g., 1, 2, and so on). Note that in JS/AS obj[name]
is equivalent to obj.name. Hence, we override obj.1(),
obj.2(), and so on. As in JS, PAD prevents the attack by
encoding the values passed through [] operator.

3) Preventing Geo-location Information Access: Personal-
ized ads are chosen based on the profile of targeted customers.
While it is valuable to advertisers, collecting sensitive infor-
mation to deliver targeted ads is quite controversial. When
multiple ad networks are involved, it is hard to know and
control who collects what information. Hence, it is important
for publishers to protect their customers’ sensitive information
from being collected by ad networks or advertisers.

<div id="div-gtp-ad1" ...>
  <script> 
    navigator.geolocation.
        getCurrentPosition( ... );
  </script>
  ...
</div> ...

<div id="div-gtp-ad1" ...>
  <script> 
    navigator.geolocation.
       getCurrentPosition( ... );
  </script>
  ...
</div>

(a) Ad accesses geo-location

(b) Install PAD with Policy Spec

<script src="PAD.js"></script>
<pad>  block GEO-DATA  </pad>
...
<div id="div-gtp-ad1" ...>...
</div>

(c) Ad Regulated by PAD

<script>
  navigator.geolocation.
   getCurrentPosition = function() { 
                           return null;
                        };
</script>

1
2

3

4

5

6

Fig. 14. Preventing Geo-Location Accesses

In this case study, we show how PAD enables a pub-
lisher to protect its customer’s geo-location from being dis-
closed to ad networks and advertisers. Fig. 14(a) shows the
publisher web page without PAD. The tag div with id
div-gpt-ad1 ( 1 ) serves as an ad slot on the page. 2
shows the JS code loaded as a part of the ad delivery. It
accesses the geo-location of the customer via the JS interface
navigator.geolocation.getCurrentPosition.

Fig. 14(b) shows how PAD can be employed to enforce
the geo-location access control. First, the publisher developer
includes <script src="PAD.js"></script> at the
beginning of the page (Fig. 14- 3 ). Then, she can add policy
spec block GEO-DATA as shown in Fig. 14- 4 to enforce
that “blocks geo-data on any delegation (any url)”.

Fig. 14(c) shows how PAD enforces the policy at runtime.
Specifically, PAD first overrides navigator.geolocatio
n.getCurrentPosition ( 5 ) to intercepts the access
to geo-location. When getCurrentPosition is invoked,
PAD checks the current specifications and applies actions
accordingly. In this case, the access control for blocking
geo-location takes effect. PAD returns empty geo-location
information instead of returning the real location( 6 ). Besides

blocking, flexible fuzzing methods such as reducing location
accuracy can be easily supported in PAD.

VII. RELATED WORK

Malvertising detection. Zarras et al. [64] investigated the
source of malvertising and showed that every publisher with-
out an exclusive agreement with the advertiser is likely to serve
malicious ads. Xing et al. [63] performed a large scale study
on malvertising in ad-injecting browser extensions. OdoSwiff
[50] detects malicious flash files based on known patterns
in the code and execution traces. In particular, it statically
looks for invalid images, suspicious jumps and APIs used in
known exploits. MadTracer [56] detects malvertising based
on rules learned from the ad delivery paths. Stringhini et al.
[61] and Mekky et al. [58] identify malicious content based
on HTTP redirections. Poornachandran et al. [60] proposed a
classifier-based malvertising detection approach. As learning
based detections rely on patterns found in known attacks, they
may not catch unknown attacks. In contrast, we break the
payloads that are carefully crafted for specific defects, we can
stop the attacks even targeting at zero-day vulnerabilities.

Ads and security policies. Alt [48] presents an advertising
platform based on adaptive profiles, where visitors can setup
profiles to obtain favorable ads. AdJail [57] is a framework for
publishers to specify confidentiality and integrity policies on
ads. AdSentry [49] allows publishers and end users to specify
access control policies for ads. Gui et al. [53] surveyed 21
Android apps and identified several undesired consequences
of ads including hidden costs and complaints. They further
studied 400 mobile ad reviews to identify complaint topics
[54]. Hussein et al. [55] use a runtime verification tool to
enforce security specification for Java. Ghotbi and Fischer
[51] presents a fine-grained role- and attribute-based access
control model. We focus on developing a policy language for
publishers so that they can easily specify how PAD operates.

VIII. CONCLUSION

We propose a novel programming support system PAD to
regulate third party ads. PAD allows publisher programmers to
specify and enforce their ad regulation policies throughout the
entire ad delegation chain. This is enabled by a self-installing
and self-protecting runtime. PAD also features an ad-specific
memory protection scheme that prevents malvertising. Our
experiments show that PAD has negligible overhead and can
effectively prevent real world malvertising and undesired ads.
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