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ABSTRACT

With the continuing evolution of sophisticated APT attacks, prove-
nance tracking is becoming an important technique for efficient
attack investigation in enterprise networks. Most of existing prove-
nance techniques are operating on system event auditing that dis-
closes dependence relationships by scrutinizing syscall traces. Un-
fortunately, such auditing-based provenance is not able to track
the causality of another important dimension in provenance, the
shared libraries. Different from other data-only system entities like
files and sockets, dynamic libraries are linked at runtime and may
get executed, which poses new challenges in provenance tracking.
For example, library provenance cannot be tracked by syscalls and
mapping; whether a library function is called and how it is called
within an execution context is invisible at syscall level; linking a
library does not promise their execution at runtime. Addressing
these challenges is critical to tracking sophisticated attacks lever-
aging libraries. In this paper, to facilitate fine-grained investigation
inside the execution of library binaries, we develop Lprov, a novel
provenance tracking system which combines library tracing and
syscall tracing. Upon a syscall, Lprov identifies the library calls to-
gether with the stack which induces it so that the library execution
provenance can be accurately revealed. Our evaluation shows that
Lprov can precisely identify attack provenance involving libraries,
including malicious library attack and library vulnerability exploita-
tion, while syscall-based provenance tools fail to identify. It only
incurs 7.0% (in geometric mean) runtime overhead and consumes 3
times less storage space of a state-of-the-art provenance tool.
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1 INTRODUCTION

APT (advanced persistent threat) attacks are eternal enemies to
cybersecurity communities and contemporary enterprise networks
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are suffering the most among all the network environments. In-
cented by tremendous economic interests in commercial espionage,
attackers are taking persistent efforts in penetrating enterprise
networks from diverse vectors, which motivates the increasing de-
mands in cyber attack investigation. Detecting or intercepting an
APT attack at its entry point is particularly challenging due to their
advanced and stealthy attack techniques. For example, backdoor
implantation scheme allows attackers to inject malicious code into
a benign program in order to disguise the malicious behaviors as
normal benign behaviors. Rather than downloading and executing
obvious malicious programs, they leverage existing benign applica-
tions and services to conduct malicious behaviors such as down-
loading or opening attachments from well social-engineered emails,
and clicking URL links in luring advertisements [44]. Hence, in
recent years, in addition to the significant contribution manifested
in attack detection, provenance tracking becomes an irreplaceable
pillar in APT analysis and defense. Given a target system entity or
object (e.g., compromised file, socket, or process), provenance track-
ing systems analyze it from multiple aspects, and figure out the
entity’s root (or origin) as well as deriving path [32, 44, 47, 48]. The
root contains all the external entities (e.g., an IP address) affecting
the status or value of the target entity; while the deriving path is
an organized causal graph illustrating how the entity is eventually
influenced from the root. Such tracking information can facilitate
locating the attack and prevent repeated infection.

Existing provenance tracking techniques can be divided into
three categories: non-unit provenance, tainting-based provenance,
and unit-based provenance. Most provenance tools leverage event
logging to trace system events (e.g., syscalls) and associate them
for further offline attack tracking and investigation [28, 33, 34,
39, 46, 51, 53, 55]. While there are various system events such as
network communication, memory operations and syscalls, most
provenance tools focus on logging and analyzing syscall events as
syscall logging (e.g., audit logging) is widely used (included in most
Linux distributions by default) and practical (low overhead).
Non-unit provenance techniques Non-unit provenance tools
have a conservative assumption: a process is causally related to
all the system entities (e.g., files and sockets) it has accessed so
far. In such conservative causality correlating models, any output
object (e.g., files and sockets) of a process has causal relations to
all the preceding input objects, resulting in many bogus causality
relations and confusing the following attack investigation. We call
such problem the dependence explosion problem [28, 38, 40, 44] and
the problem becomes particularly severe in complex long-running
programs such as firefox and Apache. For instance, consider a case
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where a user opens firefox and browses 10 websites. Then, the
user carelessly downloads a malware binary on one of the website,
namely xxx.com. Later, the malware is detected and an investigator
wants to identify which website downloads the malware. When
non-unit provenance techniques are used, they report all of the 10
websites as roots while only the website xxx.com is the true root
cause and other 9 websites are not.
Tainting-based provenance Tainting-based provenance tech-
niques [19, 22, 32, 35, 37, 49, 52, 54, 56, 67] assign tags to multi-
ple tainting sources (e.g., receiving sockets and input files) and
propagate them by monitoring executed instructions. When those
tags reach sinks (e.g., sending sockets and output files), they de-
tect information flow between sources and sinks, revealing the
roots of the sink entities (e.g., IP addresses). However, since these
techniques work on the instruction level, most of them cause sig-
nificant runtime overhead and they are rarely used in production
runs. Note that while the latest instruction-level tracking system
may perform replay-based provenance analysis in low overhead
(3.22%), its resource pruning and selective tainting in replay re-
quire pre-recorded instruction-level execution logs [32], hence it
is not applicable in our context. Moreover, taint analysis suffers
from over/under-approximation as it has difficulty handling implicit
information flow through control dependencies (e.g., data compres-
sion and table lookup). Besides, taint set operations in instructions
are error-prone since pointers, arrays, syscalls, third-party libraries
and language-specific features should be carefully processed.
Unit provenance techniques. Unit-based provenance such as
BEEP [44, 45] and Protracer [48] is the state-of-the-art in prove-
nance tracking. They are based on an observation from a study [44]:
in diverse open-source software including both of client-side and
server-side, most programs are designed in input-triggered loops
which dominate the event handling. Hence, unit-based provenance
tracking techniques profile such loops from program binaries and
partition programs’ execution into units. Those units are semanti-
cally autonomous and they are usually responsible for independent
input events. By partitioning a long-running execution intomultiple
small execution units, they significantly mitigate the dependence ex-
plosion problem. An output object is considered causally correlated
to an input object only if they belong to the same unit. However, a
single unit may not cover the whole execution subroutine for one
input event, such as the asynchronous unit cooperation in message
queue processing. Hence, memory dependency between units is
also tracked to detect inter-unit dependencies. With such design,
the unit-based provenance tracking techniques can accurately iden-
tify the root (the xxx.com website in the previous example) pruning
out other bogus dependencies.

Unfortunately, while the unit-based provenance techniques mit-
igate the dependence explosion problem, they fail to consider an-
other important aspect of provenance, the shared libraries. An
integrated executable binary consists of a main module and several
depending shared libraries. For example, the binary of vim links 14
shared libraries and firefox has more than 20.In most of provenance
tracking systems, the main module and those libraries are usually
handled as one process/program entity but they are not analyzed
separately. Since the library loading phase is in the program ini-
tialization but outside any event handling loop, the output of any

unit has no dependence on any input library in unit-based tracking
techniques. As a result, the unit-based techniques are not able to
track provenance in libraries. Note that although Protracer [48]
correlates all the loaded libraries in generating the causal graph,
it is still coarse-grained since they are the same input for all the
units, which is considered no causality in the logic of dependence
analysis. Unlike other input sources such as files and sockets which
are value-based hence can be tracked by monitoring I/O syscalls,
the provenance inside libraries is execution-based and the correla-
tion cannot be simply tracked by causality deduction in I/O syscalls.
Specifically, mapping or linking a library does not promise any
execution instance, and whether a specific library is executed or
how it is executed within a unit cannot be answered in the syscall
granularity. Note that there have been proposed user-space tracing
tools to perform provenance tracking [16, 58, 63], but they are too
coarse-grained and the tracing requires repeated manual efforts
in event/causality definition or program instrumentation because
stealthy attacks could act as normal behaviors (See Section 2).

Our solution To this end, we develop a user-space library trac-
ing technique and merge it into existing syscall-based provenance
tracking systems in order to improve the visibility of library ex-
ecution in provenance tracking. We propose a novel provenance
tracking system Lprovwhich performs on the granularity of library
functions other than those on syscalls. It aims at addressing the
obstinate wart, the absence of user-space library provenance, in
syscall-based auditing systems.

It works as follows. Upon the beginning of a program execution,
Lprov is loaded into process memory by a customized loader. It
records the entrance and exit of library calls by manipulating sym-
bol tables and maintains library call stacks for each thread. To be
integrated with the audit logging techniques, Lprov also deploys
a kernel module to collect syscall events. Only when trapped into
a syscall, a process’s library call stack is retrieved for output. To
ensure the efficient processing in kernel, a daemon process in user
space is designed to take over log delivery and optimization (e.g.,
reduction of redundant or duplicate logs). During production runs,
when a syscall is made, its deriving path from the library perspective
is disclosed by the library call stack on causality correlations.

Our contributions are summarized as follows.
•We propose an efficient provenance tracking system Lprov,

combining library tracing in user space and syscall tracing in Kernel
space.Whenever a provenance-related syscall is made from a thread,
its full library-level execution path is also unveiled. Equipped with
the library provenance, causality is revealed not only between
explicit value-based input and output system entities but also inside
the implicit fine-grained execution-based shared libraries.
•We devise a lightweight and efficient system-wide library trac-

ing infrastructure. The tracing provides a friendly running environ-
ment for heavy-threaded programs and all the thread properties
(e.g., concurrency) are well preserved.
•We evaluate our prototype and the results are promising. Lprov

can precisely identify the provenance in malicious library, and it
incurs only 7.0% runtime overhead (in geometric mean) and con-
sumes 3 times less storage space (29.7% of the space for provenance
data by BEEP [44]).



2 MOTIVATING EXAMPLE

The Linux Ebury attack in ssh service [10] motivates the impor-
tance of library aware provenance tracking. This attack leverages a
stealthy backdoor to implant subsequent malicious binaries such
as ssh clients or servers. The first version of Ebury attempts to
replace ssh-related binaries such as sshd, ssh and scp by carefully
crafted malicious binaries. However, the crafted programs are too
obvious and attack ramification could be easily exposed to existing
provenance tracking systems. Hence, Ebury evolves into exploiting
well-camouflaged shared libraries rather than directly intruding
the program bodies. In this paper, we reproduce a version of the
library-base Ebury attack to show the effectiveness of Lprov.
Library-based Ebury To make the attack stealthy, library-based
Ebury carefully chooses a particular library, libkeyutils.so, which is
one of the libraries for Kerberos authentication. Specifically, Ker-
beros authentication is a widely used identity authentication pro-
tocol between ssh clients and servers and most Linux versions
support it by default. In Linux, it is implemented by 4 libraries,
libkcrypto.so, libkrb.so, libkrbsupport.so and libgssapi_krb.so. Among
these libraries, the key management library libkeyutils.so is only
called by krb_get_notification_message in libkrb.sowhich is, in
fact, never called in the current Kerberos implementation. In other
words, libkeyutils.so is a “dangling” library in ssh programs. More-
over, we observe that in most Linux versions, no other programs
are using libkeyutils.so except the ssh service. Hence, the attacker
chooses libkeyutils.so as it would only affect the ssh program with-
out attracting attentions from users and security administrators.
Attack Scenario This is an exfiltration attack that aims at stealing
users’ private keys. An administrator is maintaining several servers
and he generates public/private key pairs (one pair for one server or
one pair for multiple servers) for remote login, which is protected
by the ssh public key authentication. Considering the flexibility of
server configuration, such as location changing, service switching
and load balancing, those servers are managed by some dynamic
domain name service (e.g., No-IP) where IP addresses are not fixed.
Through an unverified package update, the libkeyutils.so library in
administrator’s laptop is replaced by a malicious one containing
a backdoor in the library’s constructor, transferring hosts’ private
keys to a remote attacker-controlled site y.y.y.y. Note that it is
possible to make the program load the malicious library without
physically replacing the library file. Specifically, the library can be
placed into directories with higher search priority in the loading
phase, without changing the original library file. After a fewmonths,
the administrator logs into a server and notices that the system has
been compromised. He then realizes that his private key was leaked
since the attacker successfully got through the login authentication.
Provenance Analysis The causal graphs tracking from the pri-
vate key file id_rsa.1 generated by BEEP [44] and Lprov are in
Fig. 1. Note that the graph contains about thirty different remote
server nodes and many file object nodes but we only analyze a
small part of it (related to the provenance analysis). Since the ssh
client is not a long-running program with an input handling loop,
the unit partition of BEEP cannot take any effect here but all the
objects are dependent on the whole process. Hence the network
connection established for exfiltration in the library’s constructor is
causally correlated to ssh in the same way as other remote servers.

When a user accesses any remote server through the ssh client, the
corresponding public/private key is always read for identity au-
thentication. Therefore, without extra evidence, it is impossible to
differentiate the attacker’s site y.y.y.y from other server addresses
(e.g., x.x.x.x, z.z.z.z, and so on). Accomplishing the file trans-
mission, the library’s constructor outputs connection error messages
and calls exit to terminate. Therefore, the ssh client would not
connect to any server after the communication with y.y.y.y, pre-
venting the attack being readily caught in the light of a suspicious
ssh process associated with two different remote servers. From
the administrator’s perspective, the program termination is just
regarded as a normal connection failure and no anomalies could
be perceived. Moreover, the attack is conditionally triggered with
a certain probability, hence most ssh connections launched from
the client are benign ones. If the administrator is fortunate enough
to obtain the whole and correct server-side logs such as login and
DHCP, the suspicious connection to y.y.y.y could be identified.
However, it is challenging to understand the root cause and internal
profound details of the malicious library file.

In contrast to BEEP, Lprov’s causal graph shows the execution-
based provenance for the attack. In this clear context of execution
paths, we can figure out that the private key was exfiltrated to
the remote server y.y.y.y through the constructor function of
libkeyutils.so in trivial efforts. Note that to simplify and clean the
illustration, Figure 1 omits the provenance of the library file, but
this will be detailed in Section 5.2.1.

3 SYSTEM OVERVIEW

Lprov leverages the same program unit instrumentation scheme
from BEEP and ProTracer [44, 48], assuaging the concerns of de-
pendence explosion. Fig. 2 illustrates the architecture of Lprov.
Specifically, the customized loader mandatorily preloads the trac-
ing library lprov.so into processes’ memory at the program bootstrap
and monitors the initialization procedure of libraries upon load-
ing. The library lprov.so takes charge of tracing and storing library
call events into a memory chunk shared with kernel. The kernel
module and the user-space daemon are largely inherited from Pro-
Tracer [48] and we augment them to accommodate library-level
events, but our contribution mainly lies in improving the library
awareness of auditing-based provenance tracking by efficient li-
brary tracing. Our kernel module is responsible for (1) recording
syscalls and (2) copying associated library call stacks into a cir-
cular buffer shared with the daemon process. The daemon pulls
log entities from the shared buffer and outputs them to the log file
for further provenance analysis. Note that to minimize the attack
surface (i.e., to prevent hijacking from compromised libraries), ex-
ternal library codes are statically linked to the customized loader,
lprov.so and the user-space daemon.

A shared library could be loaded through process initialization
(by system loader) or calling dlopen on demand. In either way,
when a library is loaded, lprov.so alters the offsets of exported func-
tion symbols in the library ELF header and redirects them to injected
wrappers (i.e., entrance wrappers). In the entrance wrapper routine,
the return address of a library call is then instrumentedwith another
wrapper (i.e., exit wrapper) to catch function exit. During program
execution, the two wrappers record the enter and exit sequences of
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address but Lprov gives a clear attack context.
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Figure 2: The architecture of Lprov: dashed lines denote con-

trol flow and solid lines denote data flow.

library calls to the shared buffer which is read by kernel later. Note
that such a library tracing procedure hinges on dynamic symbol
resolution and its limitations will be discussed in Section 6. Details
of library call tracing are discussed in Section 4.1. Compared with
syscalls involving low-level kernel object operations, user-space
library functions are called much more frequently. For instance,
more than 18.2 million library functions are executed when a user
opens firefox, visits the homepage of New York Times, and clicks the
headline. Meanwhile, only about 753 thousand syscalls are invoked.
However, many of those library function calls are less significant
(e.g. tolower, toupper) for provenance analysis. Hence, instead
of recording all the call sites of library functions, Lprov focuses
on a small fraction of important library calls (e.g., read, write,
constructor) and builds a concise, yet comprehensive (regarding
provenance tracking) library call graph. Only if a library call termi-
nates at a syscall, its full call stack is considered for output. Other
cases which do not interact with kernel are pruned . The design of
kernel module is elaborated in Section 4.2.

The daemon fetches log data from the circular buffer as a con-
sumer. A log entity is a syscall event annotated by a library call
stack. Among candidate entities, the daemon only outputs the ones
which are not duplicating any already-output log record. This part
is dissected in Section 4.3.
Assumption In this paper, like other existing provenance systems
built on audit logging, we trust the kernel and the user-space pro-
cessing daemon. Apart from that, Lprov also assumes the integrity
of the library tracing component in user space. The limitation of
such assumptions will be discussed in Section 4.1.3 and Section 6.

4 DESIGN AND IMPLEMENTATION

4.1 Library Call Tracing

In this section, we discuss the detailed design of Lprov and compare
it with ltrace (the most widely used library call tracing tool in Linux).

4.1.1 Design. The tracing functionality of Lprov is encapsu-
lated as a library lprov.so loaded into the runtime memory of the
tracee. It realizes logging library calls with three cooperative com-
ponents: dynamic symbol redirector, entrance/exit wrapper and
customized loader.
Dynamic SymbolRedirector This component serves as the pillar
of lprov.so. It is composed of an overrider of dlopen and a construc-
tor function (of lprov.so).

When importing a module, the loader typically runs in a lazy
binding mode, where the resolution of external function symbols is
not executed until the program reaches their first reference. The
system resolver relies on the symbol table of library’s exported
functions to parse entrance addresses of external functions.

Hence, the overrider manipulates specific fields of the table to
direct the resolution results to our injected wrapper routines (in-
troduced in the next two paragraphs). Specifically, the overrider
first calls the original dlopen and obtains the library handle. Then,
it locates the addresses of dynamic function symbols (i.e., DYNSYM
section which contains the list of exported functions). Finally, the
attributes of st_value and st_info inside Elf_Sym structure are
modified for each symbol. The st_value attribute of a dynamic
function symbol implies the offset of the function’s entrance to
the library handle. We change the values of st_value in order to
interpose the functions.

However, if a library function is compiled as IFUNC whose im-
plementation is bound during runtime, changing the value of st_-
value will cause the program to crash when the function is called
since st_value of an indirect function indicates the address of the
runtime resolver instead of the function entrance. Since these func-
tions are specified as IFUNC and the types are stored in st_info,
we also alter this value to make the system resolver handle indirect
functions as non-indirect ones. In addition, the original address of
an indirect function could be pre-fetched by dlsym. Hence, the con-
structor function of lprov.so interposes dlopen on all the libraries
(including dependent libraries) in the program’s ELF header, while
the libraries loaded by dlopen during runtime are automatically
instrumented by the overrider.



Entrance/ExitWrapper Themanipulated symbol table dispatches
library calls to the corresponding function entrance wrappers. A
library function’s entrance routine (1) stores functions’ original
return addresses (stored at (%esp)) and stores programs’ states, (2)
logs library call entrance events, (3) redirects return addresses to
exit wrappers, and (4) restores programs’ states and resumes library
function execution.

An exit wrapper (1) fetches functions’ original address and stor-
ing programs’ states and (2) pops out the last library call entrance
events and resumes library function returns.
Customized Loader To guarantee that the library call tracing
functionality is deployed before the target program executes any
library function, the library lprov.somust be loaded before all others.
In Linux, generally, this could be done by enabling the LD_PRELOAD
environment variable. However, many anti-debugging and self-
protecting techniques probe LD_PRELOAD and then refuse to execute
when the variable is used. Moreover, according to Linux security
policy, LD_PRELOAD referring to any untrusted path is ignored in
loading phase when binaries’ setuid or setgid bit is set. To this
end, rather than using the LD_PRELOAD, we modify the loader to
enforce the pre-loading of lprov.so anyway through do_preload.

Apart from all the exported functions, a library’s constructor
plays a critical role in the library loading mechanism. It is called by
the loader upon the library importing procedure, before the library
handle is actually returned. Therefore, we customize the loader fur-
ther to monitor the execution of libraries’ constructors. Specifically,
in the loader’s initializer _dl_init, at the execution points where
call_init is called and returns, the constructor entrance event is
pushed and popped as regular library calls.

4.1.2 Design Choices. In this section, we elaborate our design
choices comparing with the design choices of ltrace, and highlight
advantages of Lprov. In particular, ltrace leverages breakpoints
and debugging mode in order to interpose library calls, which re-
sults in high overhead and missing library call events. In contrast,
Lprov uses an dynamic instrumentation approach which outper-
forms ltrace in various aspects. In the following, we elaborate the
advantages from five different perspectives.
Interposing Nested Library Calls To interpose library calls,
ltrace leverages ptrace which imposes high overhead. In addition,
ltrace inserts software breakpoints (INT 3) at the PLT (Procedure
Linkage Table) trampoline entries of library functions. Note that
software breakpoints incur significant overhead as the entire pro-
cess is stopped when a breakpoint is reached. More importantly,
the resolutions of external function symbols in different libraries
(modules) are independent and they all hold their local PLTs. The
breakpoint insertion of ltrace is confined within the PLT trampoline
entries of the program (the main module) but all the libraries’ PLT
segments are not instrumented. Hence, if library calls are nested,
ltrace is unable to trace the inner ones.
Unlike ltrace, Lprov focuses on the symbol resolution phase inside
the loader. Hence, it can trace nested library calls with signifi-
cantly lower overhead compared with ltrace.

Interposing Non-PLT Library Calls Functions in a library can
be called through indirect calls using function pointers. Such calls

do not go through PLT trampolines hence ltrace is not able to
interpose such library calls1.
Since Lprov operates through dynamic symbol tables, all library
calls by function pointers derived during symbol resolution can
be traced in Lprov.
Constructor Function While constructor function initializes vari-
ables and states, it can also execute any code upon library loading.
Hence, without the awareness of constructor function, distinguish-
ing library calls inside it from the ones outside is particularly chal-
lenging. Unfortunately, ltrace is not capable of tracing the construc-
tor functions as it focuses on PLT trampolines.
The customized loader of Lprovmakes sure that Lprov traces all
the constructor functions as well as library function calls within
the constructor functions.
Thread Support ltrace leverages software breakpoints (i.e., INT
3) to interpose library calls. Unfortunately, when a program halts
on INT 3, it enters a SIGTRAP status where all the threads are
suspended. In addition, to be informed of function returns, ltrace
inserts breakpoints at the return addresses, which would trap the
execution of other threads into unexpected breakpoint handling
routine when text segments are shared in a thread group. As a result,
ltrace hurts thread concurrency, eventually incurring additional
overhead in multi-threaded applications.
As Lprov does not rely on software breakpoints, it does not
have any of the aforementioned issues. It offers a thread-friendly
tracing environment, where thread concurrency properties are
preserved well.

Runtime Overhead Compared to Lprov, the breakpoint scheme
of ltrace incurs much higher overhead due to context switch and
the limited thread support. Table 1 shows the runtime overhead
of the two tracing tools in the same workloads of four server-side
programs (httpd, simplehttpd, proftpd, sshd), eight client-side pro-
grams (firefox, filezilla, lynx, links, w3m, wget, ssh, pine) and three
editors/readers (vim, emacs, xpdf). The Apache Benchmark [1] tool
is used to measure the two web service programs, Apache httpd and
simplehttpd, and ftpbench [7] is used to measure proftpd. For firefox,
we use the standard browser benchmarking tool SunSpider [12],
and we use corresponding program scripts for all the other pro-
grams. In the columns of ltrace, N/A in httpd and firefox indicates
that programs do not terminate in a reasonable time limit (e.g.,
meaning that it incurs more than 1000% overhead) or just crash.
This is because ltrace incurs particularly high overhead in multi-
threaded programs. Note that to measure the performance of ltrace,
we develop a simple library hooking module that leverages the
same techniques used in Lprov without any additional provenance
related components. Specifically, it only records entrances and exits
of library calls.
The primary results show that Lprov outperforms ltrace. The
overhead incurred by ltrace is 10-20 times more than that of
Lprov. Moreover, Lprov can trace more library calls as ltrace is
not capable of tracing nested and Non-PLT library calls. Observe
there exists a gap between the amounts of recorded library calls.

1https://linux.die.net/man/1/ltrace, the latest document claims that ltrace can handle
the dlopen case but the latest software version 0.7.3 still does not have this feature.



Table 1:Lprovhasmuch lower runtime overhead than ltrace

Program ltrace Lprov #Gap# of calls overhead # of calls overhead
httpd N/A N/A 8764.7K 53% N/A

simplehttpd 946.4K 563% 965.5K 28% 19.1K
proftpd 1407.8K 622% 1494.3K 36% 86.5K
sshd 4987.0K 769% 5019.8K 44% 32.8K
ssh 3668.6K 813% 3741.6K 30% 73.0K

firefox N/A N/A 394461.6K 126% N/A
filezilla 7311.5K 988% 7383.2K 47% 71.7K
lynx 912.6K 672% 933.0K 34% 20.4K
links 659.7K 565% 697.8K 29% 38.1K
w3m 757.2K 622% 785.3K 41% 28.1K
wget 448.8K 390% 453.3K 30% 4.5K
pine 1092.8K 522% 1103.6K 34% 10.8K
vim 8276.0K 734% 8336.9K 37% 60.9K
emacs 3053.2K 658% 3104.4K 31% 51.2K
xpdf 781.5K 742% 803.0K 40% 21.5K

4.1.3 Data Integrity. As malicious libraries and recorded library
call stacks reside in the same memory space, the tracing data might
be compromised during runtime. To mitigate the issues, we can
leverage complementary address space (re)randomization tech-
niques [18, 29, 61] such as ASLR (Address Space Layout Random-
ization). Specifically, randomization techniques make sure that the
library of Lprov is loaded into a random address. Moreover, we
can leverage these techniques to randomize addresses of our data
structures. Also, hardware features can be leveraged to ensure data
integrity [41] as well.

4.2 Lprov Kernel Module

Tracing Target We leverage ProTracer’s [48] kernel event tracing
framework built on Tracepoints [13] to monitor syscall instances.
The details of tool selection for kernel event tracing are discussed in
Appendix A.1. For provenance purpose, only the syscalls related to
explicit causality deduction are considered in kernel tracing. The set
of tracing targets is the same as Protracer [48], including syscalls on
basic file read/write operations, file redirection syscalls, IPC syscalls,
process management syscalls and customized syscalls to mark the
unit in/outs. In particular, Lprov enlarges the set by another cate-
gory of syscalls, memory permission manipulating syscalls. Change
of memory access right is a critical clue for provenance inference,
especially in user-space library tracing. For example, a function in
library A alters the permission of pages allocated to library B and
modifies the image of B dynamically. BEEP and Protracer are oblivi-
ous on such dependence because the inter-unit memory read event
defined in them is an explicit value-based read that cannot model
an implicit execution-based read. Hence, Lprov additionally collects
syscall events of mprotect2 and mmap. When library A invokes
mprotect to set the PROT_WRITE or PROT_EXEC flag to a memory
chunk mapped to library B, then the corresponding memory section
of B has runtime dependence on A. In addition, syscall mmap can
be utilized to obtain a memory chunk with specific permissions
and this is the default way library binaries are loaded into process
memory by the program loader. Library tracing is accomplished
by lprov.so, and hence it is unnecessary to additionally handle the

2Themore efficient syscall pkey_mprotect is not included here since it is not supported
until Linux-4.9 kernel and it also requires specific hardware assistance.

general library mapping here. Specially, if files (including libraries)
are non-anonymously mapped, they will be considered either input
or output object of the process according to the permissions and
opening modes of file descriptors. For all the other anonymously
(i.e. MAP_ANONYMOUS) mapped executable pages, we regard them as
a part of the main module and then the main module is considered
dynamically dependent on the mmap invoker.
Event Collecting For a syscall instance, in addition to the standard
syscall event which is recorded by existing systems built on audit
logging, Lprov also correlates the thread’s library execution path
to this event. The kernel module retrieves library call stacks from
the buffer shared with user-space applications, packs syscall events
with the stacks into log entries and delegates the log outputting
task to the user-space daemon through the circular buffer. By doing
so, kernel does not need to wait for the previous events to be
completely processed. The size of the buffer can be also configured
so that kernel would not wait when the buffer is full. It can be also
configured to drop events when the buffer is full. To accelerate
the library call processing inside kernel, the buffer maintaining
programs’ library call stack is a per-thread buffer indexed by thread
id so that kernel can access the memory efficiently. To prevent
expensive dynamic memory management from weighing in, we
choose to pre-map the per-thread buffer with a fixed size when the
kernel module is loaded.

4.3 Lprov Daemon Process and Log Analysis

Daemon Process The daemon keeps reading log events from
kernel through the producer-consumer buffer. Since there are only
one producer (producer does not overwrite data) and one consumer,
the circular buffer is implemented in lock-free mode. Plumbed from
Protracer [48], the daemon marshals a thread array to perform
log processing and logs from one process should be tackled by
only one thread to maintain processes’ consistent and complete
execution context. The on-the-fly log processing phase aims at
reducing duplicate events on the same system object within one unit.
For example, downloading of a large file inside browsers is fulfilled
by thousands of socket-reading and file-writing operations, but
only one of them needs to be recorded for provenance purpose. In
addition, the processing also connects redirected files (dup function
group) to prevent causality loss. Note that we do not apply the log
reduction scheme playing with taint propagation in Protracer [48]
since the taint cannot clarify the implicit execution path from the
source to target hence not applicable to our purpose. Moreover,
if we combine Lprov with the tainting technique, a taint must be
spawned for each library call stack per syscall event, which does
not take any advantage over the direct logging. Eventually, the
filtered log entities are delegated to the log outputting thread to
generate the log file on disk.

Log Analysis Lprov provenance tracking is expected to answer
how a system object is affected and how it affects the system in
the perspective of syscall and library events. Hence, we provide
both of backward and forward tracking, disclosing the deriving
path and the aftermath of objects in a directed provenance graph.
The log analysis algorithm is similar to that in BEEP [44] and Pro-
tracer [48] but Lprov augments the provenance graph by handling



additional events on memory permission manipulation and captur-
ing library-level execution causalities. The algorithm (Algorithm 1)
is elaborated in Appendix A.2.

5 EVALUATION

We set up four machines (machine A, B, C, and D) with similar
hardware configuration (16GB RAM and Intel i7 CPU) in our eval-
uation experiments. In order to compare the overall performance,
those machines are all deployed Lprov and BEEP.

We select 11 programs from Table 1 for measurement as some
of them share the same functionalities. Not all of them are instru-
mented by BEEP as programs like ssh do not have an event handling
loop and they are not designed to run for a long time.

We assign one machine (i.e., machine A) as the server (running
both server-side and client-side programs) and the other three (e.g.,
machine B, C, and D) as pure client machines (running client-side
programs only). We refer the anonymous users of these machines
with the same alphabet letters (User A, B, C, and D).

User A configures, manages andmaintains the server service. The
server operates a tiny web server for a group project, an FTP server
for file sharing and an SSH server for remote accessing. The other
three users (Users B, C, and D) are required to actively communicate
with the designated server and use the selected programs during the
experiment. Besides the necessary communication with the server,
the three users also have their own behavior profiles. User B mainly
uses the machine to watch TV or movies online, visit social network
sites, browse news and chat with friends. User C undertakes most
of his project coding work on the assigned machine. He usually
downloads and reads programming manuals or documents. User D
is preparing some coming interviews. She mainly accesses her email
account for personal communication, watches presentation videos
and visits Q&A websites to collect interview-related materials.

5.1 Performance Overhead

Storage Overhead The performance experiment lasted two weeks
and the results are shown in Table 2. From the results, we can ob-
serve that in spite of logging the library call stack, the storage
consumption of Lprov is only 29.7% of BEEP. Since Lprov applies a
on-the-fly reduction phase, the generated log has much less redun-
dancy compared to the original audit event log. Note that because
Lprov logs additional library-level events and the tainting scheme
in Protracer [48] is not applicable in our context, it appears to be un-
avoidable that Lprov has greater storage overhead than Protracer
(See additional performance evaluation in Appendix A.3).
Runtime Overhead As shown in Figure 3, while Lprov logs more
user-space library information, its runtime performance is still
competitive and acceptable. Specifically, the geometric mean and
arithmetic mean of the programs’ overhead in Lprov are 7.0% and
8.6%, compared to 8.4% and 9.8% in BEEP, 4.5% and 5.3% in ProTracer.
We notice that the programs’ performance in Figure 3 achieves sig-
nificant improvement from Table 1. This is because the daemon
process decouples the onerous log outputting task from the library
tracing component. Note that in runtime overhead benchmark-
ing, instead of imposing intensive and bursting tasks, we apply
day-long program workloads from general use cases which we

Table 2: Comparison of storage overhead between Lprov

and BEEP in a two-week performance experiment

User BEEP Lprov Lprov/BEEP
#item(M) size(GB) #item(M) size(GB) item size

A 139 116 59 45 42.4% 38.8%
B 185 146 62 41 33.5% 28.1%
C 119 91 42 26 35.3% 28.6%
D 109 90 33 20 30.3% 22.2%

Avg. 138 111 49 33 35.5% 29.7%

Prog. BEEP Lprov Lprov/BEEP
#item(M) size(GB) #item(M) size(GB) item size

httpd 40.9 32.3 13.9 8.3 33.9% 25.7%
proftpd 29.2 23.6 8.3 5.4 28.4% 22.9%
sshd 33.0 26.8 15.4 10.8 46.7 % 40.3%
ssh 10.5 8.1 4.1 2.8 39.0% 34.6%

firefox 207.7 168.9 68.0 49.6 32.7% 29.4%
filezilla 13.7 10.6 2.7 1.6 19.7% 15.1%
w3m 3.9 3.1 1.2 0.9 30.8% 29.0%
wget 2.6 2.0 0.8 0.5 30.8% 25.0%
pine 1.9 1.6 1.0 0.8 52.6% 50.0%
vim 26.4 21.0 15.2 11.0 57.6% 52.4%
xpdf 15.0 11.4 6.0 3.9 40.0% 34.2%

profiled from the four deployed machines/users. Such measure-
ment reflects real-world scenarios where APT attacks happen (i.e.,
institute/organization/enterprise environment). It also reasonably
amortizes the expensive GUI constructing/destroying computation
at program opening/closing. There is an outlier. Lprov incurs high
overhead (28.9%) on firefox. This is caused by the fact that firefox
makes massive library calls (around 3 million per page loading
in average). We believe that the problem could be attenuated by
reducing the library logging scope as discussed in Section 6.
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Figure 3: Comparison of runtime overhead of BEEP, Pro-

Tracer and Lprov.

5.2 Case Study

5.2.1 Ebury Variant Attack. We use another variant of Linux
Ebury attack [10] to show the effectiveness of Lprov in provenance
tracking. The attack leverages a malicious library to alter memory
images of benign programs. The attacker steals a student’s campus
credential and leverages the credential to spread the malice. Note
that universities usually assign each student one credential for all
the campus resources and it would lead to serious privacy issues if
the credential was stolen. Given a compromised credential on an
end-host, Lprov can then assist identifying the attack source and
preventing future attempts.
Attack Scenario Bob is a college student and he usually uses ssh
service to reach lab computers on campus. He installed Lprov and
BEEP on his laptop and enabled them in his daily application usage.
One day, he was notified by the campus network administrator



that his account was sending spam and phishing emails. After
necessary investigation, Bob proved to be innocent but his account
was temporarily deactivated and he was required to use the two-
factor authentication in the future. Later, he wants to know how the
attack happened as he did not ever tell anyone else his credential
information, type in his credential on others’ machines or open any
phishing links.

Note that as ssh client stores all the public keys of known hosts
to verify their identities, the program should have displayed a warn-
ing message (e.g., the public key mismatch) if the attack happened
on the connection to a known server. Unfortunately, Bob confirmed
that he deleted the the known_hosts file as many websites sug-
gest to do so (assuming that the server changed its key pair) [14].
Moreover, the latest variants of Linux Ebury can instrument the
authentication part to suppress the mismatch warning [10].
Attack Investigation Bob did not store his student credential in
any file. Hence, instead of concentrating on sensitive files (as we did
in Section 2), he focused on analyzing logs from all the processes he
recently used. Eventually, he obtained Fig. 4 (the graph is simplified)
when dissecting an ssh process and the graph of Lprov contains
the complete attack chain. As demonstrated in Fig. 4 (the red dash
line is auxiliary for presentation), the PLT image permission of ssh
process was manipulated by the constructor of libkeyutils.so.1 and
then the process connected to a remote address b.b.b.b:22 which
is a machine outside of the campus. Based on this result, we can
infer that the constructor altered the process’s PLT entries (probably
the function path of connect) and redirected the connection to
the attacker’s server. Further, we apply backward tracking on the
object of the library file. It reveals that the malicious library is
downloaded by firefox from a.a.a.a:43. Then, it was implanted
into a target directory through unverified package installation. Note
that this attack cannot be uncovered in BEEP due to its lack of user-
space library semantics. Specifically, in BEEP, even if backward
tracking is performed on all the loaded libraries, the root cause of
the attack would remain unexposed unless a.a.a.a is pre-known
as malicious.
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Figure 4: Provenance graphs generated by BEEP and Lprov

for the student credential stealing attack.

5.2.2 Library Vulnerability Exploitation. We use an infiltration
attack reproduced from CVE-2015-7547 [2–4] to show the effective-
ness of Lprov in the context of remote vulnerability exploitation.
There is a buffer-overflow vulnerability in libresolv.so that can be
triggered by maliciously crafted DNS responses. Specifically, when
a client calls getaddrinfo with AF_UNSPEC to resolve a domain
name, a pair of IPv4 and IPv6 requests would be sent by send_dg

and send_vc in libresolv.so. If the response is larger than the pre-
allocated 2048 bytes buffer, the two functions allocate additional
heap buffers and the mismanagement of the buffers leads to the
exploitation. Further details can be found on [5].
Attack Scenario The attacker acts as a local DNS proxy and re-
sponds all the DNS requests from the victim client which conducts
DNS resolution on getaddrinfo. When receiving requests from
the victim client, the attacker sends crafted responses to implant a
malicious payload [3, 4]. The payload launches a shell executing
wget to download a file secret.txt that replaces the current secret
file under the victim’s home directory and then exits. Several days
later, the file was found compromised.
Attack Investigation In Fig. 5, BEEP fails to obtain the origin of
the attack rooting from the compromised library, while Lprov suc-
cessfully captures the execution path of the exploitation when track-
ing from secret.txt (name4_r, nsearch and sndmmsg are shorts
for _nss_dns_gethostbyname4_r, __libc_res_nsearch and __-
sendmmsg). The bash process is spawned inside client when execut-
ing __libc_res_nsearch. Further, by checking the library-level
provenance on the exit event of client, we conclude that the at-
tack is caused by a vulnerability exploitation because __libc_-
res_nsearch does not return when client terminates. Note that
Lprov effectively identifies the attack provenance even though the
library call stack does not include send_dg and send_vc which are
static functions (Related discussions can be found in Section 6).
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Figure 5: Provenance graphs generated by BEEP and Lprov

for library vulnerability exploitation.

5.2.3 Library Loading Analysis. DARPA Transparent Comput-
ing program [6] investigates library loading processes in an effort
to thwart advanced attacks that leverage malicious libraries. To
demonstrate the effectiveness of Lprov, we test a sample library
program provided by the red team of DARPA TC program. This
case focuses on understanding internal details of library loading.
Scenario (1) Process libloader A is launched by bash. (2) libloader
A spawns a thread B that prints out some text. (3) libloader A
maps /dev/shm/testlib into memory and reads testlib.so into the
mapped memory. (4) libloader A dynamically loads /dev/shm/testlib
by dlopen and the library’s constructor spawns another thread
C that prints out some testing text. (5) libloader A calls 8 library
functions f1-f8 by dlsym and each function prints out some text.
(6) libloader A prints out some text and exits.
ProvenanceAnalysis Fig. 6 presents the provenance graphs track-
ing from the standard output device /dev/stdout and the two
threads (B and C), where testlib, libptd and ptd_create are
shorts for /dev/shm/testlib, pthread_create and libpthread.
Lprov accurately correlates testlib.so and /dev/shm/testlib, reveals
the creation of threadC during /dev/shm/testload loading and clearly



distinguishes output behaviors from the 8 different library functions,
while BEEP misses all of those details due to the mishandling on
memory mapping and the oblivion on library events. Note that the
graph has two libloader A nodes spawned by bash because thread
B has no causality to the two files /dev/shm/testlib and testlib.so
and this would be clarified when tracking from thread B (Fig. 6
is a combination of the provenance graphs on the three tracking
objects).
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for DARPA library loading case.

6 DISCUSSION

Library Attestation Binary attestation is a widely used technique
to ensure program integrity. For instance, operating-system-level
virtualization techniques such as application container and enclave
on trusted hardware can leverage software attestation to provide
trusted computing platforms. While it can be used to detect and
prevent possible compromise on libraries, local attestation can be
thwarted by replacing the attestation measurement and remote
attestation can be compromised if the attestation interface is under-
mined in advance. Moreover, Lprov can provide detailed contextual
information of attacks (e.g., how the system is compromised and
which files/processes are affected) while library attestation would
simply detect and thwart attacks. To this end, we argue that moni-
toring internal library behaviors is a crucial primitive to enhance
the security of libraries.
Tracing Protection Like other approaches, Lprov assumes the
kernel and user-space tracing facilities are benign and uncompro-
mised. Note that it is a general assumption shared among various
tracing systems. This assumption can be relaxed if the implemen-
tation of Lprov submerges into hypervisor level [23]. However,
the hypervisor tracing has limited portability and it suffers from
the high overhead. Guarding user-space tracing tools is a knotty
problem as they can be subverted by other user-space programs.
However, the initial tampering with the tracing infrastructure can
be accurately recorded and users can revoke the trust on the logs
from that time point. The same strategy is also applicable in tracee’s
runtime, where the library tracing is trusted as long as the mem-
ory image of lprov.so or the customized loader is not altered via
mprotect. Note that if malicious libraries residing in the tracee

can locate and overwrite the shared memory containing tracee’s li-
brary events (e.g., via memory disclosure vulnerabilities), the initial
tampering would not be captured since no syscalls are triggered.
Nevertheless, we argue that hardening memory operations is an
orthogonal research effort to Lprov.
Tracing Coverage Lprov traces library calls through the standard
symbol resolution in dynsym table. Hence, Lprov might be less
effective if malicious libraries opt for customized loading, static
linking, or dynamic binary generation. For instance, executable
binaries can be encoded into a library, then decoded and mapped
at runtime. The following function execution (through hardcoded
offsets) inside the mapped memory images is invisible to Lprov.
Also, exported functions inside the same library can have execu-
tion dependence and it can be handled in either static linking or
dynamic symbol resolution. For example, string-related functions
like strcpy and strlen are frequently used inside other glibc func-
tions, such as getenv and setenv. However, instead of inserting
PLT trampolines at the library’s ELF header to resolve them during
runtime, glibc opts to statically link those functions as local ones
with the hidden_def attribute. Unfortunately, the current imple-
mentation of Lprov is not able to identify such nested library calls
(e.g., strcpy in getenv) as the inner ones are not resolved through
the symbol resolver. However, note that we can still capture the
outer functions (e.g., getenv) which are sufficient in practice. We
argue that even with these limitations, it is still effective in the
perspective of provenance investigation.
System Overhead As shown in evaluation, Lprov still has non-
trivial overhead on firefox and it is actually due to the program’s
extremely heavy execution dependence on library functions. To mit-
igate this, Lprov can opt to whitelist several libraries and only trace
recently changed ones, for example, libraries updated in the past
four weeks. However, memory images of libraries cannot be trusted
due to the manipulation of memory access permission from mpro-
tect. Lprov hence needs extra communication channel between
kernel and user space to dynamically deploy tracing on libraries
whose memory image is contaminated during runtime.

7 RELATEDWORK

Non-unit audit logging In recent years, significant efforts have
been taken on the system-level audit logging [20, 21, 27, 28, 34,
38, 40, 46, 51, 53, 68]. They track system objects to infer mutual
dependence for provenance investigation. Equipped with the gen-
erated system logs, root causes of attacks are revealed by backward
analysis [15, 34, 39] and the aftermath of attacks is identified by
forward tracking [21, 28, 38, 40, 52, 68]. Nevertheless, most of them
regard the whole lifecycle of a process as a single system entity,
which incurs dependence explosion problem. To assuage such con-
cerns, researchers search for other system resources to complement
syscall events. File offset is additionally leveraged in [55] to handle
file-related syscalls to provide fine-grained tracing. However, it is
only a specific optimization on file objects but not generic for other
entities. In [42], memory operations between pages is utilized to es-
tablish low-level object dependence. But due to its lack of program
semantics, the system is not sufficiently effective.
Unit-based audit logging Unit-based event tracing is the state-of-
art in system-level logging and it follows the line of work that has



been done in audit logging. Improved from those coarse-grained
techniques, unit-based schemes provide fine-grained provenance
inference by program partitioning. In BEEP [44], relying on the ob-
servation that long-running programs usually respond user inputs
by event handling loops, programs are trained by dynamic program
analysis to extract those loops. Then the loops are instrumented by
customized syscall events at both of enter and exit. Based on this
technique, the execution of programs is partitioned into multiple
loop instances and each instance is named a program unit. There-
fore, dependence between input and output objects is efficiently
disambiguated by confining causality correlation within the same
unit. ProTracer [48] improves BEEP by applying dynamic object
tainting to unit processing and decoupling high-overhead audit log-
ging from event tracing. It performs between system tainting and
audit logging to lower runtime and storage overhead. Each accessed
object is assigned a unique taint and the taints are propagated upon
object read. An event is considered for logging only if it is an output
event. Furthermore, in the offline processing, the units sharing the
same taint set are collapsed to make the generated graph concise.
In MPI [47], the unit is refined to data structure instances but it
requires efforts in developer annotation. Note that Lprov leverages
existing unit-based provenance techniques.
Hybrid approaches In [60], to infer the causality relationship
between syscalls, dependence analysis on low-level instructions is
entailed. Such technique requires instruction instrumentation and
incurs non-trivial runtime overhead. Since it works on deep and
fine-grained program analysis, it involves much low-level memory
dependence such as dynamic memory management which has no
importance in causality inference. Barham et al. proposed the sys-
tem Magpie [16] which monitors user-space events, kernel events,
middleware and system resource usage for each application input
by system-level instrumentation. It is a tool chain designed for
system workload extraction under real-world conditions in operat-
ing systems. Although the system achieves high performance with
relatively low overhead, it needs an application-specific schema
to parse and correlate those system events, which restricts the
system scalability. In [26], authors devised a logging and analysis
system targeting intrusion detection, allowing users to specify the
operating granularities, however, it requires users to provide the
causality definition beforehand. Therefore, although the system
offers implementation flexibility, it involves lots of human efforts
and limits the system practicability. In RAIN [32], dynamic informa-
tion flow tracking is applied in a replay-based provenance system
to infer fine-grained causality. It leverages syscall events to mini-
mize the analysis scope and performs refinable attack investigation
by selective tainting, and it only incurs 3.22% overhead. Neverthe-
less, the tainting optimization in replay still requires pre-recorded
instruction-level execution logs, and hence it is not applicable in
Lprov’s scenario.
Information flow and object tainting The inference of infor-
mation flow between system objects is adopted by lots of exist-
ing forensic systems to enhance malware detection and analy-
sis [50, 57, 64]. Yin et al. proposed thememory-level tracking system
Panorama [64] to disclose the information flow between malware
and sensitive data. The system can accurately capture malicious
data access and processing launched by malware. But due to its
high runtime overhead in low-level dependence analysis, it requires

special support in hardware-level tracking. In [57], researchers in-
vented a event tracing system VPath that can work either in OS
kernel or virtual machine manager. It monitors thread behaviors
and network activities to deduce system-wide causalities. Vpath
can reveal precise information flow at low overhead, however, it
needs carefully pre-defined patterns for system activities. Dynamic
taint analysis in system entities is a widely used technique to per-
form provenance tracking. It can capture sensitive information
leakage and system input causality through fine-grained data prop-
agation [24, 25, 31, 37, 50, 52, 57, 62, 64–66]. This area has been well
studied in multiple perspectives including file, socket and low-level
kernel objects on various operating systems [24, 43, 65]. In spite of
the high accuracy in provenance analysis, dynamic tainting system
has limited usability due to its high overhead caused by heavy in-
strumentation. Besides, tainting can only tell whether there exists
causality between two end objects but cannot offer a clear deriving
path from the source to the sink.
Log protection Protecting log integrity is important. Jacobsson et
al. proposed a lightweight logging-based malware detection system
which operates in a real-time client/server audit mode [30]. The
end-host under auditing delivers fresh runtime log data (encrypted
and signed) to a remote server for further verification of system
infection. However, it relies on the network communication and
the connection between client and server becomes the weakest
link. In [59], the authors proposed XRec, a primitive system of-
fering integrity of execution trace on instruction level by branch
trace messages. It can verify whether a specific code segment has
ever been executed. However, it incurs 200%-400% performance
overhead as it works in a system debug mode. In [17], researchers
devised LPM (Linux provenance module), the first generic frame-
work to build secure provenance-aware systems. It leverages LSM
to create a trusted provenance-aware execution platform, collecting
whole-system provenance with low overhead. Sundararaman et al.
presented a secure disk system, SVSDS, that performs transparent
versioning of data in the disk-level [17]. By enforcing specific data
constraints, the system can protect executables and system log files.
The latest secure logging systems are implemented on the trusted
hardware execution of Intel SGX. In [36], the syslog is ported onto
the boundary of trusted enclaves and application logs are generated
through enclave ocalls. To secure the log storage, all the log data
are encrypted on the disk using the SGX secrecy sealing/unsealing
functionality. Note that they are complementary to Lprov.

8 CONCLUSION

Attack provenance is a persistent effort in enterprise networks. We
develop and present a novel provenance-oriented library tracing
system Lprov which enforces library tracing on top of existing
syscall logging based provenance tracking approaches. Lprov is
lightweight and efficient, offering much better support for heavy-
threaded programs than existing tools such as ltrace. With the dy-
namic library call stack, the provenance of implicit library function
execution is revealed and correlated to system events. The fine-
grained provenance on library functions facilitates the locating and
defense of malicious libraries (e.g. Linux Ebury). In experiments,
our system prototype can precisely identifies the provenance inside
malicious libraries with highly competitive overhead.
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A APPENDIX

A.1 Kernel Event Tracing

A syscall interrupt (INT 80) traps program execution into kernel
mode and the kernel module steps in at this moment. Linux offers
several convenient and stable tracing facilities in kernel, LSM [11]
(Linux security module), Tracepoints [13] and KProbes [8, 9] to
register customized kernel event handlers. Specifically, LSM is of-
ten applied to implement MAC (mandatory access control) around
kernel objects such as inode. It operates at a finer granularity than
syscalls, which can incur additional overhead when a syscall ac-
cesses an object more than once, and miss customized syscall events
introduced by unit partition in BEEP and Protracer [44, 48]. Trace-
point is a lightweight kernel tracing infrastructure which is adopted
by many high-performance tracing tools such as Linux perf and
audit logging. Unlike LSM, tracepoint allows tracing kernel work
flows at different granularities (either object or function) through
pre-defined tracing events. It statically embeds global event-tracing
placeholders into kernel source code and users can then register
effective probe functions on those tracepoint instances. Comple-
mentary to tracepoint, kprobe is a dynamic tracing infrastructure
for kernel debugging. Among the three techniques, kprobe has
the finest kernel tracing granularity since it provides the interface
which can insert callbacks at any kernel-space instruction address,
however, as a result of its purely dynamic design operating on
software breakpoints, it has higher overhead than tracepoint. To
this end, we select tracepoint as the underlying event handling
mechanism to provide the workaround for syscall tracing inside
the kernel module.

A.2 Log Analysis Algorithm

(1) 2462, 0, 0, SYS_R, 15 (g.g.g.g:43), NULL, (sys_read, libc: read)

(2) 2462, 0, 0, MEM_MAP, 13 (/tmp/xjKHVFG2A), O_RDWR, (sys_mmap, libc: mmap)

(3) 2462, 0, 0, MEM_W, NULL, 0x401570, NULL

(4) 15834, 0, 0, SYS_R, 7 (/etc/hosts), NULL, (sys_read, libc: read)

(5) 2462, 0, 1, MEM_R, NULL, 0x401570, NULL

(6) 2462, 0, 1, SYS_PROC, 4972, NULL, (sys_fork, libc:fork)

(7) 15834, 0, 0, SYS_R, 9 (h.h.h.h:80), NULL, (sys_read, libc: read)

(8) 2462, 0, 2, SYS_R, 17 (k.k.k.k:43), NULL, (sys_read, libc: read)

(9) 4972, 0, 0, SYS_R, 4 (~/trojan), (sys_write, libc:write)

(1) 2462, 0, 0, SYS_R, 15 (g.g.g.g:43), NULL, (sys_read, libc: read)

(2) 2462, 0, 0, MEM_MAP, 13 (/tmp/xjKHVFG2A), O_RDWR, (sys_mmap, libc: mmap)

(3) 2462, 0, 0, MEM_W, NULL, 0x401570, NULL

(4) 15834, 0, 0, SYS_R, 7 (/etc/hosts), NULL, (sys_read, libc: read)

(5) 2462, 0, 1, MEM_R, NULL, 0x401570, NULL

(6) 2462, 0, 1, SYS_PROC, 4972, NULL, (sys_fork, libc:fork)

(7) 15834, 0, 0, SYS_R, 9 (h.h.h.h:80), NULL, (sys_read, libc: read)

(8) 2462, 0, 2, SYS_R, 17 (k.k.k.k:43), NULL, (sys_read, libc: read)

(9) 4972, 0, 0, SYS_R, 4 (~/trojan), (sys_write, libc:write)

libc:
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Figure 7: Log analysis example. Log entries are in Lprov log

format event = {pide ,uide ,uinste , typee ,obje ,parae , lstacke }

Algorithm 1: Lprov Log Analysis Algorithm
Input :Loдr ev - Lprov log in reverse event order

:ob jt - designated tracking object
Output :Graph - Lprov provenance graph
Def. :Object - set of objects causally related to ob jt

:event =
{pide , uide , uinste , typee , ob je , parae , lstacke } - a
Lprov event in Loдr ev
:pid - process id
:uid, uinst - unit id and unit instance
: typee ∈
{SYS_R/SYS_W, SYS_PROC, MEM_R/MEM_W, MEM_PERM, MEM_MAP}
- event type
:ob je - system object in an event
:parae - event parameter
: lstacke - libcall stack including the syscall
:Memory[pid ] - set of memory use instances in pid
:r el [u] - whether unit u is causally related to ob jt
:edдe = (ob ja, ob jb, lstack ) - a directed causality edge
from ob ja to ob jb interconnected by lstack

Init. :Object ← {ob jt }
:Graph ← Φ
:Memory[pid ] ← Φ
:r el [u] ← False

1 foreach event ∈ Loдr ev do

2 unit ← (pide , uide , uinste )
3 if typee ∈ {SYS_W, SYS_PROC, MEM_PERM} ∧ ob je ∈ Object

then

4 Graph ← Graph ∪ {edдe(pid, ob je , lstacke )}
5 Object ← Object ∪ {pide }
6 r el [unit ] ← T rue
7 end

8 if typee == SYS_R ∧ r el [unit ] == T rue then

9 Graph ← Graph ∪ {edдe(ob je , pid, lstacke )}
10 Object ← Object ∪ {ob je }
11 end

12 if typee == MEM_R ∧ r el [unit ] == T rue then

13 Memory[pid ] ← Memory[pid ] ∪ {parae }
14 end

15 if typee == MEM_W ∧ parae ∈ Memory[pid ] then
16 Memory[pid ] ← Memory[pid ] − {parae }
17 r el [unit ] ← T rue
18 end

19 if typee == MEM_MAP then
20 if parae ∈ {RDONLY, RDWR} ∧ r el [unit ] == T rue then

21 Graph ← Graph ∪ {edдe(ob je , pid, lstacke )}
22 Object ← Object ∪ {ob je }
23 end

24 if parae ∈ {WRONLY, RDWR} ∧ ob je ∈ Object then
25 Graph ← Graph ∪ {edдe(pid, ob je , lstacke )}
26 Object ← Object ∪ {pide }
27 r el [unit ] ← T rue
28 end

29 end

30 end

Algorithm 1 describes the process of backward tracking in Lprov.
It takes as input the reverse-ordered log and a designated system
object, and then generates a causal graph by correlating system en-
tities in Lprov events. In Algorithm 1, a tuple of pid , uid and uinst
defines a unique runtime process unit (line 2). Lprov has seven
types of event , where SYS_R/SYS_W is the system read/write event
such as socket or file read/write, SYS_PROC is the process creation
event, MEM_R/MEM_W is the memory read/write event used to infer
unit dependence, MEM_PERM is the memory permission event that
makes executable memory pages writable (mprotect and anony-
mous mmap) and MEM_MAP is the non-anonymous memory mapping
event. In a Lprov event , obje is file descriptor for SYS_R/SYS_W and



Table 3: Comparison of storage overhead between Lprov

and ProTracer in a two-week performance experiment

User ProTracer Lprov ProTracer/Lprov
#item(M) size(GB) #item(M) size(GB) item size

A 17 11 59 45 28.8% 24.4%
B 28 16 62 41 45.2% 39.0%
C 14 7 42 26 33.3% 26.9%
D 12 6 33 20 36.4% 30.0%

Avg. 18 10 49 33 36.7% 30.3%

Prog. ProTracer Lprov ProTracer/Lprov
#item(M) size(GB) #item(M) size(GB) item size

httpd 5.3 3.0 13.9 8.3 38.1% 36.1%
proftpd 3.8 2.2 8.3 5.4 45.8% 40.7%
sshd 4.3 2.5 15.4 10.8 27.9% 23.1%
ssh 1.4 0.9 4.1 2.8 34.1% 32.1%

firefox 27.1 15.1 68.0 49.6 39.9% 30.4%
filezilla 1.8 1.0 2.7 1.6 66.7% 62.5%
w3m 0.5 0.3 1.2 0.9 41.7% 33.3%
wget 0.4 0.2 0.8 0.5 50.0% 40.0%
pine 0.3 0.2 1.0 0.8 30.0% 25.0%
vim 3.4 1.9 15.2 11.0 22.4% 17.3%
xpdf 2.0 1.1 6.0 3.9 33.3% 28.2%

MEM_MAP, pid for SYS_PROC, memory section of a module/library for
MEM_PERM and invalid for other event types; parae is the memory
address for MEM_R/MEM_W, file and memory permission (RDONLY,
WRONLY or RDWR) for MEM_MAP, and invalid for other event types;
lstack is the library call stack for each causality edge and it is in-
valid for MEM_R/MEM_W events. Specifically, the algorithm can be
inducted into three causality rules: a process unit has causality to
the tracking object if (1) an event within the unit writes/creates
any system entity that has causality to the tracking object (line 3-7,
line 24-28) or (2) the unit writes a memory chunk which is read by
another unit that has causality to the tracking object (line 12-18);
while a system entity has causality to the tracking object if (3) the
entity is read by an event within a unit that has causality to the
target object (line 8-11, line 20-23). Fig. 7 is a log analysis example,
where the target object trojan is casually correlated to the unit
(pid = 2462,uid = 0,uinst = 0). The forward tracking algorithm is
just the reverse version of Algorithm 1, and hence it is omitted in
discussion.

A.3 Additional Performance Evaluation

We apply the object tainting technique proposed in ProTracer to
BEEP’s logs, performing the comparison of storage overhead be-
tween Lprov and ProTracer. As Table 3 demonstrates, the storage
consumption of ProTracer is 30.3% of Lprov. This is expected due
to the inapplicability of ProTracer’s tainting-based optimizations
in our execution-based library provenance tracking, as discussed
in Section 4.3. We argue that this is a tradeoff between cost and
benefits.
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