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ABSTRACT
Web-based malware equipped with stealthy cloaking and obfusca-
tion techniques is becoming more sophisticated nowadays. In this
paper, we propose J-FORCE, a crash-free forced JavaScript exe-
cution engine to systematically explore possible execution paths
and reveal malicious behaviors in such malware. In particular, J-
FORCE records branch outcomes and mutates them for further ex-
plorations. J-FORCE inspects function parameter values that may
reveal malicious intentions and expose suspicious DOM injections.
We addressed a number of technical challenges encountered. For
instance, we keep track of missing objects and DOM elements, and
create them on demand. To verify the efficacy of our techniques,
we apply J-FORCE to detect Exploit Kit (EK) attacks and malicious
Chrome extensions. We observe that J-FORCE is more effective
compared to the existing tools.
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1. INTRODUCTION
Web-based applications powered by JavaScript are becoming more

widespread, interactive and powerful. In the meanwhile, they are
attractive targets of various attacks. Unfortunately, detecting and
analyzing malicious web apps against diverse combinations of ex-
ploits and evasive techniques is complicated and challenging. Al-
though various detection schemes have been proposed [14, 27, 13],
they still suffer from sophisticated attacks such as cloaking attacks [21,
35, 22].

Both static and dynamic approaches have been applied to detect
JavaScript malware. Static analysis (e.g., [9, 8]) considers multiple
execution paths and usually achieves better code coverage. How-
ever, JavaScript is highly dynamic. Static approach may be impre-
cise and even incapable due to over-approximations and obfusca-
tions. This is a critical limitation since obfuscations have been the
most common practice to hide the real intentions for protections or
malicious reasons. By contrast, dynamic analysis techniques (e.g.,
[16, 32]) execute the program and thus can reveal concrete behav-
iors even in an obfuscated program. However, a downside is that
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they can only cover one concrete execution path in one run and may
be unable to hit the spot that conceals malicious behaviors.

To address the limitations, symbolic and concolic execution based
techniques [32, 31, 33] have also been proposed to analyze JavaScript
programs. While they can generate program inputs and drive the
execution along various feasible paths, due to the limitations of the
constraint solvers, overcoming state explosion and handling com-
plex JavaScript operations (e.g., dynamic type conversions, arith-
metic/string operations) are still open problems, especially for non-
trivial programs built atop various frameworks and other obfus-
cated programs.

In this paper, we propose J-FORCE, a crash-free1 JavaScript forced
execution engine. J-FORCE combines the advantages of static and
dynamic approaches: Similar to dynamic analysis, J-FORCE exe-
cutes the program so that obfuscation is not an obstacle anymore.
To increase the coverage, J-FORCE forces the execution to go along
different paths. In particular, J-FORCE records the outcomes of
branch predicates, mutates them, and explores unvisited paths via
multiple executions. This iterative path exploration process con-
tinues until all possible paths are explored. Hence, J-FORCE can
expose not only malicious code that can only be triggered by con-
ditions uneasily met, but also code blocks that are dynamically cre-
ated and injected. Additionally, J-FORCE further uncovers paths
hidden in event and exception handlers. J-FORCE can detect eva-
sive attacks triggered by non-deterministic events.

We evaluate J-FORCE on 50 real-world exploits in popular EKs [1,
2] and over 12, 000 Chrome extensions. J-FORCE successfully ex-
posed the hidden code of 41 exploits and found that more than 300
Chrome extensions inject advertisements. We also run J-FORCE
on 100 JavaScript samples and measure its code coverage capacity.
The results show that J-FORCE can cover 95% of the code with
2-8x overhead, which is significantly effective than a popular con-
colic execution technique (68% coverage, 10-10, 000x overhead).

In summary, this paper makes the following contributions.
• We propose J-FORCE, a JavaScript forced execution engine

that explores all possible paths to expose hidden malware be-
haviors. J-FORCE records and switches branch outcomes to
explore new paths. J-FORCE unveils function parameter val-
ues to detect malicious intentions and DOM injection attacks.

• We address several technical challenges to avoid crashes dur-
ing the continuous path explorations. For instance, J-FORCE
keeps track of missing objects/DOM nodes and creates them
on demand. J-FORCE can tolerate critical exceptions and
handle infinite loops/recursions.

• We validate the efficacy of J-FORCE through an extensive set
of experiments on real-world exploits and web browser ex-

1In our paper, crash-free is about avoiding or handling JavaScript
exceptions.



<html>
<script>
…

</script>
…
</html>

function FC3d(DzV, lm8H2) {
…
for(HPFY=0;DVz.length>HPFY;HPFY+=8)
... d5+=String.fromCharCode(...)...return 
unescape(d5);}
...
lTZI04 = FC3d(VkpZF,MG6V);eval(lTZI04);

k=document[‘createElement’](‘script’)
…
k[‘text’]=S5SSQ(“AWFRMWtbFnshSQG
IESFJaRB94ZxUBXVMbUeEVXXnddR9Q
GmpXbR9aa....”);
...
d.appendChild(k);

http://bbb.com/shop2.html http://ppp.org/abc.js

http://ggg.net/opq.js

eval

obfuscated

obfuscated

EDXGD= function() {
…
elem.appendChild(script);

}
setTimeout(EDXGD, 10);

Timer handler

Internet

Exploit /
Payload

ieTrue = navigator.userAgent.toLowerCase()
browser = /msie[\/s]d+/i.test(ieTrue)
…
if(browser) {

... 
e.insertBefore(a,b);

}

Figure 1: Stealthy Exploit Kit Attack.

tensions. J-FORCE successfully disclosed the hidden code in
41 exploits and detected more than 300 ad-injecting exten-
sions. Also, we show that J-FORCE can achieve 95% code
coverage and is 2-8x faster than the state-of-the-art on 100
JavaScript samples.

Our work focuses on understanding malicious code that is present
on the client, so server-side cloaking or evasion is out-of-scope.

2. MOTIVATION
Recently, Exploit Kits (EKs) have been favored by cybercrim-

inals to perform web-based attacks. In the last year alone, more
than 14 attacks were reported to CVE2. Since EKs are specially
designed to exploit known browser related defects, such attacks
are highly effective: once a vulnerable client reaches the actual
EK landing page, EK will silently download and install a malware.
Therefore, as a defense, it is critical to identify suspicious EK de-
livery at the first place. Among various delivery vectors, malver-
tising [10, 37] is one of the most dangerous and successful deliv-
ery approaches. In this section, we show a real-world EK deliv-
ery equipped with layered obfuscation and cloaking techniques to
demonstrate our approach.

Fig. 1 presents a carefully designed multi-layer EK attack chain
featured with collaborative cloaking techniques such as code obfus-
cation, dynamically created scripts and evasive paths: (1) The first
obfuscated JS(JavaScript) snippet (http://ppp.org/abc.js)
is delivered to a legitimate website via malvertising. (2) When
it is evaluated during the page loading, it creates a piece of dy-
namic code from strings using eval. (3) The function EDXGD
in the resulting snippet injects code for the next. Interestingly,
EDXGD is injected as an event handler and can only be invoked
when the timeout event is fired. Once evaluated, the second piece
of obfuscated snippet (http://ggg.net/opq.js) will be in-
jected into the DOM tree and executed. (4) As a result, another
dynamic script is created and injected (d.appendChild(k)).
(5) The injected code uses a cloaking method to hide the mali-
cious payload: It first checks if the client browser can be the tar-
get (navigator.userAgent and msie). The hidden code is
executed only if the check result (browser) is true.

Existing Approaches. As two pieces of JavaScript (abc.js and
opq.js) in the chain are obfuscated, static analysis based detec-
tion mechanisms [14, 9, 28, 11] may have difficulties in under-
standing the real semantics and thus are ineffective to handle such
cases. Discovering the execution path that can reveal the final ex-
ploit payload using dynamic approaches is also difficult. Particu-
larly, it requires invocations of event handlers and proper environ-
ment settings (e.g. IE browser), which are conditions not easily
met in general. Symbolic and concolic execution techniques [32,
31, 33] can be used to explore multiple feasible paths. However,

2CVE-2015-3090, CVE-2015-3105, CVE-2015-5122, CVE-2015-1671, CVE-2015-
5119, CVE-2015-5560, CVE-2015-7645, CVE-2015-8651, CVE-2015-8446, CVE-
2016-1019, CVE-2016-1001, CVE-2016-0189, CVE-2016-0034, CVE-2016-4117
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DOM tree
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…

Figure 2: Overview of J-FORCE.

1. <script>   
2.     if (...) {   
3.         btn = document.createElement("button");   
4.         btn.id = "mybutton";   
5.         btn.innerHTML = "Remove";   
6.     } else {   
7.         btn = document.createElement("button");   
8.         btn.id = "mybutton";   
9.         btn.innerHTML = "Skip";   
10.     }   
11.     document.body.appendChild(btn);   
12. </script>   
13. ...   
14. <script>   
15.     x = document.getElementById("mybutton");   
16.     if (...) {...}   
17.     if (...) {...}   
18. </script>   

 Figure 3: Example for per-block path exploration.

it is challenging for such techniques to be scalable to complicated
and large real-world JavaScript programs due to the limitations im-
posed by the underlying constraint solvers.

Unfortunately, as shown in Table 1, existing JavaScript malware
detection tools are not effective to detect such malware in a scalable
way. In particular, while Rozzle [22] performs path explorations on
JavaScript programs to reveal evasive malicious behaviors, it can-
not disclose code in event handlers as its analysis scope is limited
to functions that are explicitly invoked.

J-FORCE Overview. J-FORCE employs a forced execution tech-
nique by switching branch outcomes and invoking event handlers.
As shown in Fig. 2, J-FORCE explores feasible paths and reveals all
the instructions irrespective of branch conditions in multiple con-
crete executions. Also, event and exception handlers are forcibly
invoked without emulating the events. By doing so, J-FORCE is
able to reach and expose malicious logic that can only be triggered
by a particular combination of events and inputs. Moreover, J-
FORCE is dynamic analysis. Hence, it can handle obfuscations and
disclose concrete function parameter values, which could further
reveal malware behaviors (e.g., identifying eval content).

3. DESIGN OF J-FORCE
In this section, we present the details of J-FORCE. We first

discuss the J-FORCE execution model. Then we describe how J-
FORCE explores multiple execution paths.

3.1 J-Force Execution Model
The execution model of J-FORCE is designed based on the de-

fault page rendering model.

3.1.1 Per-block Exploration
The default page rendering order drives the execution of J-FORCE.

Once a <script> block is evaluated, J-FORCE starts exploring



Table 1: The comparison of the approaches for JavaScript malware detection.
Name Category Obfuscation Path Explora- State Explo- Events Exceptions Target ScopeResilient tion Support sion Free Covered Covered
WebEval [18] Static & Dynamic Analysis X 7 X 7 7

Chrome ExtensionExpector [37] Dyanamic Analysis X 7 X X 7
Hulk [20] Static & Dynamic Analysis X 7 X X 7
Revolver [21] Static & Dynamic Analysis X 7 X 7 7

Generic
JSAND [13] Dynamic Analysis X 7 X 7 7
Nozzle [27] Dynamic Analysis X 7 X 7 7
Zozzle [14] Static Analysis 7 7 N/A 7 7
Rozzle [22] Dynamic (Symbolic Value) X X 7 7 7

J-FORCE Forced Execution X X X X X Generic

all other possible paths within the block. In particular, when J-
FORCE reaches the exit of the block, it goes back and explores
another unvisited path. Consider the example in Fig. 3. J-FORCE
explores the two paths in lines 1-12 before exploring the paths in
the next <script> block in 14-18.

An alternative is to consider all code blocks as one giant block
and explore paths in the “merged” block. However, it can hardly
scale because the total number of paths to be explored is the product
of the path numbers in every individual block, whereas in the per-
block strategy it is the sum of the number of paths in every block.

Please note that an external JS script is essentially a single code
block and hence can be explored in a similar way.

3.1.2 Handling Inter-Block Dependencies
One challenge brought by the per-block design is how to con-

sider the dependences across code blocks. For example, in Fig. 3, a
same button is set with different texts (Remove and Skip) along
different paths in lines 2-11. Without storing states along different
execution paths, our analysis may miss critical states that may lead
to malicious behavior. For instance, if we explore the path 7-9 af-
ter 2-5. “Remove” will be overwritten by “Skip” and becomes
invisible to blocks afterwards.

While exploring paths globally is the ideal solution, it is unscal-
able and impractical. Instead, we develop the following technique
based on the observation that most inter-block dependences are
caused by DOM objects. Since it is valid to have multiple ele-
ments with the same name or id on the DOM tree, J-FORCE allows
any DOM injections along any paths. Also, J-FORCE intercepts
relevant DOM APIs (e.g. getElementById) and injects choice
points, which are conceptually equivalent to switch-case state-
ments. So, each execution returns a DOM element (with the same
id or name) until all such elements are explored. For example, in
Fig. 3, both buttons will be appended to the DOM tree. It fur-
ther inserts a choice point at line 15. As a result, totally 8 paths
are explored in the second block, where 4 are corresponding to the
“Remove” button and the remaining 4 are for the “Skip” button.

In theory, dependencies caused by global variables are handled in
the same way. However, it is very expensive to do so for all global
variables. Given our focuses are stealthy behaviors that are usu-
ally based on string operations, we selectively support global string
variables. Furthermore, J-FORCE also overwrites container inter-
faces (e.g., hashmap) to support inserting multiple strings with the
same key to a global container. String attributes of DOM objects
are handled similarly, where choice points are injected to access the
different versions.

3.1.3 Handling Event Handlers
Some event handlers, such as onload, are automatically executed

when the corresponding DOM objects are loaded or created. The
exploration is driven by the rendering procedure. However, another

1. function __necdel()    
2. {   
3.     var script = document.createElement("script");   
4.     //...   
5.     script.src = "http: //xxx.xxxxxxx.net/";   
6.     var protocol = ("https:" == document.location.protocol: "http://");   
7.    
8.     var head = document.getElementsByTagName("head")[0];   
9.     if ((protocol === "http://") && head)   
10.         head.appendChild(script);   
11. }   
12. window.addEventListener("mouseover", __necdel, false);   

 Figure 4: Code injection upon “mouseover” event.

set of handlers can only be triggered by user and timer events. In
our experience, JS malware extensively leverages event handling
mechanism to lay out the attack agenda. Fig. 4 shows a simplified
step in the malware delivery chain. __necdel() is registered as
an event handler of mouseover event. The script for the next
step will not be injected unless the event is triggered. Indeed, we
observed many malicious payloads only get triggered by a series
carefully organized user or timer events to escape from being de-
tected by honey-client systems or other automatic detection tools.
Therefore, exploring event handlers is critical.

J-FORCE remembers functions registered as event handlers and
forces them to be executed. In particular, after the exploration of
the current code block, handlers that are registered during explo-
ration are executed, without requiring the triggering events. The
individual handlers are considered as code blocks that are explored
separately. To the best of our knowledge, most existing honey-
client systems and JS symbolic execution engines (e.g, [31]) do not
emulate events. Hence, they cannot reveal sophisticated handler-
related behaviors.

3.1.4 Handling Asynchronous Execution
Currently, J-FORCE does not focus on exposing race conditions

caused by asynchronizations [29, 38]. In fact, most JS races are
transient [24]. In our experience, we have not observed any real-
world malicious attacks leveraging race conditions due to its non-
deterministic and unreliable nature.

J-FORCE respects browser’s decision on which block runs first.
Note that JavaScript execution is single threaded and the execution
of a code block cannot be interrupted. J-FORCE only steps in when
a block is being evaluated for the purpose of per-block code explo-
ration.

3.1.5 Handling Dynamic Code Evaluation
JavaScript is highly dynamic. Malicious JS snippets can be dy-

namically created from strings. For example, a common practice is
to create a <script> element, specify its source and attach it to
the DOM tree. eval() is another way to run dynamic code.

J-FORCE admits all code injections found along different paths
during the path exploration. Consequently, they will be explored
like other code on the DOM tree. Some code snippets may be added



to DOM elements that have already been rendered and explored by
J-FORCE. For such cases, J-FORCE restarts the rendering proce-
dure but only explores the uncovered injected snippets.

For code dynamically evaluated by functions like eval, J-FORCE
explores the code snippet concealed in the function parameter, as a
part of the parent code block exploration. Note that J-FORCE pro-
vides versioning support for strings so that different but concrete
parameter values produced by previous logic will be explored.

3.2 Path Exploration
J-FORCE explores different paths in multiple runs. In each run,

it looks for opportunities where mutating a predicate leads to un-
explored instructions. Once found, it forces the execution to cover
them in future iterations. It repeats this procedure until all instruc-
tions are covered. We designed two exploration strategies depend-
ing on the needs.

• L-path executes each instruction at least once with linear
time complexity. Exploring all distinct paths is not its prior-
ity. For JS malware analysis, this strategy is sufficient in most
cases as malicious behaviors are usually hidden in blocks.

• E-path aims at exploring all possible execution paths with
exponential time complexity. We observed that only a few
advanced malware examples requires the E-path strategy.

Algorithm 1 Path Exploration.
Input: I: JavaScript instructions in a program

// σ is a list of forced predicates. A predicate p is represented as a tuple
// (psrc, pdst) that specifies the source src and forced target dst

1: function FORCEDEXEC(σ)
2: σe ← [ ] // σe is a list of executed predicates
3: p← POP_FRONT( σ )
4: for each i in I do
5: if i is a condition branch instruction then
6: if isrc ≡ psrc then // isrc: source address of i
7: idst← pdst // specify the instruction to be executed
8: p← POP_FRONT( σ )
9: else

10: E ← E ∪ {idst}
11: σe ← σe · (isrc, idst)
12: Execute the instruction i
13: return σe

14: function PATHEXPLORATION( )
15: E ← {} // explored instructions
16: W ← {FORCEDEXEC(nil)} // initial execution. W : worklist
17: whileW 6= ∅ do
18: σ′ ← POP(W )
19: σt← nil
20: for each p in σ′ do
21: if HASANYUNEXPLOREDTARGET(E , p) then
22: σ′

t ← σt· SWITCHINGTARGET(p)
23: W ← W∪ {FORCEDEXEC(σ′

t)}
24: else
25: σt← σt · p

Algorithm 1 shows the details of the path exploration approach.
Function FORCEDEXEC explains how to drive the execution to a
desired branch. In particular, it takes a forced execution schema
σ as the input. σ is a list of tuple (psrc, pdst), where psrc is the
address of a predicate p and pdst is the forced target. Intuitively, it
specifies the next step (pdst) when J-FORCE sees p. The logic of
forced execution is specified in the loop starting at line 4 interpreted
by JS engine. If a rerouting schema is provided for the current
branching instruction i (line 6), J-FORCE forces the execution to
take the branch specified in the scheme at line 7. Otherwise, the
instruction will be executed normally.

Function PATHEXPLORATION is the top-level driver. It main-
tains a worklist W, which is a set of forced execution schemes. E
is a set of covered instructions. J-FORCE uses it to discover unex-

1. obj = new XMLHttpRequest();  // D1
2. //... 
3. if (cond) 
4.   obj = null;  // D2   
5. if (obj == null) 
6.   return; 
7. obj.send(); 

Line # Defines
1 D1
2 D1
3 D1
4 D2
5 D1 | D2
6 D1 | D2
7 D1 | D2

 

 
Execution #1 Execution #2 Value (obj) 

1. obj := XMLHttpRequest     
2. ----   
3. (taken)     
4. obj := null     
5. (taken)   
6. return   
7. ----   

1. obj := XMLHttpRequest
2. ----   
3. (taken)     
4. obj := null     
5. (untaken)   
6. ----   
7. obj.send (crash!)   

1. XMLHttpRequest  
2. XMLHttpRequest 
3. XMLHttpRequest 
4. null     
5. null   
6. null   
7. null   

 

 
 

Figure 5: Handling crashes caused by missing objects.

plored instructions. At line 16, J-FORCE starts the execution with
no forced execution scheme and just runs the whole program nor-
mally. The purpose of this step is to obtain a list of predicates on
one path. Then, J-FORCE can develop a new scheme by mutating
a predicate at line 22 to execute uncovered instructions (line 21).
The driver repeats this until the worklist is empty, meaning that
no further opportunities can be discovered. Although the explo-
ration algorithm stems from L-path strategy, E-path takes the same
phase except at line 21. Particularly, at the given branch, instead of
checking if its feasible targets are disclosed, E-path makes sure the
branch is followed along with two different targets.

4. CRASH-FREE FORCED EXECUTION
As J-FORCE ignores path conditions, a program may execute

along an infeasible path and crash. In this section, we describe the
challenges and our solutions to avoid crashing.

4.1 Missing Object
Fig. 5 shows a typical example of the crashes caused by missing

objects. At line 1, variable obj is initialized to an Ajax object.
Suppose the true branches of the two predicates (line 3 and 5) are
taken in the first run. Since line 7 is not explored, in the second run,
the predicate at line 5 is mutated. However, as obj has been set to
null at line 4, the program will crash at line 7.

To handle this, when resolving an object accessed, J-FORCE first
identifies a set of candidates, which can be collected using an ex-
isting data flow analysis. In addition, candidates without correct
properties and types are filtered out. As shown in the defines table
in Fig. 5, at line 7, D1 and D2 are possible objects to be accessed.
However, only D1 has the correct field send. Therefore, J-FORCE
selects D1 and continues the forced execution.

4.2 Handling Missing DOM Elements
Another common kind of crashes in forced execution is caused

by missing DOM elements. Our strategy is to create and insert
the missing ones to the DOM tree on demand. Note that simply
creating a new DOM element on each access without appending it
to the right place will not work in practice. If multiple accesses to
a same element yield different newly created objects, the program
semantics will be violated. However, as DOM elements can be
selected in various ways (e.g., by id, XPath, etc.), the challenge lies
in how to put the new elements in the right place.

If the selection is by element id, name, tag and class, the solution
is straightforward. Particularly, as shown in Algorithm 2, if the el-
ement returned by the original selector is invalid (line 4), J-FORCE
creates a new one and inserts it to the children list of the current
element (line 8-9).

Handling XPath selectors is more challenging. An XPath may be
fully specified (e.g., “/A/B/C” means C is an immediate child of
B and B is a child of A) or partially specified (e.g., “/A//C” means



1. if (window.attachEvent) {   
2.   window.attachEvent("onload", window["load" + initialize]);  // ...   
3. } else {    
4.   window.addEventListener("load", initialize, false);  // ...    
5. }   

 Figure 6: Browser-compatibility exception in forced execution.

all C objects with an ancestor A). An XPath may also contain wild-
cards to select all elements satisfying the filtering conditions (e.g.,
“/A[@exchange]” selects A with attribute exchange). In a
forced run, an XPath selector may be partially broken due to miss-
ing elements. Consider selector “p · s”. The prefix p correctly
locate a DOM element. However, the suffix s fails because there
is no such elements. To handle this issue, J-FORCE identifies the
longest p that can locate a valid element o, creates element(s) cor-
responding to s and make them a subtree of o.

Function PathRecognizer() in Algorithm 2 describes the
procedure. Particularly, at line 13, an XPath p is split by delimiters
(i.e., ‘/’ and ‘//’). Each delimited segment τ contains three parts:
(1) the delimiter τp (“”, “/” or “//”); (2) the id τe (e.g., A), and
(3) the filter τa (e.g., [@exchange]).

If τp is “//”, GetOffSpring is invoked to identify the off-
springs of the current object θ that matches τe and τa (line 22).
Otherwise, GetChildren is called to get the direct children of
the current object that matches τe and τa (line 16). If no element is
found (line 19), a new element corresponding to τe and τa is cre-
ated as a child of θ (line 20). The above procedure continues until
the original selector becomes valid.

An important design choice made is that the elements created
during one (forced) run are retained for later executions. This avoids
creating duplicated elements in multiple executions and the DOM
tree grows monotonically. In practice, we found the size of a DOM
tree usually increases slowly and gradually becomes stable.

Algorithm 2 Handle missing DOM elements.
Input: σ ∈ {id, name, nametag , nameclass, XPath}

1: function CHECKANDINSERTION(σ)
2: E← GETELEMENTS(σ)
3: τ ← GETCURRNETOBJECT()
4: if ¬ ISVALID(E) then
5: if σ ∈ XPath then
6: return PATHRECOGNIZER(σ)
7: else
8: τ .INSERT(CREATEELEMENT(σ))
9: E← GETELEMENTS(σ)

10: returnE
11: function PATHRECOGNIZER(p)
12: θ← the current node
13: p′← PARTITIONBYDELIMITER(p)
14: for each segment (τp, τe, τa) in p′ do //τp:delimiter, τe:identifier, τa:filter
15: if τp ≡ “//” then
16: E← θ.GETOFFSPRINGS(τe , τa)
17: else /*τp ≡ ‘/’ ∨ τp is empty*/
18: E← θ.GETCHILDREN(τe , τa)
19: if ¬ ISVALID(E) then
20: θ.INSERT(CREATEELEMENT(τe , τa))
21: E← θ.GETCHILDREN(τe , τa)
22: θ←E
23: returnE

4.3 Handling Exception
Being able to recover from crashes caused by exceptions is one

of the most important features of J-FORCE for robustness. As the
program may be forced to run on an infeasible path, various excep-
tions may occur. For example, Fig. 6 shows a common practice to
make the program compatible with different browsers. J-FORCE
will execute line 2 without considering its predicate and thus trig-
gers an exception. Since the corresponding handler is absent, the
forced execution will be interrupted and terminated.

1. if (...) {     
2.   var script = document.createElement("script");     
3.   script.src = "http://.../a.js";     
4.   document.body.appendChild(script);     
5. } else {     
6.   window.location = "http://.../b.html";  /* page redirection */   
7. }  

 
Figure 7: An example of page redirections.

To avoid terminations due to such exceptions, J-FORCE captures
all unhandled exceptions using a top-level exception handler in the
global scope and resumes the interrupted execution from the near-
est legacy function by unwinding the stack. In addition, to preserve
the semantics of the exception triggering statement, J-FORCE in-
cludes a set of selective legacy APIs, which will be invoked based
on the context. For instance, in Fig. 6, the attachEvent is redi-
rected to the addEventListener so that the original program
semantics are preserved. Algorithm 3 explains the details:

(a) Exceptions that can be handled by the original program: J-
FORCE remembers the triggering location (line 3) and then
explores the corresponding catch block. The code after the
triggering point will be covered in a later iteration.

(b) Uncaught exceptions due to missing handlers: They will be
taken care of by the top-level handler inserted by J-FORCE
(lines 6,7-12).

(c) Exception handlers present but no exception was triggered
in one run. In our experience, a catch block is a high-
value target for exploration, as malware authors often place
their malicious code here for cloaking [22, 21]. These han-
dlers hence should be explored regardless the exception oc-
currences: J-FORCE employs the same strategy for (a). J-
FORCE remembers the block entry point and explores it later.

Algorithm 3 Exception Handling.
1: function EXCEPTIONOCCURENCE(σ)
2: if ISCOUGHT(σ) then
3: SAVEEXCEPTIONLOC(σ)
4: return // Allow to run catch block
5: else
6: return TOPLEVELHANDLER(σ)

7: function TOPLEVELHANDLER(σ)
8: t← FINDLEGACYFUNC(σ)
9: if ISVALID(t) then

10: return CALL(t)
11: else
12: return and allow to run the following.

4.4 Page Redirection
Page redirections are commonly used to send visitors to a new

destination by setting the location attribute of the window ob-
ject in JavaScript. A page redirection cancels the current page
rendering procedure (including the JavaScript execution and re-
source downloading) and hence interrupts J-FORCE’s code explo-
ration strategy (J-FORCE explores paths in multiple runs).

Fig. 7 shows an example. The true branch of the if state-
ment injects a new <script> element while the else branch
redirects visitors to b.html. Consider the following forced exe-
cution. In the 1st run, the true branch is covered and a new piece
of JavaScript in a.js will be downloaded and executed (lines 2-
4). (a.js). As explained in the forced execution model, J-FORCE
explores the current code block before processing the next block.
Hence, in the next iteration, it explores the else branch before ex-
ecuting a.js. However, since the page redirection happens at line
6, the forced execution will be interrupted so that a.js will not be
explored. In fact, if there are other uncovered paths/blocks in the
same page, they will not be explored due to the page redirection.



Our solution is to load the target page in a separate frame so that
J-FORCE can continue exploring the current page. Since frames
are isolated from each other, the effect of loading the destination
page in a frame is functionally equivalent to a page redirection. In
this particular example, J-FORCE loads b.html in an iframe
and thus is able to explore the behaviors in a.js.

4.5 Infinite Loop and Recursion
J-FORCE may suffer from infinite loops or endless recursions

because it ignores the loop and recursion conditions. To handle
this issue, we set an upper bound on the number of times a loop or
a recursive function can be invoked. For loops, J-FORCE monitors
the loop executions and makes sure that they do not go beyond
the threshold. Otherwise, J-FORCE forces the execution to skip the
loop. Similarly, for recursions, we use a threshold to limit recursion
depth. We make sure that whenever new stack frame is created, the
stack depth is smaller than the threshold.

5. EVALUATION
J-FORCE is implemented atop WebKit-r171233 with GTK+ port.

Our evaluation consists of two experiments. The first one is a sys-
tematic study on 50 EK samples and 12, 132 Chrome extensions
to see if J-FORCE is able to detect (malicious) behaviors covered
by sophisticated cloaking and obfuscation techniques. Also, since
being able to explore more code is important, in the second exper-
iment, we further quantify J-FORCE’s performance by measuring
the coverage and the overhead on 100 real-world JavaScript pro-
grams. All experiments are performed on a machine with an Intel
Core i7 3.40 GHz CPU and 12 GB RAM running Ubuntu 14.04
LTS.

5.1 Detecting Suspicious Hidden Behaviors

5.1.1 Detecting Obfuscations and Evasions in EKs
We have collected 50 EK samples from various sources [1, 2],

and classified them based on the underlying EKs, namely Angler,
RIG, Nuclear, Magnitude, SweetOrange. Although different, we
observed they all share similar mechanisms listed as follows:

• Obfuscation. Obfuscation conceals program functionalities
using string operations to make detecting malware challeng-
ing. In EK, obfuscation technique is used more than once
throughout multiple layers of code injection.

• Evasion. To minimize the possibility of being caught (e.g.,
by honey-pot based approaches), EK only invokes the ma-
licious logic when it satisfies certain conditions. Specifi-
cally, EK usually scans visitors’ system (e.g. the signatures
of browsers, extensions, etc.) before moving on to the next
stage. An example is shown in Fig. 1 in Sec. 2.

• Exploiting Vulnerabilities. EK is designed to exploit partic-
ular vulnerabilities in browsers or add-ons by hijacking the
control flow and elevating permissions. The typical targets of
such exploitation are Adobe Flash, MS Silverlight and Java
runtime as well as browsers themselves.

• Payload Delivery. As the last step, a malicious binary is
downloaded and executed without user’s consent. Ransomware [7]
and click fraud [6] are two common examples.

As J-FORCE focuses on detecting malicious JavaScript behav-
iors, only the JavaScript parts (obfuscation and evasion) are
included for evaluation. Analyzing non-JavaScript code, such as
exploiting vulnerabilities in the web browser or plug-ins, is beyond
the scope of this paper. The results of experiments on 50 EK sam-
ples (10 for each EK type) are presented in Table 2. It shows the

Exploit Kits # of # of samples whose obfuscations / evasions can be handled
samples Native run Rozzle [22] WebEval [18] J-FORCE

Angler 10 2 / 1 7 / 6 3 / 3 10 / 10
RIG 10 5 / 0 7 / 2 5 / 0 10 / 10

Nuclear 10 3 / 0 6 / 2 3 / 1 10 / 7
Magnitude 10 6 / 2 10 / 6 6 / 4 10 / 10

SweetOrange 10 2 / 0 8 / 4 4 / 4 10 / 6

Table 2: Comparing detection techniques on EKs.

# of Ad-injecting # of Info. leakage
Total Ajax Script Injection Total Ajax Script Injection

Hulk [20] 195 29 166 14 9 5
Expector [37] 187 28 159 9 6 3
WebEval [18] 158 15 143 8 5 3

J-FORCE 322 45 277 30 21 9

Table 3: The analysis result of 12,132 Chrome extensions.

number of the samples can be handled by each tool, in terms of ob-
fuscation handled and evasion passed. Since we know the ground
truth about deobfuscation, counting successful de-obfuscations is
straightforward. For evasions, if the exploitation entry point (e.g.
<object>) is reached, we say the evasion is detected.

The results show that J-FORCE is able to handle more obfusca-
tions and evasions than others, hence can expose more hidden ma-
licious behaviors in EK attacks. In particular, J-FORCE is signifi-
cantly effective in detecting evasions. While J-FORCE outperforms
other techniques, it misses a few evasions in Nuclear and SweetOr-
ange. We manually inspected these cases and found that they use
Visual Basic (VB) scripts which are not currently supported by J-
FORCE. However, our design is general and can be implemented
on VB scripts too.

5.1.2 Detecting Ads Injections in Chrome Extensions
Browser extensions are commonly used nowadays to enhance

user experience and thus becoming a target of adversaries. Several
recent work [20, 18, 37] have been proposed to analyze extensions.
In this section, we show how J-FORCE can effectively disclose sus-
picious behaviors in Chrome extensions.

We crawled and obtained 12,132 extensions from Chrome Web
Store [5] in July 2016. The analysis is done offline. As the JavaScript
APIs used in extensions are slightly different from those in web
applications, we enhance J-FORCE to support such Chrome APIs
(e.g., chrome.browserAction.onClicked). In this exper-
iment, we are particularly interested in detecting ad-injections and
information leaks. We also compare with recent work on Chrome
extension analysis [20, 18, 37].

Table 3 summarizes the experiment results. J-FORCE detected
322 extensions that inject advertisement, where 277 deliver ad con-
tents using script injections and the remaining ones bring in ads via
Ajax. Comparing to other techniques, J-FORCE is able to find 195
more ad-injecting extensions, which confirms its effectiveness of
handling cloaking and fingerprinting techniques. In addition, J-
FORCE detected 30 extensions that send out sensitive information
such as passwords and cookies via Ajax, while other techniques
can detect at most 14 of them.

Table 4 presents the statistics of the Chrome extension execution
analysis. We report the minimum, average and maximum number
of JavaScript IR instructions, script injections, Ajax requests, eval
function invocations, event handlers and page redirections observed
in exploring one extension. The results show that J-FORCE can
exercise more instructions and discover more behaviors than the
native run. We also report the number of runs required by J-FORCE
to cover all instructions (using the L-path search strategy explained



JavaScript IR Script Injections Ajax Eval Event Handlers Redirections Handled Crashes # of Runs
avg min max avg min max avg min max avg min max avg min max avg min max avg min max avg min max

J-FORCE 1, 478 10 31, 248 0.71 0 28 0.21 0 5 0.27 0 10 1.57 0 19 0.15 0 5 2.74 0 117 11.32 1 609

Native run 406 10 14, 151 0.46 0 13 0.03 0 2 0.15 0 8 0.85 0 12 0.02 0 2 N/A N/A

Table 4: The statistics of Chrome extensions analysis

in Sec. 3.2). We show the number of potential crashes caused by
the forced execution. We observed 2.74 crashes per extension on
average and they are mostly caused by missing objects and DOM
elements. All of them are handled correctly using the approach
discussed in Sec. 4.

5.1.3 Case Study - Anti-adblocker
Unlike traditional programs, web applications have various ex-

ternal dependences. For example, they can navigate the execution
depending on browsers environment settings. They can download
and load different external JavaScript on the fly from third parties
during executions. Therefore, although it is possible mutating in-
put values may change the execution paths, in general, it is highly
nontrivial or even infeasible for an automatic exploration tool to
satisfy the triggering conditions of the execution environment and
third party scripts. In this case study, we showcase a real-world
anti-adblocker [4] to demonstrate how J-FORCE bypasses sophisti-
cated predicates and thus can be helpful for understanding stealthy
program behaviors.

Ad-blocker (e.g., [3]) is a piece of software that allows clients to
roam the web without encountering any Ads. In particular, it uti-
lizes network control and in-page manipulation to help users block
advertisements loaded from ad-network. As many content publish-
ers make their primary legitimate income from Ads, there are grow-
ing demands for delivering ads even the ad-blockers are running in
client browsers. As a result, anti-adblockers have been developed
and deployed by publishers on their websites. Anti-adblockers are
usually scripts delivered by publishers to detect if adblockers are
enabled in the client browsers. Once found, it either hides the con-
tent or delivers the ads by circumventing the ads filters.

Fig. 8 presents a simplified version of a popular anti-adblocker
BlockAdblock [4], where the arrows denote important call edges. It
first detects if an adblocker is enabled on the client-side and loads
the real ads contents that are delivered as an image. In particular,
line 1 includes an external script (“advertising.js”). If it can be
successfully loaded, variable __haz will be set to false. If an
adblocker presents, the script will not be blocked and the value of
__haz remains undefined. Therefore, BlockAdblock can tell if
an adblocker is running by checking the value of __haz. At line 4,
it invokes function __ac() and defines the function to be invoked
for the next step. Depending on the presence of an adblocker, it will
invoke a function (defined in lines 13-23) or do nothing. In function
__dec, it loads an image, where its URL is specified at line 3 and
further transformed at line 4. Interestingly, instead of displaying the
image, it uses this image as a circumvention of ad-blocking rules
and loads the raw data of the images. At line 21, function __cb
is invoked, which creates a div element and displays the HTML
hidden in the image at line 27.

It is highly nontrivial for static analysis based approaches to pre-
cisely analyze such complicated call relations, as it requires ad-
vanced alias and string analysis (e.g., the operations in line 4 and
20). More importantly, as the ads contents are actually hidden in
an image, they may not even be in the analysis scope. As a result, it
is very unlikely that the static analysis can handle such cases. An-
other option is to actually run the program. However, one important
triggering condition of the secret loading procedure is that the ex-

ternal script included at line 1 must be blocked by an adblocker,
which is highly dependent on the execution environment. If the
adblocker has not been configured correctly or the URL of the ex-
ternal resource is not on the blacklist anymore, dynamic analysis
cannot unveil the stealthy operations either.

By contrast, J-FORCE decouples the dependencies on the en-
vironment and hence allows us to effectively and deterministically
observe unusual behaviors. On the left hand side of Fig. 8, we com-
pare the control flow graphs that highlight the differences between
J-FORCE and dynamic analysis based approaches. J-FORCE is able
to explore both paths while the dynamic analysis only covers one
path. As such, J-FORCE is able to discover the real ads contents by
forced execution without requiring complicated system settings to
actually trigger the logic in traditional dynamic approaches.

More importantly, through J-FORCE, we can uncover the actual
values of function parameters (the right side of Fig. 8) and track
the origin of suspicious values. With such capabilities (especially
the hidden contents that can only be obtained dynamically), it is
straightforward to conclude the ads are included in the image file.

5.2 Efficiency
As described in Sec. 3.2, J-FORCE can be configured to im-

prove coverage on instructions (the L-path strategy) or paths (the
E-path strategy). To measure its efficiency, we extracted 100 exam-
ples (from Alexa.com) and evaluate J-FORCE on these real-world
JavaScript programs. We compare J-FORCE with Jalangi, a con-
colic JavaScript execution engine [32], which is one of the closest
alternate approaches available at present.

Fig. 9 presents the code coverage comparison results. The num-
ber of branches of the benchmarks varies from 109 to 1, 200. In
Fig.9, the JavaScript benchmarks on the X-axis are sorted by the
branch count in ascending order. The result shows that, on aver-
age, J-FORCE is able to cover 95% of the code (the same result
for both exploration strategies), which is significantly more than
Jalangi (less than 68%). We found that the main reason for the im-
provement is that the concolic execution based approach does not
explore the code in event and timer handlers. In addition, Jalangi
often fails to handle complex arithmetic operations such as division
and modulo. By contrast, J-FORCE does not suffer from such lim-
itation and is able to expand its analysis scope to event and excep-
tion handlers. Besides, J-FORCE does not miss conditional blocks
as our exploration technique is designed to cover both branches by
switching branch outcomes. We also manually inspect the scenar-
ios where J-FORCE fails to cover all instructions. We found that
this is mainly due to coding errors in the sample JavaScript pro-
grams.

Beside the coverage, we also measure the runtime performance
of J-FORCE. Fig. 10 summarizes the comparison result of the over-
heads collected during the coverage test. For each approach, the
overhead is normalized to the native run. The result shows that the
overhead of J-FORCE is 2-8x (2-300x for E-path) whereas Jalangi
has much higher overhead 10-10, 000x. Observe that such a differ-
ence is caused by the fact that concolic execution based approaches
may not scale well with the number of branches, showing expo-
nentially increasing overhead. Particularly, generating and solving
path constraints is more expensive than mutating branch outcomes.



1  <script src=“http://.../advertising.js” ..></script> // “var __haz = false;”
2  ... 
3  __durl = ‘//.../hallon-p12065a-:r:.gif’; 
4  __ac(function(){ __dec(__durl.replace(“:r:”, __s(5, 12)), __cb); 
5  }); 

…
6  function __ac(f) { 
7    …
8    if (typeof __haz === ‘undefined’) 
9        return f();

10     ...
11    return;
12  }

J-Force

13  function __dec(src, callback) {
14     i = new Image();
15     i.onload = function() {
16       …
17     t.drawImage(i, 0, 0);
18        b = __p24(t.getImageData(...).data);
19        for (...)
20            if (b[x]) s+= str.fromCharCode(b[x]);
21        callback(s);
22      }
23     i.src = src;

24   __cb = function (s) {
25      …
26      _new = d.createElement(‘div’);
27      _new.innerHTML = s.html;
28      k.insertBefore(_new, k);
29     …

if (typeof …)

…

return f();

Native
exec

if (typeof …)

…

return f();
callback(s) 
s: “..html: <div class=\fram

\></div>\n<divclass=\k3rwp
j9jwhynv\>\n<div class=\gb
qfwapg\>\n<span class=\g
bqfwaabemdey ….</div>”

J-Force

Figure 8: Analyzing Anti-Adblocker using J-FORCE.
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Figure 9: Coverage of J-FORCE in comparison with native run
and concolic execution.0 20 40 60 80 100
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Figure 10: Performance overhead of J-FORCE in comparison
with concolic execution.

6. RELATED WORK
Multiple Path Execution. The concept of forced execution was
employed in previous researches [26, 15, 36, 19]. Although the
concept has been applied in various domains, such as native binary
programs [26], mobile apps [15, 19], and identifying kernel rootk-
its [36], our work is the first to propose the forced execution en-
gine for JavaScript to the best of our knowledge. Furthermore, the
challenges that J-FORCE solves, such as handling missing object-
s/DOM, handling event/exception handlers and more (Sec. 4) are
unique to JavaScript and are not proposed (or solved) by previous
work. Rozzle [22] also places emphasis on analyzing self-revealing
program behaviors. It explores multiple execution paths with sin-
gle execution. However, it is done via a different approach which
is based on symbolic values. More importantly, they have limited
support for program faults and exceptions handling. By contrast,
our tool can explore all feasible paths without being interrupted by
exceptions. Symbolic (or concolic) execution has been applied to
analyze JavaScript based Web applications [32, 31, 33]. Due to
the limitations in underlying constraint solvers, it is challenging to

support dynamic nature and scale to real-world applications built
atop various JavaScript frameworks.
JavaScript Malware. EVILSEED [17] leverages characteristics of
known malicious web pages to discover other likely malicious web
pages including JavaScript. Revolver [21] aims to find JavaScript
malware based on code similarity. In particular, it tries to classify
evasive malware by comparing with a large amount of JavaScript
collected in advance. It heavily resorts to the result of pre-classification
by oracle, and may not be robust against newly crafted malware
(e.g., zero-day exploit). MineSpider [34] extracts URLs from JS
snippets equipped with evasion techniques that performs drive-by
download attacks. It collects execution paths relevant to redirec-
tions using program slicing methods. While it is useful to track
page redirections, it is not able to handle the dynamic remote code
injection using iframe or simple <script> tag. Lekies et al. [23]
show attack methods enabled by the object scoping and dynamic
nature of JavaScript. They investigate a set of high-ranked do-
mains and verify that those are vulnerable to Cross-Site Script In-
clusion(XSSI) attacks. ScriptInspector [39] examines third-party
script injection to restrict accesses to critical resources. This is
achieved by allowing site administrators to establish their own se-
curity policies. WebCapsule [25] records and replays web contents
executions for forensic analysis. It records and all non-deterministic
inputs to the core web rendering engine including user interactions.
RAIL [12] can verify security patches of web applications by rerun-
ning patched web applications with previous buggy inducing inputs
such as exploits. The system can tolerate state divergences caused
by the patches. Unlike the record and replay approaches, J-Force
explores all possible paths to reveal evasive malicious logics which
are difficult to expose.
Browser Extensions. Hulk [20] analyzes Chrome browser exten-
sions and detects malicious (or suspicious) behaviors, such as ad-
injecting and information leak. Expector [37] tries to figure out
the correlation between malvertising and plug-ins. It shows that,
in a condition where a specific extension is working, malvertising
is more likely to appear. WebEval [18] inspects Chrome exten-
sions upon the combination of static and dynamic analysis. In order
to trigger malicious activities, it sets up simulations by recording
complex interactions between web pages and network events. Ob-
serve that though such techniques have their own way to increase
coverage and unveil hidden malicious actions, it would not be suf-
ficient to induce all possible behaviors.



7. DISCUSSION
As our solution aims to expose malware hidden under a certain

program path, detecting data driven attacks is still challenging. Al-
though diverting control flow by the forced execution occasionally
breaks the program semantics, due to the stealthy pattern and con-
ditional nature of the hidden code, we are confident that J-FORCE
is able to disclose most of evasive malware in the wild. Since J-
FORCE is currently designed to detect client-side JavaScript mal-
ware, handling cloaking schemes in the server-side scripts (e.g.
SQL, PHP, etc. [30]) is beyond the scope of this paper.

8. CONCLUSION
In this paper, we proposed J-FORCE, a forced execution engine

for JavaScript to expose hidden and even malicious program behav-
iors. J-FORCE explores all possible execution paths by mutating
the outcomes of branch predicates. We solved multiple technical
challenges and make J-FORCE a practical, robust and crash-free
tool. We validate the efficacy of J-FORCE through an extensive set
of experiments. J-FORCE has been evaluated on 50 exploits of pop-
ular exploit kits and more than 12, 000 Chrome extensions. It suc-
cessfully unveiled the hidden code in 41 exploits and detected more
than 300 Chrome extensions injecting advertisements. The exper-
iments on 100 real-world JavaScript samples show that J-FORCE
is able to achieve 95% code coverage and perform 2-8x better than
existing approaches.
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