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Abstract—Robotic aerial vehicles (RAVs), particularly drones,
are crucial in civil and military sectors. However, researchers
have found that adversaries can inject noise into sensor mea-
surements and cause physical impacts on the RAVs like crashes.
Although identifying such signal injection attacks is essential to
evaluate and improve the robustness of an RAV, it is challenging
to discover them since their impact depends on the RAV’s
physical states and the search space of noise signals and physical
states is vast due to its dynamic nature.

This paper proposes IMUFUZZER, a feedback-driven fuzzing
framework, to automatically test an RAVs system and discover
signal injection attacks. IMUFUZZER generates realistic noise
signals for various inertial measurement unit (IMU) sensors,
and monitors their impact on RAV control to detect mission
failures, leveraging a high-fidelity RAV simulator. To find the
physical states that attacks depend on, IMUFUZZER generates
various mission paths that the RAV will fly through. We develop
a novel feedback mechanism to quantify the resilience of the
RAV against attacks and efficiently guide the fuzzing process
to find signal injection attacks. Using IMUFUZZER, we have
discovered 23 successful signal injection attacks on popular
RAV control software (ArduPilot). We evaluate the correctness
and effectiveness of our feedback-based sensor fuzzing and
demonstrate the feasibility of the discovered attacks through
physical experiments.

I. INTRODUCTION

Robotic vehicles (RAVs), including unmanned aerial, terres-
trial, and marine vehicles, have gained significant traction in
both the commercial and military sectors. These vehicles are
crucial in various tasks, such as delivery, search, and rescue
missions. RAVs use sensor data to continuously adjust their
physical states. In particular, inertial measurement unit (IMU)
sensors, such as accelerometers and gyroscopes, are essential
for real-time velocity and angular rate measurements.

Accurate IMU measurements are critical for RAV navi-
gation. However, IMU sensors are susceptible to physical
noise attacks. Prior studies have demonstrated signal injection
attacks on accelerometers [1], [2], [3] and gyroscopes [4], [1],
[3], where adversaries use acoustic noise to resonate micro-
electromechanical system (MEMS) IMU sensors and remotely
manipulate their outputs. By exploiting these noise signals,
attackers can influence RAV sensor readings [2], [1] and even
cause crashes [3], [4], [5], despite the presence of sensor noise
filters [6] and recovery mechanisms [7]. While other sensors,

such as GPS and magnetometer, are also susceptible to noise-
based attacks, this work focuses on signal injection attacks
against IMU sensors as they constitute the most fundamental
sensing component for RAV operation.

Although prior studies have investigated the feasibility of
signal injection attacks [1], [2], [3], [4], their effectiveness
in causing RAV malfunctions remains inconsistent, as their
impact highly depends on the physical states of the RAV. For
instance, certain signal injection attacks may lead to crashes
only during specific missions (when the RAV enters particular
physical states), but not in others. Therefore, accurately iden-
tifying signal injection attacks necessitates the joint analysis
of both the injected signals and corresponding physical states,
a challenge that has not yet been fully addressed.

In this paper, we investigate the exploitability of signal
injection attacks by uncovering the relationships between
signal injection attacks, the characteristics of IMU sensors,
and the RAV system’s physical states (e.g., position, velocity,
acceleration, and roll/pitch/yaw attitude). This problem is
particularly challenging due to the existence of unexplored
ranges of effective noise signals, which dynamically change
based on the RAV’s physical states. The vast space of possible
signals and physical states makes it difficult to systematically
identify effective signal injection attacks. Existing fuzzing
approaches for RAVs (e.g., RVFuzzer [8]) primarily target
invalid control parameters or static system states [9], and do
not explore mutations of sensor inputs. Similarly, RVProber [5]
focuses on mutating raw sensor values of known attacks, with
the goal of assessing their robustness, rather than discovering
new vulnerabilities.

To the best of our knowledge, no existing fuzzing frame-
work systematically explores new signal injection attacks, each
of which may be effective under different physical states. To
address this gap, we present IMUFUZZER, a novel fuzzing
framework designed to systematically explore a wide range of
effective sensor noise patterns (i.e., signal injection attacks)
targeting the IMU sensors of RAV systems across various
physical states. When successfully triggered, these attacks can
cause severe malfunctions, such as mission-critical deviations
or crashes, preventing the RAV from completing its mission.

IMUFUZZER is a feedback-guided fuzzer that automati-
cally discovers signal injection attacks without requiring prior



knowledge of the RAV’s software stack. It adopts a black-box
approach, operating without any domain-specific information
of the RAV’s control software and does not require instrumen-
tation or modifications to that software. To ensure safety and
enable repeatability, IMUFUZZER leverages a high-fidelity
RAV simulator [10] to explore the interaction between signal
injection attacks, sensor noise signals, and physical states,
without the risks associated with testing on real vehicles.
Our framework can incorporate physical profiles of real-world
MEMS IMU sensors (when available) and is designed to
identify malicious signals that remain within the physically
plausible bounds of those sensors. It generates candidate noise
signals by mutating the amplitude and frequency of signal
waveforms, guided by formal models of physical sensor behav-
ior [1], [2], [4]. To uncover the physical states that influence
the effectiveness of these signals, IMUFUZZER systematically
mutates the geometric properties of mission paths, such as
distances and angles between waypoints, in three-dimensional
space. These mutations directly affect the RAV’s maneuvers,
enabling the exploration of a diverse range of physical states
in which signal injection attacks may succeed.

To efficiently guide the search process, IMUFUZZER intro-
duces a new metric called resilience score, which quantifies
the impact of a signal injection attack on RAV control. This
score serves as feedback to steer the generation of subsequent
test cases, prompting the creation of mission paths and noise
signals that induce greater control disruption.

Our contributions can be summarized as follows:
• We propose IMUFUZZER, a black-box fuzzing framework

that systematically discovers IMU signal injection attacks by
mutating flight missions to explore diverse physical states
of robotic vehicles.

• We introduce a novel resilience metric to efficiently guide
the fuzzing process and incorporate the physical character-
isics of real-world MEMS IMU sensors to generate realistic
and physically feasible sensor signals.

• We implement and evaluate IMUFUZZER on a widely used
RAV test suite [11], using 6 real IMU sensor profiles. Our
framework discovers 23 unique attacks through software-
in-the-loop (SITL) simulation and validates their feasibility
through physical drone experiments. We publicly release
our code, experimental data, and video records to facilitate
further research [12].

II. BACKGROUND

RAV System and IMU Sensors. Most RAVs operate on a
closed-loop control program that continuously monitors and
adjusts its operation to maintain the physical states to achieve
an assigned mission plan (or mission in short). The control
program uses readings from various sensors to estimate the
current states of the vehicle, including its acceleration, speed,
location, and orientation in the three-dimensional space. Its
goal is to align the current states with the reference states by
controlling the actuators – for example, increasing the throttle
to achieve a higher altitude. The reference states serve as in-
termediate goals that facilitate the transition toward achieving

Residual
Noise

Signal 
Injection

IMU Sensors

Amplifier LPF

Cutoff Frequency

State 
Estimation

Control Program

Digital 
LPF

EKF
Sensor
Fusion

Attitude &
Position 
Control

Physical LPF

Accelerometer

Gyroscope

Digital LPF

Signal
with

Noise

Sensor
Fusion

Physical
Impact

Figure 1: An RAV system under signal injection attack.

the mission states, which are given by the ground control
station (GCS) to represent the mission. The control program
runs continuously to minimize control errors (i.e., deviations)
between the current and reference states, and consequently to
complete the mission.
Signal Injection Attacks. IMU sensors on RAVs are primar-
ily micro-electromechanical system (MEMS) sensors, which
consist of electrical and moving mechanical parts. These
MEMS sensors typically contain a sensing mass suspended
between capacitive plates, which vibrates along different axes
due to the vehicle’s momentum. Vibrations at the sensing
mass’s resonant frequency cause it to oscillate significantly
more, leading to erroneous sensor readings. Thus, an adversary
can exploit these noise signals to displace the sensing mass
and manipulate the sensor values that the control program
reads [1], [2], [4], [3]. As illustrated in Fig. 1, such noise
signals can eventually cause a malfunction of the RAV system
and even crash the vehicle.

Identifying and mitigating signal injection attacks is chal-
lenging since they are data and physical state-dependent,
unlike traditional software bugs that stem from faulty code.
The signal injection attacks manifest as a result of the res-
onant characteristics in the sensor hardware coupled with
the inability of the noise filters to filter out the resulting
disturbances entirely. The impact is exacerbated when the
controllers attempt to compensate for state errors based on
corrupted sensor data.

III. MOTIVATING CHALLENGES

In this section, we outline the key challenges that we face
and our approaches to addressing them to discover the signal
injection attacks while exploring diverse physical states of an
RAV systematically.
• Limitation of Existing Works. Existing fuzzing ap-

proaches for CPS primarily mutate only sensor data [4],
[1], [2], [5] or configuration/high-level commands [13], [8]
without systematically exploring physical state dependen-
cies, incorporating real-world signal profiles, or mission-
level trajectory changes. There is no existing CPS fuzzer
to explore and realize the relationship between injected
sensor signals and the RAV’s corresponding physical states.
This limitation hinders the discovery of state-dependent
vulnerabilities that emerge only under specific physical
conditions or during dynamic transitions. Tab. I summarizes
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Figure 2: Physical experiments to show the distinct impacts of a signal injection attack on an RAV flying three different
missions. The RAV’s flight trajectories (red) show varying impacts of the attack.

the differences in approaches and attack discovery methods
of existing works.

• Attack Impacts and Physical States. We highlight the
challenges of discovering state-dependent attack outcomes
by experimentally showing one of the attacks found by
IMUFUZZER. We perform physical experiments (Fig. 2)
with an RAV to illustrate how the same signal injection
attack can have varying effects on the RAV depending on
the physical states during the attack. We inject the same
malicious acoustic noise into the RAV’s gyroscope using
a ultrasonic speaker and waveform generator while flying
three different missions: a hover mission (Fig. 2(a)), a linear
mission (Fig. 2(b)), and a state-rich mission (Fig. 2(c)). The
RAV completes the first two missions with minor errors but
crashes during the state-rich mission. This demonstrates our
key idea, to generate missions that systematically explore
diverse physical states. Prior works typically use fixed
missions and manual testing, focusing only on the feasibility
of known attacks.

• Large and Dynamic Search Space. A major challenge in
discovering signal injection attacks lies in the vast space of
physical-state-to-noise-signal combinations. Their amplitude
and frequency parameters determine the nature of the acous-
tic signals, and their effects on IMU sensors depend heavily
on the RAV’s physical states. This makes the effective signal
space both large and dynamically state-dependent, rendering
manual or random exploration infeasible. To address this,
we employ feedback-driven fuzzing, a technique not used
in prior sensor attack discovery efforts (Tab. I). Instead of
brute-force search, we introduce a novel feedback metric,
resilience score, which quantifies the RAV’s control per-
formance during missions by monitoring physical states,
enabling efficient guided exploration.

IV. ATTACK MODEL AND ASSUMPTIONS

We consider an acoustic signal injection attack model,
where an external adversary (armed with knowledge of the
target MEMS IMU sensor’s characteristics) injects resonant-
frequency acoustic signals to compromise sensor readings.
This attack does not require physical access to the RAV itself.

Instead, the adversary can operate externally using off-the-
shelf equipment such as an acoustic emitter, directional horn,
amplifier, and function generator to emit continuous, targeted
sound waves. This reflects well-established and successfully
demonstrated attacks in prior works [4], [1], [3], [2].

Additionally, we assume the adversary cannot modify the
vehicle’s hardware, software, or internal control logic and has
no access to the internal system states. The RAV is assumed
to follow a known or similar flight path to those identified by
IMUFUZZER, though the attack’s success is not contingent on
an exact trajectory. Instead, a successful signal injection attack
depends on the RAV entering specific physical states (e.g.,
combinations of position, velocity, and orientation) where the
injected signal becomes effective. Importantly, these attack
windows (i.e., ranges of physical states in which the vehicle is
susceptible to the injected signal) are shown to be significantly
wide (§VII-D). As a result, the same malicious signal can be
effective across multiple distinct missions that induce similar
state transitions, increasing the practicality and generalizability
of the attack.

V. DESIGN

IMUFUZZER is a black-box feedback-guided fuzzer de-
signed to explore signal injection attacks successfully causing
mission failure, with respect to various physical states of an
RAV. We model the discovery of signal injection attacks as
a feedback-driven search problem over a joint input space of
missions and sensor signals. The objective of IMUFUZZER is
to identify (M∗, s∗) such that:

min
M,s

ρ(M, s)

Let M ∈ M denote a mission, defined as a sequence of
waypoints whose geometric parameters determine the physical
state transitions of the RAV. Let s(t;A,F, ϕ) represent a time-
dependent signal injected into an IMU sensor, parameterized
by amplitude A, frequency F , and optional phase ϕ. For each
execution of a mission under signal injection, we define a
resilience score ρ(M, s) that quantifies the control error as
feedback to guide the fuzzer efficiently.



Table I: Comparison of different RAV sensor attack discovery techniques.

Project Attack Method Attack Target Attack Discovery Physical State Exploration Fuzzing Feedback

RVProber [5] Signal Injection, GPS
Spoofing

Accel, Gyro,
GPS, . . .

Stress Testing with Known
Attacks Fixed Missions N/A

Son et al. [4] Signal Injection Gyro Manual Physical Exp. Hover Mission Only N/A
Trippel et al. [2] Signal Injection Accel Manual Physical Exp. No (Sensor Board) N/A

Tu et al. [1] Signal Injection Accel, Gyro Manual Physical Exp. No (Sensor Board) N/A
Jeong et al. [3] Signal Injection Accel, Gyro Semi-automated Testing Fixed Missions N/A
IMUFUZZER Signal Injection Accel, Gyro Feedback-guided Fuzzing Mission Generation Resilience Score
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Figure 3: IMUFUZZER Architecture.

A. Overview

Fig. 3 presents the architecture of IMUFUZZER. The fuzzer
takes two key inputs: a seed mission and a sensor profile.
A seed mission defines an initial flight path as a sequence
of waypoints, each with its corresponding distance and angle.
The sensor profile specifies physical displacement bounds of a
real-world IMU sensor under acoustic injection attack. These
guide the fuzzer to explore diverse physical states and generate
physically plausible signal inputs.

Using these inputs, the mission mutator (§V-B) generates
multiple variants of the mission by altering the geometric
properties of the mission paths to induce varied physical states.
sensor input generator (§V-C) generates a realistic range
of noise signals modeled after studying the physical char-
acteristics of real-world MEMS IMU sensor(s) when under
acoustic injection attack and injects them into the RAV’s raw
sensor inputs. With the mutated missions and sensor inputs,
the test executor (§V-D) flies the RAV in a high-fidelity SITL
simulator to find signal injection attacks that cause critical
mission failure. While the RAV is carrying out the mission
under attack, the mission failure detector (§V-E) examines
logs from the test executor to identify any mission failure. The
resilience quantifier (§V-F) computes the overall resilience
of the RAV against the injected signal by aggregating control
errors across physical state controllers. This quantified score
serves as feedback in the fuzzing loop, effectively acting as an
optimization oracle that guides IMUFUZZER to generate new
missions and noise signals with progressively higher potential
to destabilize RAV control.
Sensor Profile. IMUFUZZER leverages a real-world sensor
profile to constrain the amplitude range of injected signals,
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Figure 4: Mission mutation to explore diverse physical states.

ensuring that discovered attacks remain physically realistic.
Each profile is empirically derived for a specific MEMS
IMU sensor (e.g., ±80m/s2 for MPU-6050) and guides the
fuzzer toward identifying feasible and impactful attacks within
realistic displacement boundaries, thereby avoiding the gen-
eration of physically implausible signals. A sensor profile
can be created through a semi-automated physical experiment,
which varies acoustic inputs to determine the sensor’s resonant
frequency and amplitude ranges (e.g., Tab. II).

B. Mission Mutator

To explore various physical states and identify those related
to signal injection attacks, IMUFUZZER creates diverse muta-
tions of the seed mission by leveraging factors associated with
RAV movements: (1) position changes in the 3D space, (2)
speed and acceleration, (3) orientation (roll, pitch, and yaw),
and (4) timing of physical state changes (i.e., when and how
often the vehicle has to turn). Fig. 4 illustrates our mission
mutation. We identify the following mission parameters that
can be mutated, allowing our approach to conduct black-box
testing without altering the control program.
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A mission M is represented as a tuple of n waypoints:

M =
(
{wi}ni=0, {di}n−1

i=0 , {ai}
n−2
i=0

)
where wi are waypoint coordinates, di the distances between
consecutive waypoints, and ai the turn angles.

Using resilience-based feedback, IMUFUZZER mutates the
seed mission in three sequential phases. After each mutation
phase, the variant with the lowest resilience score is selected
as the new seed.
(1) Distance Mutation: Given the seed mission, the mis-
sion mutator generates a (pre-configured) number of mutated
missions by altering the distances (di) between consecutive
waypoints. The new distances are randomly selected within
a user-specified range. During the distance mutation phase,
the mutator keeps the angle and altitude of the waypoints
unchanged.
(2) Angle Mutation: Given the selected mission in the dis-
tance mutation, the angles between the pairs of the mission’s
waypoints are mutated. The mutator then adjusts turn (XY-
plane) and climb/descent (Z-axis) angles to induce roll, yaw,
and pitch changes.
(3) Mission Path Generation: Using the set of distances
and angles from the mutated mission, IMUFUZZER generates
a concrete mission path in 3D waypoint coordinates (i.e.,
GPS coordinates and altitude) by leveraging the Haversine
formula [14], which is widely used in navigation. The coor-
dinates are subsequently sent to the test executor for mission
execution. The mission path generation takes the same amount
of time to generate various distances and angles, regardless
of the length of the mission, ensuring scalability, because
we mutate all the distances and angles of the mission path
as a whole instead of mutating a single segment at a time.
Furthermore, our design leverages the simulator configurations
to speed up the execution of each test case and increase the
fuzzing efficiency.

C. Sensor Input Generator

The sensor input generator injects noise signals into the
raw sensor values generated by the high-fidelity simulator.
Fig. 5 illustrates this process using a sensor profile. We
make a small modification to the simulator to inject noise
signals into the original sensor values, adjusting several signal
injection parameters that we define. A selected mission from
the mission mutator is used (§V-B) to search the acoustic
signal space. Once the signal injection parameters are selected,
IMUFUZZER performs the attack persistently throughout the
mission without changing the parameters after the RAV takes

off. Resonant noise signals impacting IMU sensors can be
represented as sine waves propagating through the air as
vibrations.

Eq. 1 models the signal injection representing the relation-
ship between the benign and injected sensor signals.

ŝ(t) = s(t) +A ∗ sin(2πFt+ ϕ) (1)

A sine wave has an amplitude (A), which determines the
magnitude of its vibration, and a frequency (F ), which dic-
tates the rate at which it propagates. The phase (ϕ) of the
wave determines the wave’s relative position in time (t). The
(attacked) output sensor value (ŝ(t)) is a combination of the
original sensor value (s(t)) and the sine wave.

Since the phase only shifts the sine wave temporally with-
out altering its shape, we primarily explore amplitude and
frequency, as they have the most impact. We first focus
on searching the frequency space and then exploring the
amplitude space because we observe that the amplitude space
is highly dependent on the specific frequency of the sine wave.

IMUFUZZER performs the frequency and amplitude mu-
tation using resilience feedback to infer which combination
of physical states and malicious acoustic signals (

∑
(s(t))) is

more likely to yield mission failure as follows.
(1) Frequency Selection: The sensor input generator employs
a two-phase search over the resonant frequency range (e.g.,
0–52 kHz), guided by resilience scores. In phase one, it tests
frequencies at coarse intervals (e.g., 2.5 kHz) with random am-
plitudes, selecting the frequency yielding the lowest resilience.
Phase two refines the search in a narrow window (e.g., ±5
kHz) around the selected frequency using finer steps (e.g.,
100 Hz). This two-phase search strategy efficiently converges
on frequencies that most significantly destabilize the RAV.
(2) Amplitude Search: Given the frequency selected in
the previous phase, IMUFUZZER searches amplitude val-
ues within a sensor-specific physical range [Amin, Amax],
representing feasible displacement magnitudes. The search
begins at Amin and incrementally increases in steps (user-
configurable) until Amax. This helps uncover subtle attacks
that only manifest under certain physical states, where injected
signals may be benign in some cases and destabilizing in
others.

Our search strategy prioritizes frequency because it is the
dominant factor in triggering resonance-based IMU attacks.
Amplitude is explored only after frequency since its effective
range is narrower and its influence is minimal without reso-
nance. During the frequency search, we allow amplitude to
vary randomly within sensor bounds to avoid biasing toward
ineffective combinations, while keeping the search primarily
frequency-driven. This sequential approach balances attack
discovery efficiency with practical fuzzing time constraints.

D. Test Executor

The test executor manages the control program, GCS, and
the SITL simulator. It features a test bridge that facilitates
communication and coordination among them.



Test Bridge. The test bridge seamlessly connects the control
program and GCS with the simulator. Given a mutated mission
path and signal injection parameters as input, it creates a
mission plan and transmits the signal injection parameters to
the simulator.
Mission Execution and Logging. The GCS issues commands
to the control program to load the mission plan and initiate
the mission. During this mission, the test executor records
the communication between the control program and GCS
to monitor mission status and physical states for resilience
quantification.
SITL Simulator. IMUFUZZER leverages a high-fidelity
SITL simulator widely used in the drone industry to conduct
missions on an RAV for testing. It also provides detailed
feedback on how the system responds to various inputs and
conditions, which allows IMUFUZZER to analyze the potential
physical implications of signal injection attacks.

E. Mission Failure Detector

IMUFUZZER continuously monitors the mission status and
physical states of the RAV in real-time. via communication
channels and logs. Upon detecting the end of a mission,
the success or failure of the mission can be determined
by analyzing the collected logs. Specifically, IMUFUZZER
categorizes the outcome of a mission based on the following
criteria.
• Completion: The RAV completes the mission successfully

despite signal injection, without triggering any significant
errors.

• Fail-safe: The RAV triggers a built-in fail-safe (e.g., max
altitude limit or EKF error threshold) and aborts the mission
by landing or returning home.

• Crash: If a signal injection attack successfully destabilizes
RAV movements and goes undetected by the fail-safe mech-
anism, it may crash the vehicle.

• Deviation: A mission deviation (D(M)) occurs if at any
time the RAV’s actual position deviates from its planned
trajectory beyond a user-configurable threshold.

• Timeout: A timeout occurs when the RAV fails to reach a
new waypoint in its current mission (M ) within a configured
time window due to the signal injection attack. Formally, if
tlast is the timestamp of the last reached waypoint and tnow
is the current time, we define:

T(M) ⇐⇒ (tnow − tlast) > Tmax

The overall mission failure condition is defined as:

Failure = Crash ∨D(M) ∨ T(M)

F. Resilience Quantifier

Injected noise signals cause cumulative errors in an RAV’s
position, velocity, acceleration, and orientation controllers,
potentially leading to mission failures. Quantifying such con-
trol instability is crucial for guiding IMUFUZZER efficiently
toward impactful signal injection attacks since not all errors

Algorithm 1: Resilience-guided fuzzing scheme.
Input : M – Seed mission, (Amin, Amax) – Amplitude search

range, (Fmin, Fmax) – Frequency search range, C – Max
iterations, Astep – Amplitude step size.

Output: mf – Final mission, Ff – Final frequency, ρ – Resilience
score.

1 foreach M ∈ get_seed(), F , A do
2 fuzz(M,F,A);

3 procedure fuzz(M,F,A):
/* Resilience-guided mission mutation */

4 foreach param ∈M do
5 ρlowest ← None;
6 for 1 to C do
7 m′ ← mutate(param);
8 states← test_execute(m′, F,A);
9 ρ← resilience_calc(states);

10 if failure_detect(states) and ρ < ρlowest then
11 mf ← m′; ρlowest ← ρ;
12 save_failure_logs(states,m′, F,A);

/* Resilience-guided frequency selection */
13 ρlowest ← None;
14 for 1 to C do
15 F ′ ← search(Fmin, Fmax);
16 states← test_execute(mf , F

′, A);
17 ρ← resilience_calc(states);
18 if failure_detect(states) and ρ < ρlowest then
19 Ff ← F ′; ρlowest ← ρ;
20 save_failure_logs(states,mf , F

′, A);

/* Amplitude search w/ selected frequency */
21 for A′ ∈ range(Amin, Amax, Astep) do
22 states← test_execute(mf , Ff , A

′);
23 if failure_detect(states) then
24 save_failure_logs(states,mf , Ff , A

′);

would result in a crash or mission failure. Thus, we propose
a resilience score (ρ) metric:

ρ = 1/mean({e(t1), ... , e(tn)}) (2)

e(t) =

∫ t+w

t

mean({|x(s)− r(s)|, |m(s)− r(s)|})2ds (3)

Here x(s), r(s), and m(s) is the current, reference, and
mission states of any given controller, respectively. We design
the function e(t) to evaluate the Integral Squared Error
(ISE [15]), a well-known metric in the field of control systems.
The mission state corresponds to the physical state required
to complete the mission; the reference state serves as an
intermediate set point used by the control program to guide
the RAV’s current state toward mission completion. Errors are
collected within a sliding time window w, capturing transient
and persistent deviations. The resilience quantifier uses the
collected logs of physical states to compute a resilience
score after each test execution, which in turn reflects the
performance of the RAV. The resilience score acts as a fitness
function guiding IMUFUZZER efficiently towards inputs that
significantly destabilize the RAV (§VII-C).
Resilience-guided Fuzzing Scheme. Alg. 1 presents the
pseudo-code for the feedback-driven fuzzing process of



IMUFUZZER. At line 7, given the mission path of a seed mis-
sion (M ), it first mutates the mission path for each parameter
(Mp) by randomly choosing the distances and angles. For each
mutation, the test executor executes the mission and performs
a signal injection attack on the RAV (line 8). The resilience
score (ρ) is calculated (line 9) after each test execution and
used as the optimization feedback. On detecting a mission
failure (line 10), IMUFUZZER prioritizes inputs that yield
the lowest resilience (line 11), treating them as high-impact
seeds to further mutate in the next search stages. The logs of
the failed missions are recorded (line 12) irrespective of the
resilience score. Similarly, the resilience score is used during
the two-phase frequency selection phase.

VI. IMPLEMENTATION

IMUFUZZER is implemented in approximately 2.6K lines
of Python and 470 lines of C++ code. We modified the
SITL simulator for ArduPilot [10] for noise signal injection,
and utilized MAVLink [16] and its open-source APIs [17]
to control and monitor the communication between control
program and GCS [18], [19], [20]. The in-flight logs of
ArduPilot are used to monitor physical state changes and
compute resilience score. Such logs are commonly available
in open-source RAV control systems [21], [22].
Extensibility. IMUFUZZER can also be implemented using
other SITL simulators [23], [24] with a little effort because
it only requires a small modification (less than 470 lines) to
update the IMU sensor values when they are generated by the
simulator. Moreover, it does not require any modification to
the control program to test since it only relies on the external
communication between the program and GCS, and logs that
RAV control programs commonly produce.

VII. EVALUATION

In this section, we present a series of experiments designed
to address the following research questions (RQs).
• RQ1: How effective is IMUFUZZER in discovering signal

injection attacks? (§VII-A)
• RQ2: What are the characteristics of the discovered signal

injection attacks? (§VII-B)
• RQ3: How effective is the proposed resilience score metric

in guiding the fuzzing process? (§VII-C)
• RQ4: How feasible are the discovered attacks when exe-

cuted in real-world mission scenarios? (§VII-D)
Experimental Setup. We evaluate IMUFUZZER on a desktop
machine running Ubuntu 22.04.1 LTS, powered by a 16-core
Intel Core i7-10700 CPU, 48 GB DRAM, and a GeForce RTX
2060 GPU. Using IMUFUZZER, we test ArduCopter v4.5.0,
the latest version of ArduPilot for quadcopter RAVs at the
time of this work. We use the sensor profiles of 6 MEMS
IMU sensors (3 accelerometers and 3 gyroscopes) to discover
signal injection attacks, as shown in Tab. II. For physical ex-
periments, we construct an attack device using an SDG1032X
waveform generator [25], a K3118 digital amplifier [26], and
an ultrasonic speaker to emit sine wave-based acoustic noise.
The target RAV is a custom-built quadcopter equipped with a

Table II: Sensor profiles of the IMU sensors used in our
experiments. The sensor value displacement values are in
m/s2 for the accelerometers and deg/s for the gyroscopes.

Sensor Amp.
(V)

Freq.
(KHz)

Displacement
Min Max

A
cc

el
. AXDL345 10.3 3.8 -134.0 53.2

MPU-6050 9.5 5.3 -80.0 80.0
MPU-9250 4.2 20.6 -22.2 -4.3

G
yr

o. L3G4200D 8 8.1 -105.1 105.3
MPU-6050 3.2 26.86 -270.4 260.3
MPU-9250 3.2 27.3 -232.6 247.1

Pixhawk4 controller board [27] running the same ArduCopter
version. The board integrates two IMUs: an ICM-20689 as
the primary and an ICM-20602 as the secondary sensor. We
release the source code of IMUFUZZER, the ArduPilot version
used in our experiments, and video records of the physical
experiments in our code repository [12].

A. Signal Injection Attack Discovery

IMUFUZZER has discovered a total of 23 successful signal
injection attacks on ArduPilot, targeting accelerometer and
gyroscope sensors. Tab. III summarizes the details of the
discovered attacks. We do not include the cases that triggered
the fail-safe landing of the RAV in this number since the
fuzzer has discovered more than 500 such cases. Each attack
we discovered uses a unique spectrum of acoustic signals
(frequency and amplitude range) and physical states generated
by the mission. We manually identified the impacts of the
attacks on the physical states in the controller to confirm that
they do not overlap. Attacks with similar signal spectrums and
physical states are counted as one.

In our experiment, the fuzzer took approximately one hour
to discover the first signal injection attack and eventually
discovered 113 mission failure cases in 24 hours caused by
the 23 attacks. Tab. III shows the following key results.
Signal Injection. We present the range of amplitude (Amp.)
and frequency (Freq.) of the noise signals discovered by
IMUFUZZER for a given physical sensor profile.
Mission. For each signal injection attack discovered, we
perform the attacks on a hovering mission (Hover) and a linear
mission (Linear) to evaluate the significance of exploring
different physical states (§VII-B).
Attack Impact. Our results show that two signal injection
attacks using the identical amplitude and frequency (A3 and
A7) can create distinct attack impacts when their mission paths
differ, clearly showing the dependency between the signal
injection attack and physical states induced by the missions.

The discovered attacks demonstrate IMUFUZZER’s effec-
tiveness in systematically uncovering state-dependent vulnera-
bilities that would be difficult to detect through manual testing
with fixed missions.

B. Signal Injection Attack Analysis

Unlike traditional software vulnerabilities, signal injection
attacks manifest due to multiple factors, not explicitly shown



Table III: Signal injection attacks discovered by IMUFUZZER on accelerometers (top half: A* cases) and gyroscopes (bottom
half: G* cases). Sensor Profile indicates the physical sensor configuration used. Max Control Error measures the maximum
control error between the current and reference state values of the Initially Corrupted Physical State. C and D in the Final
Impact column indicate a crash and severe deviation from the mission path, respectively. We did not have a timeout case
detected although IMUFUZZER can detect it.

#

Signal Injection Mission Attack Impact

Amp. Freq.
(KHz) Sensor Profile Hover Linear

Most
Affected

IMU Axis

Initially
Corrupted

Physical State

Max
Control
Error

Other
Impacted

Physical States

Final
Impact

Time till
Final Impact

(min)
A1 19.75-29.75 20 AXDL345 % ! Accel Y Vel Y 20.9 m/s Pos Y, Yaw C 1.3

A2 19.25-29.50 16 AXDL345 % % Accel Y Vel Y 32.59 m/s Pos Y, Roll C 10.0

A3 9.25-11.00 40 MPU-6050 % ! Accel Y Vel Y 31.38 m/s Pos Y, Yaw C 2.1

A4 13.25-19.25 28 MPU-6050 % % Accel X Vel X 28.07 m/s Pos X, Yaw C 3.4

A5 18.5-23.50 11.2 MPU-6050 % % Accel Z Vel Z 2.27 m/s Pos Z, Roll C 0.1

A6 20.25-28.25 16 AXDL345 % % Accel X Vel X 22.49 m/s Pos X, Pitch C 4.5

A7 10.00-26.75 40 MPU-6050 ! ! Accel X Vel X 43.4 m/s Pos X, Roll C 0.1

A8 17.50-19.50 24 MPU-6050 ! ! Accel X Vel X 25.54 m/s Pos X, Yaw C 3.5

A9 4.25-8.50 52 AXDL345 ! ! Accel Y Vel Y 27.33 m/s Pos Y, Yaw C 2.2

A10 15.00-22.50 28 AXDL345 ! ! Accel Y Vel Y 31.83 m/s Pos Y, Yaw C 2.9

A11 2.75-8.00 44 AXDL345 % % Accel Y Vel Y 35.85 m/s Pos Y, Yaw D 4.0

A12 14.00-29.50 47.2 AXDL345 % ! Accel X Vel X 19.34 m/s Pos X, Yaw D 1.5

G1 13.50-30.00 35.4 MPU-6050 ! ! Gyro X Roll 63.26 degs Pos Y, Vel Y C 0.5

G2 7.25-30.00 48 L3G4200D % % Gyro X Roll 14.28 degs Pos Z, Vel Z C 0.9

G3 9.00-29.00 48 MPU-6050 % % Gyro X Roll 13.01 degs Pos Y, Vel Z C 0.8

G4 7.25-30.00 40 L3G4200D % % Gyro X Roll 13.54 degs Pos Y, Vel Y C 1.3

G5 20.25-29.75 23.8 L3G4200D % % Gyro Y Pitch 42.04 degs Pos Y, Vel Y C 1.7

G6 11.00-17.00 6.4 MPU-9250 ! ! Gyro Y Pitch 25.59 degs Pos X, Vel X C 0.2

G7 27.25-29.75 15.8 MPU-9250 % % Gyro Y Pitch 73.94 degs Pos Y, Vel Y C 2.3

G8 22.50-28.75 47.8 MPU-6050 % % Gyro X Roll 56.43 degs Pos Y, Vel Y C 3.8

G9 17.50-29.75 23.9 MPU-9250 % % Gyro X Roll 50.72 degs Pos X, Vel X C 1.2

G10 22.25-30.00 8.3 MPU-6050 ! ! Gyro X Roll 35.77 degs Pos Y, Vel Y D 5.3

G11 17.00-18.50 39.8 MPU-9250 % % Gyro Y Pitch 50.71 degs Pos Y, Vel Y D 3.8

on the control program. First, the inherent resonant charac-
teristics of the MEMS IMU sensor hardware enable acoustic
injection attacks. Second, various noise filters in the control
program (e.g., LPFs) and state estimators like EKF fail to
effectively remove/suppress the resonant noises. These noises
propagate through the controllers, leading to physical state
errors that keep increasing over time. We have manually
analyzed the signal injection attacks and identified the key
factors that caused the mission failure, examining the impact
of the attacks on RAV control.
Accelerometer Attacks (A1-12). These attacks introduce
faults in linear acceleration measurements, corrupting the
RAV’s internal velocity estimation. The severity and nature
of the disruption depend on the mission’s trajectory. For
missions with sustained translation along a particular axis
(e.g., A4, A6–A8, A12 for X-axis; A1, A3, A11 for Y-axis),
injected perturbations on the corresponding IMU axis cause
compounding velocity errors. This results in overshooting or
undershooting at the turns, ultimately leading to deviation
from the trajectory or collision. For example, in case A3
the RAV significantly overshoots the turns, deviating from its

intended mission path, and crash (Fig. 6). Manual analysis
identified the Y-axis velocity controller as the root cause,
where residual noise distorted accelerometer readings, causing
errors in velocity estimation (Fig. 6(b)). Eventually, the accu-
mulated control errors force the RAV to deviate irrecoverably,
crashing approximately 752 meters from the intended landing
point. Altitude-sensitive missions (e.g., A5) are especially
fragile since Z-axis perturbations can trigger premature thrust
corrections leading to crashes.
Gyroscope Attacks (G1-11). Displacements in the attacked
gyroscope values affect the estimation of the RAV’s angular
positions across all three axes, similar to accelerometer attacks.
However, corrupted yaw (Z-axis) is not a primary cause of
mission failure in our experiments, as the control program
periodically corrects yaw using GPS, rendering these errors
less impactful. We instead observe differences in how roll and
pitch corruption affect the RAV. In missions requiring signif-
icant roll changes (G1–G4, G8–G10), injected displacements
caused the RAV to roll in the wrong direction or overshoot
the intended roll angle. For example, case G9 illustrates
the gradual accumulation of control errors, which eventually
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Figure 6: Attack analysis of case A3.
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Figure 7: Control errors in roll angle of case G9.

results in a crash. Upon analysis, we discovered the root cause
to be the roll controller, which accumulated significant errors
upon reaching a waypoint that required a significant change
in altitude. At the start of the mission, the initial digression of
the roll error, as shown in Fig. 7, is only up to ≈20 degrees.
However, these control errors spiked after the altitude change
at waypoint #8 (WP #8), leading to an error of up to 50.72
degrees on the roll controller.

In some cases (G4, G8), the RAV attempts to recover but
lacks sufficient thrust to stabilize its orientation, leading to
crashes. Pitch (Y-axis angle) directly affects velocity control:
pitching forward increases forward thrust, while pitching back-
ward reduces it. In missions with pitch state errors (G5-G7,
G11), this results in impaired velocity regulation and deviation
in flight direction.

In summary, our analysis revealed that signal injection
attacks manifest differently depending on mission trajecto-
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Figure 8: Number of mission failures detected while fuzzing
ArduPilot for 24 hours using the resilience score as feedback
(left) and without any feedback (right). Each configuration is
repeated three times to provide the average numbers.

ries and physical states. By examining their effects on con-
troller states (e.g., velocity, roll, and pitch), we showed that
IMUFUZZER uncovers diverse failure modes that propagate
from corrupted IMU measurements to mission-critical crashes
or deviations.

C. Effectiveness of Resilience Feedback

We evaluated IMUFUZZER’s resilience-guided fuzzing by
running: (1) feedback-guided mutation of IMUFUZZER using
the resilience score and (2) random mutation without any
feedback; in three 24-hour runs each. Missions took 1.5–3
minutes, depending on their length.

As demonstrated in Fig. 8, while only 35 mission failures
were recorded with the random mutation, IMUFUZZER (with
the resilience-guided mutation) identified an average of 113
mission failures, showing an over 2.2x increase in the number
of discovered mission failures. Note that each of the mission
failures is unique, as different variations of the injected signals
and mission paths are used. Thus, no mission failure was
recorded more than once. The results validate the effectiveness
of our resilience score as a feedback metric for guiding
the fuzzer toward impactful signal–mission combinations. By
favoring signal injections and mission parameters with lower
resilience scores, the fuzzer increases the likelihood of uncov-
ering signal injection attacks.

D. Feasibility of Discovered Attacks

We conduct a feasibility analysis and physical experiments
to demonstrate signal injection attacks that IMUFUZZER
discovers are plausible in the real world.
Attack Window Analysis. To evaluate whether the discov-
ered attacks are exploitable under realistic flight conditions,
we analyze how different mission-level parameters affect their
success. We show that the physical states resulting from
the missions IMUFUZZER generated, have significantly large
attack windows for an attacker to perform the signal injection
attacks. Tab. IV presents our evaluation of the feasibility of
exploiting the cases discovered by IMUFUZZER. We analyze
post-mission logs for each of the signal injection attacks in
Tab. III and identify mission attributes that can enable a signal
injection attack. We begin by identifying the specific segment
of each mission where the RAV’s physical state changes



Table IV: Enumeration of mission attributes and their attack
window for successful signal injection attacks. Attributes with
∗ can have arbitrary values while those with ⋄ must be within
the attack window.

#
Mission Attributes

Attack Window
Alt. Ang. Dist.

A1 ⋄ ∗ ∗ Any decrease in altitude (e.g., landing)
A2 ⋄ ∗ ∗ Any angle of decent > 10 degs
A3 ∗ ⋄ ∗ Any turn at angle > 20 degs
A4 ∗ ⋄ ∗ Any turn at angle > 60 degs
A5 ∗ ⋄ ∗ Any turn at angle > 80 degs

A6 ⋄ ⋄ ∗ Any turn at angle > 100 degs and any
decrease in altitude

A7 ∗ ∗ ∗ Any physical state change
A8 ∗ ∗ ∗ Any physical state change
A9 ∗ ∗ ∗ Any physical state change

A10 ∗ ∗ ∗ Any physical state change
A11 ∗ ⋄ ∗ Any turn at angle > 10 degs
A12 ∗ ∗ ⋄ Fly distance > 70 meters

G1 ∗ ∗ ∗ Any physical state change
G2 ∗ ⋄ ∗ Any turn at angle > 15 degs
G3 ⋄ ∗ ∗ Any angle of decent > 40 degs
G4 ⋄ ∗ ∗ Any angle of decent > 80 degs
G5 ⋄ ∗ ∗ Any angle of decent > 10 degs
G6 ∗ ∗ ∗ Any physical state change
G7 ⋄ ∗ ∗ Any angle of decent > 25 degs

G8 ⋄ ⋄ ∗ Turn at angle > 40 degs and any angle of
ascent > 60 degs

G9 ⋄ ∗ ∗ Any angle of decent > 45 degs
G10 ⋄ ∗ ∗ Any angle of decent > 50 degs

G11 ⋄ ⋄ ∗ Any turn at angle > 45 degs and any
angle of ascent > 45 degs

significantly at the time of failure. We then perturb individual
attributes by incrementally modifying the mission attributes
to determine whether each attribute independently enables the
attack to succeed.

We describe the three mission attributes as follows:
(1) Angle of Altitude Change (Alt.): The angle of altitude
refers to the vertical angle that a drone has to ascend/descend
to change its altitude, including taking off or landing. We
found that 8 cases can be attributed solely to altitude changes.
Six (G3-5, G7, G9-10) of the cases are targeting the gyroscope,
as unregulated orientation can deter the RAV from maintaining
a stable position to climb or drop in altitude.
(2) Angle of Turns (Ang.): Five of the attacks succeed by
simply adjusting a waypoint turn (XY-axis angle), some as
little as ≈10 degrees (A11, G2) up to 80 degrees (A5). Such
changes fall well within normal mission variability, making
them hard to detect or mitigate.
(3) Distance of Flight (Dist.): Distance refers to the straight-
line flight between waypoints. In general, distance has a
limited influence compared to altitude or turn angles. How-
ever, one case (A12) demonstrates that sustained flight (≈70

meters) under persistent signal injection attack can accumulate
sufficient deviation to cause mission failure.

In summary, we observe that six attacks require no specific
mission condition. In contrast, 14 require at most one mission
attribute to fall within a particular range for successful ex-
ploitation, indicating a high degree of feasibility for real-world
attacks. Notably, these attack windows are easily realizable in
practice, as many can be triggered by natural variations in the
vehicle’s physical state or are effective across a broad range
of mission trajectories.
Physical Experiments. We conduct physical experiments to
demonstrate signal injection attacks that IMUFUZZER discov-
ers are feasible targeting a real drone. Fig. 2 presents snapshots
of the experiments. In these experiments, we perform a signal
injection attack by directing acoustic signals of 27.4 kHz at
the ICM-20689 gyroscope, persistently after the RAV takes
off to perform the three different missions. During the flights,
we visually validate the attack’s impact on the RAV affecting
its stability and angular velocity estimates, and confirm that
a crash was observed under the state-rich mission, matching
our result from SITL-based testing using the sensor profile.
These results substantiate that IMUFUZZER’s findings extend
beyond simulation and reliably manifest under real-world
conditions, with broad attack windows across altitude changes,
turns, and distances.

VIII. RELATED WORK

Sensor Attacks on RVs. While researchers have studied
various RAV sensor attacks comprehensively [28], [29], [30],
[31], Son et al. [4] first proposed using resonant frequencies
of MEMS gyroscopes to launch denial-of-service attacks on
an RAV. Trippel et al. [2] introduce an attack on MEMS
accelerometers leveraging amplitude and phase modulations
built on this knowledge. Tu et al. [1] leverage modulation of
acoustic signals further to achieve fine control of the attacks.
RVProber [5] evaluates known attacks by mutating spoofed
values but does not discover new vulnerabilities. In contrast,
IMUFUZZER aims to discover new sensor attacks through
feedback-guided fuzzing.
Sensor Attack Detection and Recovery. There have been
several efforts to counter sensor attacks, particularly on RAVs.
Choi et al. [32], [33] employ system identification [34] and
control invariants to detect and recover from sensor spoof-
ing attacks. RVFuzzer [8] targets input validation bugs in
command parameters via control-guided fuzzing but does not
explore sensor signal mutations. It does not aim to discover
sensor attacks or mutate sensor inputs. UnRocker [3] analyzes
the sampling jitter as one of the causes of acoustic injection
attacks on IMU sensors and develops a recovery mechanism.
This research establishes a semi-automated testbed to col-
lect benign and malicious sensor values using software- and
hardware-in-the-loop simulators.

IX. DISCUSSION AND FUTURE WORK

Fidelity of Simulation. Although we mitigate discrepancies
between simulated and real-world testing through realistic



sensor profiles and validation in physical drone experiments,
some gap may still remain. Nonetheless, SITL simulators are
the industry’s de facto standard for evaluating RAV systems
prior to field deployment and have been used extensively in
research to enhance RAV safety and security [5], [3], [8], [35],
[36]. Furthermore, our physical experiments, which assess the
fuzzer using real-world IMU sensor properties and validate
the feasibility of the discovered attacks (§VII), confirm the
simulator’s high fidelity. Consequently, high-fidelity SITL
simulation provides the safest and most practical approach
for IMUFUZZER, given the inherent safety and financial risks
of real-world testing. Future work could investigate hybrid
testing setups that integrate SITL with hardware-in-the-loop
or partial physical validation, further reducing the fidelity gap
while preserving safety and cost efficiency.
Mission and Sensor Generalization. Our fuzzing strategy
can be applied to any seed mission, including standardized
test suites. While this paper focuses on IMU sensors, the
framework is extendable to other vulnerable sensors (e.g.,
barometer, magnetometer) with minor modifications to the
input generator.
Feasibility of Physical Attacks. Identifying the resonant
frequencies of a sensor is often non-trivial in practice. In
our experiments, creating accurate sensor profiles required
an extensive frequency sweep. Consequently, an attacker may
need to perform manual testing with commercially available
equipment on the target IMU before they can reliably exploit
the discovered attacks.
Environmental Factors. IMUFUZZER focuses on mutating
missions to explore physical states. By considering environ-
mental factors, such as wind or temperature, future work can
explore more dynamic physical states and weather-dependent
attack scenarios to find new signal injection attacks. Addition-
ally, future research could develop adaptive fuzzing strategies
to prioritize environment–mission combinations most likely to
reveal such vulnerabilities.

X. CONCLUSION

This paper presents IMUFUZZER, a black-box feedback-
driven fuzzing framework for RAVs, aimed at discovering
stateful signal injection attacks that can be exploited by
an adversary targeting IMU sensors. IMUFUZZER identifies
signal injection attacks that cause mission failures only in
specific physical states by (1) automatically mutating seed
missions in a high-fidelity simulator, (2) injecting malicious
sensor input while executing the mutated missions, and (3)
guiding the fuzzer based on the resilience score of the RAV
against the attacks as feedback. Using IMUFUZZER, we have
discovered 23 signal injection attacks using 6 real-world IMU
sensor profiles, that resulted in critical physical impacts. We
further analyze these attacks and evaluate the correctness
and effectiveness of the key components of our framework.
Our experiments show that IMUFUZZER can effectively and
efficiently discover new signal injection attacks on RAVs using
resilience as fuzzing feedback.
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