
DriveFuzz: Discovering Autonomous Driving Bugs through
DrivingQuality-Guided Fuzzing

Seulbae Kim
Georgia Institute of Technology

Atlanta, Georgia, USA
seulbae@gatech.edu

Major Liu
University of Texas at Dallas

Richardson, Texas, USA
major.liu@utdallas.edu

Junghwan “John” Rhee
University of Central Oklahoma

Edmond, Oklahoma, USA
jhree2@uco.edu

Yuseok Jeon
UNIST

Ulsan, Republic of Korea
ysjeon@unist.ac.kr

Yonghwi Kwon
University of Virginia

Charlottesville, Virginia, USA
yongkwon@virginia.edu

Chung Hwan Kim
University of Texas at Dallas

Richardson, Texas, USA
chungkim@utdallas.edu

ABSTRACT

Autonomous driving has become real; semi-autonomous driving
vehicles in an affordable price range are already on the streets, and
major automotive vendors are actively developing full self-driving
systems to deploy them in this decade. Before rolling the products
out to the end-users, it is critical to test and ensure the safety
of the autonomous driving systems, consisting of multiple layers
intertwined in a complicated way. However, while safety-critical
bugs may exist in any layer and even across layers, relatively little
attention has been given to testing the entire driving system across
all the layers. Prior work mainly focuses on white-box testing of
individual layers and preventing attacks on each layer.

In this paper, we aim at holistic testing of autonomous driving
systems that have a whole stack of layers integrated in their en-
tirety. Instead of looking into the individual layers, we focus on the
vehicle states that the system continuously changes in the driving
environment. This allows us to design DriveFuzz, a new system-
atic fuzzing framework that can uncover potential vulnerabilities
regardless of their locations. DriveFuzz automatically generates
and mutates driving scenarios based on diverse factors leveraging a
high-fidelity driving simulator. We build novel driving test oracles
based on the real-world traffic rules to detect safety-critical misbe-
haviors, and guide the fuzzer towards such misbehaviors through
driving quality metrics referring to the physical states of the vehicle.

DriveFuzz has discovered 30 new bugs in various layers of
two autonomous driving systems (Autoware and CARLA Behavior
Agent) and three additional bugs in the CARLA simulator. We fur-
ther analyze the impact of these bugs and how an adversary may
exploit them as security vulnerabilities to cause critical accidents
in the real world.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560558

CCS CONCEPTS

• Security and privacy→ Software and application security;
• Computer systems organization→ Embedded and cyber-

physical systems.

KEYWORDS

Autonomous driving system; Fuzzing

ACM Reference Format:

Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi
Kwon, and Chung Hwan Kim. 2022. DriveFuzz: Discovering Autonomous
Driving Bugs through Driving Quality-Guided Fuzzing . In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3548606.3560558

1 INTRODUCTION

Autonomous driving technology has recently achieved significant
breakthroughs, making self-driving vehicles closer to practical us-
ages [20, 21]. Modern vehicles in an affordable price range are
already being shipped with semi-autonomous driving systems on
board. Major automotive companies are developing autonomous
driving systems (ADSes) to deploy fully autonomous vehicles that
can reliably operate on public roads within this decade [30]. How-
ever, despite the notable successes in the autopilot technology,
reports on fatal accidents caused by erroneous ADSes are contin-
uing [9, 11, 59, 60, 81]. Moreover, recent work has found many
unpatched bugs in open-source ADSes [32] and analyzed that com-
prehensive testing of an ADS still remains challenging [51].

To ensure the safety of autonomous driving, existing work has
focused on individual layers of an ADS. Specifically, the security
research community has been extensively focusing on finding adver-
sarial examples on the perception layer [13, 17, 24, 39, 57, 75, 77, 79],
assuming a threat model in which an attacker attempts to confuse
the machine learning model by supplying a deceptive driving scene
(e.g., modifying a traffic sign) or spoofing sensor data (e.g., injecting
falsified LiDAR points). Some other works test the robustness of the
machine learning model using synthesized and transformed images
of driving scenes [67, 82, 87]. There are also testing approaches
for other layers (e.g., sensing [15, 33, 42] and planning [16, 63, 83]).
However, they still focus on individual layers.

https://doi.org/10.1145/3548606.3560558
https://doi.org/10.1145/3548606.3560558

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan Kim

Although these works substantially improve the security of the
individual layers, they are not designed to cover the attacks ex-
ploiting vulnerabilities outside their scopes or specific layers; for
example, attacks that target bugs irrelevant to the machine learning
model or bugs in the actuation layer. In addition, due to the multi-
layer architecture of ADSes where different layers work together
in a cascading manner, a bug in one layer may not be detected if
tested individually. For instance, a bug in the perception layer may
not cause a visible impact when tested alone, but may cause the
planning layer to misbehave. Moreover, bugs in multiple layers
may jointly contribute to one misbehavior. Such bugs can only be
detected if all the integrated layers are tested together as a whole.

In this paper, we introduce a novel approach to enable compre-
hensive testing of ADSes to uncover critical bugs across all layers.
We aim to design a fully automated testing framework that gen-
erates realistic test input scenarios on the fly to holistically test
ADSes based on the following two key insights:
• With the recent advances in driving simulators for autonomous
vehicles [28, 71, 74], it has become feasible to generate an un-
limited number of high-fidelity test input scenarios with various
driving conditions, including the map, vehicles, pedestrians, and
weather conditions that closely reflect those of the real environ-
ments and offer a highly desirable testing environment to stress
all layers of the tested system.
• Regardless of which layer they belong to, the impact of bugs
ultimately affects the physical states of the vehicle1 (e.g., position
and velocity) negatively, for example, causing a collision. Thus,
we focus on detecting misbehaviors by monitoring the vehicle
states that the ADS continuously alters. These states can also be
used as feedback to find bugs more efficiently without relying on
the information specific to individual layers.

Based on these insights, we propose DriveFuzz, a feedback-
guided fuzzing framework for end-to-end testing of ADSes lever-
aging a driving simulator (CARLA [28]). DriveFuzz plugs a target
ADS into the fuzzing framework and tests the self-driving system
stack as a whole to facilitate the test coverage to span all layers.
It generates and mutates driving scenarios in which the ADS has
to drive from one point to another, and simulates them in a three-
dimensional virtual environment (similar to a racing video game),
where it has full control over both spatial and temporal dimensions
of the input spaces as well as multiple actors and entities including
the roads, pedestrians, and vehicles.

During a test, DriveFuzz utilizes our new driving test oracles de-
rived from real-world traffic rules and regulations [64], and actively
monitors the vehicle states to detect any misbehavior that violates
the oracles. We define misbehavior of ADS as safety-critical and
illegal traffic violations, including collisions, traffic infractions, and
immobility, which have apparent symptoms that wreak havoc on
the safety of humans. If such illegal misbehaviors are not found,
DriveFuzz measures the driving quality score of the test input sce-
nario by quantifying the factors that indicate reckless driving, e.g.,
accelerating too hard. The resulting score is then used as feedback
to generate the subsequent test scenario more efficiently (i.e., to-
wards causing more unsafe driving scenarios), such that it will

1We will use vehicle states to refer to the physical states of the vehicle herein.

trigger corner case bugs more quickly than completely random
fuzzing (as demonstrated by existing software fuzzers [12, 55, 86]).

We evaluate DriveFuzz by testing Autoware [44, 45], which is a
full-fledged (Level 4 [25]) ADS extensively used by car manufactur-
ers and academic institutions [5], and Behavior Agent, which is a
native ADS integrated into CARLA. To date, DriveFuzz discovered
a total of 34 critical bugs; 33 of which are new bugs, including 17 in
Autoware, 13 in Behavior Agent, and 3 simulation bugs in CARLA.
We have reported all 34 bugs to the developers, and 10 have been
confirmed and being patched, and others are under review. Our dis-
covery of the simulation bugs shows that DriveFuzz is capable of
finding bugs in both single and multiple layers of the software stack,
including various components for self-driving and even the simula-
tor itself. We observe and demonstrate that the bugs we found are
realistic and practical to exploit; that is, attackers can exploit them
by controlling the external inputs in a seemingly legitimate way
(e.g., moving nearby objects).

Our design is generic and portable to other ADSes (e.g., Baidu
Apollo [4]) and driving simulators [71, 74] as it sits on the inter-
face between the ADS and simulator (e.g., ROS [69]). Specifically,
DriveFuzz does not require the source code and instrumentation
nor domain knowledge of the target ADS since it only controls
the input to the system (input driving scenario) and monitors the
physical output (vehicle states).

This paper makes the following contributions:
• We propose a practical automated testing approach capable of
fuzzing ADSes end-to-end, and revealing safety-critical misbe-
haviors based on real-world driving test oracles.
• We design a novel driving quality metric to estimate the effec-
tivness of test driving scenarios in exploring the input space of
ADSes based on vehicle states, and leverage the metric to better
guide the mutation engine towards test scenarios that trigger
safety-critical misbehaviors.
• We implement and evaluate the proposed framework in a pro-
totype called DriveFuzz to demonstrate how feedback-driven
fuzzing can be applied to the domain of ADSes. We open-sourced
DriveFuzz at https://gitlab.com/s3lab-code/public/drivefuzz.
• In our evaluation, we find 33 new bugs, including 30 critical bugs
in real ADSes and three bugs in a full-fledged driving simulator.
We show that these bugs can be readily exploited to critically
impair the safety of ADSes by causing them to crash, cease to
operate, or violate safety-critical traffic laws.

2 BACKGROUND

Figure 1 shows a general ADS, which is the amalgamation of hard-
ware and software layers responsible for four core tasks: sensing,
perception, planning, and actuation [19, 40, 41], where each layer
aims to substitute its counterpart of human drivers. Within each
layer, multiple components carry out sub-tasks for autonomous
driving. These layers work together in a cascading manner to drive
the vehicle, i.e., each layer takes input from the previous layers and
the produced output is consumed by the following layers.
Sensing. Autonomous vehicles acquire raw data of the surrounding
environment using various sensors, typically including a LiDAR
(Light Detection and Ranging), cameras, a radar, a GPS device, and
IMU (Inertial Measurement Unit) sensors as components. Any fault

https://gitlab.com/s3lab-code/public/drivefuzz

DriveFuzz: Discovering Autonomous Driving Bugs through DrivingQuality-Guided Fuzzing CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

LiDAR

Camera

GPS

...

Sensing

Detection

Prediction

Localization

Perception

Global Planner

Local Planner

Planning

Environment

Map

Destination

Input

Path Follower

Actuation

Control
Commands

OutputVehicle states

Figure 1: A general autonomous driving system (ADS) consisting of

sensing, perception, planning, and actuation layers. By taking the

vehicle states and environment perceived by sensors, a 3D map, and

a destination as inputs, ADS ultimately outputs control commands,

i.e., steering, throttle and brake controls, that in turn update the

vehicle states for the next iteration of the loop.

in sensors can feed faulty data to the system, and the error can
subsequently propagate to the other layers, resulting in system-
level faults in the worst case.
Perception. Perception modules fuse and interpret the captured
sensor data to comprehend the current standing and the environ-
ment around a vehicle. For example, identifying the traffic signals
ahead or predicting the motion of adjacent vehicles by assessing
their velocities belongs to the tasks of the perception layer. Many
systems leverage various computer vision and machine learning
techniques for such tasks. A perception error can mislead the ve-
hicle to make faulty decisions, e.g., estimating the distance to an
obstacle to be farther than the actual distance, ending up hitting it.
Planning. With the perceived internal and external states, the
planning layer makes a routing plan for the given map and the desti-
nation. Generally, it first computes a global trajectory consisting of
a sequence of waypoints from the initial position to the destination
the user specifies. And then, traffic rules and perceived states (e.g.,
nearby obstacles) are taken into account by a local planner, which
updates the trajectory at runtime to safely drive to the destination.
Errors in this layer can cause not only inefficient but also unsafe
routing that involves infeasible paths, e.g., crossing a river.
Actuation. Given the generated trajectory to follow, the actuation
layer sets up a concrete motion plan consisting of a steering wheel
angle, a target speed at waypoints, and the amount of throttling or
braking, to seamlessly follow the trajectory. These commands are
sent to the steering wheel, throttle, and brake controllers to move
an autonomous vehicle as planned. When the commands move the
vehicle in the driving environment, the vehicle states are changed
and observed by the sensing layer in the following iteration of the
loop. Thus, an error in the actuation layer can critically impair the
vehicle’s ability to properly maneuver in a given situation and may
also affect other layers in the loop by changing the vehicle states.

3 THREAT MODEL

Attack surface. We assume an attacker who exploits bugs in any
layer of an ADS. Specifically, the target attack surface is not limited
to a single layer (e.g., an adversarial example on the perception
layer or injecting falsified data into the sensing layer).

We assume that the attacker does not only exploit bugs that cause
an immediate failure of a single layer, but also those that eventually
manifest in other layers. For example, a bug in the perception layer
could make an unnoticeable error in measuring the distance to
an object, and cause the planning layer to malfunction when the

erroneous distance is used as an input to find the trajectory (bug
#15 in §6). Similarly, a bug in the actuation layer could produce an
incorrect, but seemingly legitimate command to move the vehicle
and cause the perception layer to fail in the next iteration of the
control loop through the updated vehicle states (bug #17 in §6).

We do not assume that the attacker takes control over the ADS
physically (e.g., attach a device via an OBD-II port) or remotely
(e.g., perform remote code execution) to exploit a vulnerability.
Instead, the attacker only has control over the external inputs such
as nearby objects or locations (e.g., moving a nearby vehicle) with
a goal to cause critical misbehavior of the autonomous vehicle (e.g.,
a crash, lane invasion, traffic violations, or becoming immobile).
These external inputs are legitimate and authentic inputs to the ADS,
as opposed to maliciously crafted inputs by adversarial attacks (e.g.,
sensor spoofing) or synthetically generated driving scenes.
Practical feasibility. We argue the attacks in our threat model are
realistic and practical.We further discuss the feasibility of exploiting
the bugs we identified based on this threat model in §6.3.
Extensibility. The current threat model focuses on the attacks con-
trolling external inputs as they are the most imminent and realistic
threats to ADSes. However, since our fuzzer design is generic (§4),
the threat model can be extended to other attacks, such as sensor
spoofing, e.g., by introducing additional mutable components.

4 DESIGN

4.1 Overview of DriveFuzz

DriveFuzz is a feedback-driven mutational fuzzer that mutates
driving scenarios to test an ADS. It aims to generate physically
realistic, yet less-tested corner case driving scenarios to discover
safety-critical misbehaviors in the ADS. Figure 2 illustrates the
workflow of DriveFuzz along with its four main components.

Provided an input driving scenario, the mutation engine (§4.2)
generates and mutates various aspects associated with the mission
(initial and goal positions), weather, actors (vehicles and pedestrians
with their trajectories), and puddles (areas with substantially low
friction) in the scenario. The test executor (§4.3) launches theADS
to be tested, orchestrates the driving simulator to prepare for the
mutated driving scenario, and assigns themission to the ego-vehicle,
i.e., the vehicle solely controlled by the ADS [62, 73]. While the
ego-vehicle is carrying out the mission, themisbehavior detector

(§4.4) utilizes our driving test oracles to detect various safety-critical
vehicular misbehaviors. If the ego-vehicle completes the mission
without any misbehavior, the driving quality feedback engine

(§4.5) quantifies the overall driving quality by analyzing the vehicle
states to guide further mutations towards the generation of the
scenarios that decrease the quality.

4.2 Mutation Engine

4.2.1 Test Input Driving Scenario. The input space of an ADS is
extremely large and analogous to that of the real world, along both
temporal and spatial domains. To efficiently explore the input space,
we identify key mutable components in a driving scenario that can
affect various components of anADSwhen perturbed. As illustrated
in Figure 3, our driving scenario consists of (1) a predefined 3Dmap

that mimics the real world with fair precision using a standardized

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan Kim

Input scenario

Seed pool

Mutation engine
(Section 4.2)

Mission mutator

Weather mutator

Actor mutator

Puddle* mutator

Test executor (Section 4.3)
Mutated
scenario

Autonomous
driving system
(ADS)

Test bridge Driving
simulator

Vehicle states
(position, velocity,
acceleration, ...)

Misbehavior detector
(Section 4.4)

Driving test oracles

Driving quality feedback engine (Section 4.5)

Driving quality
feedback score

Bug

Not a bug

Bug report

Collison

Infraction

Immobility

Quantifying driving quality via vehicle states

Hard acceleration/braking Hard turn

Over/understeer Minimum distance

1 2

3 4
*Puddle is invisible (It is visible in the illustrations for presentation)

Figure 2: Overview of the architecture and workflow of DriveFuzz.

Seed
scenario

Weather
mutation
(Raining,
Cloudy)

Actor
mutation

(Invisible)
Puddle
mutation

Mission

I llustration Simulation (Captured)

Mission

Mission

Figure 3: Examples of how mutations are applied to a seed scenario,

in which the map and the mission are defined. Blue boxes indicating

puddles are added for visualization and invisible during fuzzing.

road network format [10], (2) a mission defined by the initial
and goal positions, (3) actors, i.e., vehicles or pedestrians acting
independently to the ego-vehicle, (4) invisible puddles that affect
the frictional force of the road, and (5) the weather conditions.

Similar to traditional mutational fuzzers [2, 86], DriveFuzz best
performs when seed scenarios to be evolved are given. It is impor-
tant to mention that generating input seeds is straightforward and
does not require particular expertise in ADS. Specifically, for all the
experiments in our evaluation, we construct input seeds from exist-
ing maps provided by the simulator, where each map includes a set
of valid waypoints (i.e., a mission between two waypoints is guar-
anteed to be achievable). We obtain the seeds by randomly selecting
two of the predefined waypoints for the initial and goal points. We
further explain the details with example seeds in Appendix A.

4.2.2 Scenario Mutation. DriveFuzz’s scenario mutation aims to
gradually increase the mutated scenario’s impact on the ego-vehicle
under the test. Specifically, by generating and mutating the compo-
nents of a scenario according to the mutation schedule (§4.2.5), it
affects all four layers of the ADS, as summarized in Table 1.
Map and mission selection. A map not only defines static world
objects, such as buildings and trees that affect the perception mod-
ule, but also includes road structures, such as intersections or curbs

Table 1: Layers of an ADS directly affected by taking fuzzing actions

to each component of a driving scenario. With all actions combined,

the coverage of a mutated scenario effectively spans all layers.

Component Action Affected layers

Map and mission Seed selection Sensing, Perception, Planning
Actor Generation & Mutation Sensing, Perception, Planning
Puddle Generation & Mutation Planning, Actuation
Weather Mutation Sensing, Perception

that the planner actively interacts with. The purpose of diversifying
the mission is to explore different parts of the map and associated
objects along with the road structure, enabling DriveFuzz to thor-
oughly test diverse issues in the perception and planning layers.
Actor generation & mutation. The actors in the scenario affect
the sensing, perception, and planning layers, because the behaviors
of the actors may force theADS to deviate from the original routing
plan, e.g., by blocking the path.

DriveFuzz generates an actor by randomly selecting the type of
actor (either a vehicle or a pedestrian), initial position and destina-
tion, navigation method, target speed, and trajectory. To have the
actor generated within the interactable range of the ego-vehicle (i.e.,
sensor range spanning the mission), the initial position of an actor
is always selected from within a configurable range from the ego-
vehicle’s initial position. In addition, to diversify the circumstances
actors can render, we define four kinds of navigation methods:
1. Autopilot: an actor performs a safe and lawful autopilot, using

the ground truth traffic data and abiding by all traffic rules while
heading to the destination.

2. Maneuver: an actor executes a sequence of maneuvers (i.e., drive
forward, switch to left/right lane). Each maneuver has a pre-
defined amount of time describing the duration of the action.

3. Linear: an actor blindly travels to the destination following a
linear trajectory without considering the surrounding traffic or
objects, thereby not complying with any rule.

4. Immobile: an actor remains stationary at the initial position.
The mutation of an actor includes a process of modifying the

aspects of a generated actor. Except for the type and the navigation
method, all other aspects (e.g., the initial position) can be mutated
for an actor to exhibit a variety of behaviors.
Puddle generation & mutation. Invisible puddles (e.g., black
ice) reduce the surface friction of the road and thereby affect the
actuation of an ADS. For example, based on the surface condition
of the road, or the tire condition, an ADS has to adjust the control
commands accordingly (e.g., avoid generating large torques on the
wheels) to ensure the ego-vehicle does not lose control.

DriveFuzz: Discovering Autonomous Driving Bugs through DrivingQuality-Guided Fuzzing CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

DriveFuzz generates a puddle by randomly selecting the location,
size, and frictional force. Similarly to the actors, it mutates a puddle
by modifying the location, size, and friction of a puddle.
Weather mutation. Weather affects the sensing and perception
layers, which act as the eyes of an ADS. DriveFuzz mutates the
weather concerning the following eight aspects: rain, cloud, wind,
fog, wetness, puddle, solar azimuth angle, and solar altitude. With a
wide variety of available combinations, a realistic weather condition
can be simulated and tested.

4.2.3 Ensuring Physically Valid Mutation. We aim to test an ADS
under physically feasible circumstances that can occur in real life.
Thus, all mutated driving scenarios need to be semantically practi-
cable; for example, an actor should not suddenly appear in front of
the ego-vehicle during a simulation. At the same time, DriveFuzz
should not ignore unusual yet possible scenarios such as running
into a person on a highway2. To this end, we ensure the testing
always starts after the simulation is fully loaded with the scenario,
including the weather condition and all actors/puddles, preventing
the abrupt creation of any objects during testing. In addition, while
allowing the random generation of objects, we impose a spatial
constraint and a temporal constraint to prevent events defying the
physical laws and to forestall false positive scenarios where an
ego-vehicle is not at fault of the misbehavior.
Spatial constraint. To prevent unrealistic jams resulting in phys-
ically impossible scenarios, such as two distinct vehicles being
partially overlapped at an adjacent place, the initial positions of
all actors are constrained to be at least a few meters away from
each other. The same constraint applies to the static objects (e.g.,
buildings, traffic lights); the dimensions of the actors at their initial
positions cannot offend the bounding boxes of the static objects.

If the spatial constraint is violated, the mutation engine consid-
ers it as an infeasible scenario, and attempts a mutation again by
randomly selecting the location of the actor that violates the spatial
constraint. Note that this random process results in few additional
computations (e.g., generating random numbers and checking the
spatial constraint), which only cause negligible overhead (see §6.8).
Temporal constraint. To prevent unrealistic movements of actors,
DriveFuzz imposes temporal constraints by limiting the maximum
speed of actor vehicles and pedestrians to a conservative value, e.g.,
20 and 6𝑚𝑝ℎ, respectively.

The spatial and temporal constraints, combined with the naviga-
tion methods, are designed to preclude most unrealistically reckless
scenarios that might lead to false positives. For example, a scenario
in which a pedestrian stands still until the ego-vehicle approaches
and then suddenly jumps in at the last moment to cause an unavoid-
able collision cannot be generated because (1) there is an initial
distance between the pedestrian and the ego-vehicle (spacial con-
straint), (2) the pedestrian cannot walk unrealistically fast (temporal
constraint) and (3) he/she walks either safely (autopilot), linearly
to the destination (linear) or does not move (immobile), adhering
to the navigation methods.

4.2.4 Mutation Strategy. Depending on the particular aspect of
the target ADS to be stress-tested, different mutation strategies

2The person could be the driver of a broken car stopped on the side road.

Algorithm 1: Driving quality feedback-driven fuzzing
Input :𝑆 - a set of seed scenarios (seed pool), 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 - mutation strategy,

𝑁𝑐 - Maximum # cycles, 𝑁𝑝 - Size of population
Output :𝑏𝑢𝑔 - a detailed bug report, 𝑠′ - the buggy scenario

1 foreach 𝑠𝑒𝑒𝑑 ∈ 𝑆 do

2 𝑓 𝑢𝑧𝑧_𝑜𝑛𝑒 (𝑠𝑒𝑒𝑑)
3 procedure 𝑓 𝑢𝑧𝑧_𝑜𝑛𝑒 (𝑠𝑒𝑒𝑑)
4 𝑠 ← 𝑠𝑒𝑒𝑑

5 for 𝑐𝑦𝑐𝑙𝑒𝑠 ← 1 to 𝑁𝑐 do

6 𝑠 ←𝑚𝑢𝑡𝑎𝑡𝑜𝑟 .𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 (𝑠, 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦) // §4.2.2, §4.2.4
7 𝑙𝑎𝑠𝑡_𝑤𝑜𝑟𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← 0
8 for 𝑟𝑜𝑢𝑛𝑑𝑠 ← 1 to 𝑁𝑝 do

9 𝑠′ ←𝑚𝑢𝑡𝑎𝑡𝑜𝑟 .𝑚𝑢𝑡𝑎𝑡𝑒 (𝑠) // §4.2.2, §4.2.3
10 𝑠𝑡𝑎𝑡𝑒𝑠 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 .𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 (𝑠′) // §4.3
11 if 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 .𝑐ℎ𝑒𝑐𝑘_𝑚𝑖𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 (𝑠𝑡𝑎𝑡𝑒𝑠) /*§4.4*/ == 𝑇𝑟𝑢𝑒 then

12 𝑠𝑎𝑣𝑒_𝑏𝑢𝑔_𝑟𝑒𝑝𝑜𝑟𝑡 (𝑠𝑡𝑎𝑡𝑒𝑠, 𝑠′)
13 return

14 else

15 𝑠𝑐𝑜𝑟𝑒 ← 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘.𝑐ℎ𝑒𝑐𝑘_𝑑𝑟𝑖𝑣𝑖𝑛𝑔_𝑠𝑐𝑜𝑟𝑒 (𝑠𝑡𝑎𝑡𝑒𝑠) // §4.5
16 if 𝑠𝑐𝑜𝑟𝑒 ≤ 𝑙𝑎𝑠𝑡_𝑤𝑜𝑟𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 then

17 𝑙𝑎𝑠𝑡_𝑤𝑜𝑟𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒

18 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 ← 𝑠′

19 𝑠 ← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟

specifying the mutable attributes and constraints can be developed
and applied. The strategies we propose include, but are not limited
to the following:
• Adversarial maneuver-based: only introduces and alters the ma-
neuver of the adjacent actors, forcing interactions with the target
system, e.g., an actor vehicle suddenly cutting the ego-vehicle off
by switching lanes.
• Congestion-based: only introduces autopilot actors so that the
target ADS drives in increasingly congested, yet lawful scenarios.
• Entropy-based: only introduces a linear or immobile actor, testing
the ability of the target system to safely drive around reckless
drivers and unlawful pedestrians.
• Instability-based: only inserts a puddle of different size and fric-
tion, testing the robustness of the motion controller to deal with
sudden instabilities triggered by external forces.

Each strategy can be independently applied to a fuzzing campaign,
or orchestrated to be jointly applied under a probabilistic scheduling
(e.g., randomly selecting the next strategy to apply after each round).

4.2.5 Feedback-driven Mutation Scheduling. To efficiently explore
the input space, DriveFuzz leverages a feedback mechanism to
generate and mutate the components of a scenario as presented in
Algorithm 1. At each cycle, DriveFuzz first generates and intro-
duces an actor or puddle to the scenario (line 6). Then, the generated
component or the weather is mutated 𝑁𝑝 times to create a popu-
lation of size 𝑁𝑝 (line 9). Each mutated scenario is executed, and
its quality is evaluated by the feedback engine (§4.5), which mea-
sures the driving quality score (line 15). At the end of the cycle, if
none of the population triggers a misbehavior (line 11), they are
ranked by the driving quality score, and the one that scored the
least among the population is selected (line 18) and passed on to
the next cycle (line 19). DriveFuzz repeats the process of adding
a new component into this chosen scenario and searching for the
most “harmful” mutation that disrupts the driving behavior of an
autonomous vehicle most significantly.

As the fuzzing cycle repeats, the scenario gradually gains in-
tensity as more actors and puddles are inserted. However, more
mutations may not always lead to a critical misbehavior. To prevent

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan Kim

exploring less-promising directions of the mutation, DriveFuzz
aborts and starts a new campaign with a new seed (line 2) when it
reaches the maximum cycles (𝑁𝑐) without finding a misbehavior.

4.3 Test Executor

The test executor runs an ADS under the given driving scenario
in a driving simulator, collecting various vehicle states for the
fuzzing process. For the simulator, we choose to use CARLA [28], a
high-fidelity driving simulator implemented using Unreal Engine.
CARLA is known for its active development status and usage, pro-
fessionally designed realistic maps, a wide range of supported sen-
sors, flexibility in controlling various aspects of a driving scenario,
and the ability to integrate various ADSes with ease by supporting
Robot Operating System (ROS) [69], a universal middleware, which
many robotic systems are built on top of.

4.3.1 Test Bridge. The test bridge connects the mutation engine to
the ADS and the simulator, testing the mutated driving scenarios.
Loading the input driving scenario. The test bridge first or-
chestrates the CARLA simulator to set up the input scenario in
the simulated world. It connects to the simulation server, opens
the map, configures the weather, spawns actors, puddles, and the
ego-vehicle as specified by the mutated input scenario. When the
loading is finished, the ADS is launched.
Initializing the target ADS for testing. The test bridge launches
the ADS stack and waits until it is completely initialized. Then, it
attaches the autopilot functionality to the ego-vehicle spawned in
the simulated world. Once the system is online and the autopilot
agent is loaded, a test is ready to be simulated.

4.3.2 Driving Simulator. The driving simulator plays a key role in
synthesizing real-time sensor data as well as computing vehicle
states. The simulator in the loop has multiple benefits compared
to an alternative option of using a real vehicle [63] equipped with
appropriate sensors and a companion computer to bridge the ADS
software with the vehicular controllers. We employ the simulator in
DriveFuzz to fully leverage the following benefits: (1) test vehicles
of different physical specifications and self-driving software stacks
without altering the testing scheme, (2) test vehicles with signifi-
cantly lower cost compared to the testing of physical vehicles, (3)
test vehicles under various circumstances including but not limited
to unlikely situations without physical constraints, and (4) fully
automate a testing sequence.

In a loop, CARLA is responsible for simulating each frame by
applying the control commands issued by the ADS to the ego-
vehicle, and updating the states of in-simulation actors, e.g., the
position of a pedestrian moving at 1.5𝑚/𝑠 towards the North. The
ADS combines the updated states of the ego-vehicle with the new
sensory data read from the simulator to decide the subsequent
control command. The loop terminates when the vehicle reaches
the destination, or any issue is found by the misbehavior detector.

4.4 Misbehavior Detector

When the ADS fails to handle the input scenario, it can lead to a
wide spectrum of undesirable consequences from software-oriented
errors (e.g., memory error in a component) to vehicular misbehav-
iors (e.g., collision). Our misbehavior detector intends to point out

obvious illegal acts in the driving behaviors of ADS by applying
definitive standards. Inspired by the fact that the ADSes are de-
signed to drive in the real world complying with traffic rules and
regulations [64], we build the following three driving test oracles
that check for the events that are closely related to human safety:
collisions, infractions, and immobility of the ego-vehicle.
• Collision. Collision is one of the most destructive events that
can cause significant damage to human drivers. By attaching a
collision sensor to the ego-vehicle (that would be corresponding
to multiple sensors around a real vehicle), a collision to any object
is captured and reported.
• Infraction. Infractions are traffic violations including (1) speed-
ing, (2) invading lanes, and (3) running on red lights, which are
directly involved in approximately 30%, 8.5%, and 4%, respectively,
of the annual fatal accidents in the United States in 2018 [58]. As
DriveFuzz has full access to the simulated space, it compares the
states of the vehicle (e.g., current speed) with the defined traffic
rule (e.g., speed limit) to check for any violation.
• Immobility. A vehicle that is not moving at a particular location
would become a cause of subsequent undesirable events such
as collisions (e.g., a car stopped in the middle of an intersection
would cause other cars to crash into it). The immobility monitor
measures the time duration when the vehicle is not moving,
excluding legitimate stops (e.g., at traffic lights). If it exceeds a
threshold (60 𝑠𝑒𝑐 in this paper), that is considered a misbehavior.

The misbehavior detector monitors every frame of the simula-
tion and refers to these oracles to check for any violation (line 11
of Algorithm 1). Upon detecting a misbehavior, the incident is re-
ported, and the simulation is terminated immediately after logging
all vehicle states for a later inspection.

4.5 Driving Quality Feedback Engine

We propose a new driving quality metric that abstracts the perfor-
mance of ADS under a testing scenario. In particular, the metric is
measured by evaluating various events in the driving maneuvers
during testing that does not immediately trigger safety-critical mis-
behaviors, but are likely to lead to those. The metric is later used
to guide the input scenario mutation towards buggy conditions.

Note that we develop this new metric because existing metrics
such as code coverage are not suitable for our context. Specifically,
while the code coverage-guided mutation has proven effective in
many modern grey-box fuzzers to approximate the amount of the
explored input space for sequential programs, it is not effective for
distributed and stateful systems such as an ADS. In particular, ADS
runs smaller nodes changing states driven by data, consisting of
loops running statemachines. Their code coverage quickly saturates
regardless of the testing progress, hence inadequate to approximate
the test coverage (see Appendix B).

4.5.1 Driving quality measurement. When no safety-critical misbe-
havior is detected,DriveFuzz analyzes the driving data to guide the
input mutator so that it can effectively mutate the input scenario to-
wards the scenario likely to trigger safety-critical misbehaviors. To
quantitatively measure how close a vehicle is to the safety-critical
misbehaviors, we refer to the official reports [1, 56] from the U.S.
Department of Transportation, National Highway Traffic Safety

DriveFuzz: Discovering Autonomous Driving Bugs through DrivingQuality-Guided Fuzzing CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Administration (NHTSA), which investigates the causes of traffic
accidents. According to the reports, 52% of the fatal accidents of
known causes are attributed to either reckless or clumsy driving
behaviors, such as hard acceleration or oversteer. Many major car
insurance companies (e.g., Allstate, Progressive, and State Farm)
also support this idea by having their programs evaluate the driving
quality based on the number of hard braking, hard acceleration, and
hard turning events to determine the insurance rate [7, 68, 72, 78].

Inspired by the real-world usage, DriveFuzz measures the driv-
ing quality based on the number of hard accelerations, hard brak-
ings, hard turns, oversteers and understeers, and the minimum
distance to other actors. The following paragraphs 1 – 4 present
how we measure each factor constituting the driving quality by
leveraging the vehicle states on the driving data of the simulation.
1 Hard acceleration and hard braking detection. The ratio
of longitudinal acceleration of a vehicle 𝐴𝑥 to the gravitational
constant 𝑔 (approximately 9.8𝑚/𝑠2) is a generally accepted way of
representing the harshness of acceleration or braking events [14, 36].
The hard acceleration/braking indicator 𝐾𝑎𝑏 is given by:

𝐾𝑎𝑏 = 𝐴𝑥/𝑔 (1)
If 𝐾𝑎𝑏 exceeds a threshold, DriveFuzz counts the frame as either a
hard acceleration or hard braking event. For the threshold, NHTSA
used 0.4 − 0.6 to identify hard acceleration or hard braking [26,
49]. Other studies claim that 0.5 is the threshold people typically
agree on [14, 36]. Taking the upper bound, we use 0.6 as a decision
boundary for 𝐾𝑎𝑏 , which is the force that a vehicle can reach or
stop from 60𝑚𝑝ℎ in less than five seconds.

#ℎ𝑎 = 𝑐𝑜𝑢𝑛𝑡 (𝐾𝑎𝑏 ≥ 0.6), #ℎ𝑏 = 𝑐𝑜𝑢𝑛𝑡 (𝐾𝑎𝑏 ≤ −0.6) (2)
2 Hard turn detection. A hard turn occurs when a driver tries
to turn the vehicle at an excessive speed. As a hard turn is related
to the lateral force applied to the vehicle, we leverage a detection
algorithm that uses a hard turn indicator 𝐾𝑡 , such that

𝐾𝑡 = 𝑉𝑦/𝑆𝑊𝐴 (3)
where𝑉𝑦 and 𝑆𝑊𝐴 denote the lateral speed, and the steering wheel
angle, respectively. If (1) 𝑆𝑊𝐴 is greater than a steering threshold,
and (2) 𝐾𝑡 is above a hard turn threshold, DriveFuzz counts the
frame as a hard turn. Both thresholds are configurable, and we
empirically determined them as 20 and 0.18, respectively, such that

#ℎ𝑡 = 𝑐𝑜𝑢𝑛𝑡 (𝑆𝑊𝐴 ≥ 20 ∧ 𝐾𝑡 ≥ 0.18) (4)
3 Oversteer and understeer detection. Oversteer and under-
steer represent the reaction of a vehicle to the steering effort. Over-
steer occurs when the rear tires lose grip and the vehicle turns more
than the amount the driver steers, and understeer occurs when the
front tires lose grip, so the vehicle turns less than the steering
amount. Both frequently occur in competitive racing sports where
aggressive controls are required, and they often lead to accidents
as a vehicle loses control and slips while turning. In normal driving
conditions, oversteer or understeer can take place as a result of
imprecise control, or because of low friction on the road caused
by natural events, such as black ice. No matter what the cause is,
both are deemed very dangerous [34, 38], being ranked in the 7th
in “top 12 causes of fatal car accidents in the USA” by NHTSA.

Broadly, there are two approaches that attempt to detect over-
steer and understeer events: model-based detection and fuzzy logic-
based detection. Model-based detection tends to be accurate but

requires precise models of the vehicles, tires, and friction. On the
other hand, fuzzy logic [61, 85] approximates the “truthiness” of a
linguistic statement on a continuum as a fuzzy value rather than a
boolean value and aggregates multiple values with rules to infer the
final level of output. To grasp the overall safety and generate feed-
back, DriveFuzz does not require the detection to be meticulously
accurate. Moreover, model-specific detection is ill-suited to the pur-
pose of DriveFuzz to serve as a generic framework for testing ADS
planted on various vehicle models. Thus, we adopted the fuzzy
logic-based detection proposed by [8, 66] that works reasonably
well across different vehicle models.

In summary, four indicators, 𝑆𝑊𝐴 (steering angle in 𝑑𝑒𝑔), 𝑉𝑥
(longitudinal velocity in 𝑘𝑚/ℎ), 𝐴𝑉𝑧 (yaw rate in 𝑑𝑒𝑔/𝑠), and 𝐴𝑦

(lateral acceleration in 𝑔𝑠), which can be obtained from the driving
data are used for fuzzy logic to compute the degree of oversteer
𝐾𝑜𝑠 and understeer 𝐾𝑢𝑠 . With the inferred oversteer and understeer
levels, which are floating-point numbers in {0, 1}, we tuned the
threshold to determine the final results as follows:

#𝑜𝑠 = 𝑐𝑜𝑢𝑛𝑡 (𝐾𝑜𝑠 ≥ 0.4), #𝑢𝑠 = 𝑐𝑜𝑢𝑛𝑡 (𝐾𝑢𝑠 ≥ 0.4) (5)
4 Minimum distance Any failure to maintain a safe distance
from other vehicles or pedestrians implies that the system is close
to potential misbehaviors. For example, if a minimum distance to
a pedestrian is one foot, we can interpret that as the ego-vehicle
near-missed hitting the pedestrian, and with a slight mutation, the
scenario could cause a collision. To take such events into account,
DriveFuzzmeasures the distances from the ego-vehicle to all other
actors per frame and keeps track of the minimum distance,𝑚𝑑 . The
smaller𝑚𝑑 is, the more deduction is applied to the driving score.
Overall driving quality score. With all the ingredients ready,
DriveFuzz computes the overall driving quality score by multiplex-
ing the number of events. The driving quality score starts from zero,
and the number of the events captured above is deducted, and then
the inverse of the minimum distance (i.e., 1/𝑚𝑑) multiplied by a
configurable coefficient is deducted, resulting in the final feedback
score. In summary, the driving quality 𝑠𝑐𝑜𝑟𝑒 is given by:

𝑠𝑐𝑜𝑟𝑒 = −(#ℎ𝑎 + #ℎ𝑏 + #ℎ𝑡 + #𝑜𝑠 + #𝑢𝑠 + 𝑐/𝑚𝑑) (6)
The final 𝑠𝑐𝑜𝑟𝑒 is delivered to the input mutator for the decision of
the scenario that is worth further mutating (line 15 of Algorithm 1).
Tuningmetrics. Weights for the driving quality factors can be con-
figured to prioritize certain misbehavior, depending on the users’
needs and the characteristics of the target system. In our exper-
iments, we treat all factors equally (i.e., Equation 6) to prevent
DriveFuzz from being biased toward any particular misbehavior.

4.5.2 Key contribution of driving quality feedback. In the context of
testingADSes, our design of physical vehicular states-based driving
quality feedback is highly pertinent for two reasons. First, using the
physical states of a vehicle, it allows DriveFuzz to pragmatically
quantify the recklessness of the driving without requiring code-
level analysis nor examining internal states, of which the availability
is not always guaranteed. Second, unlike the feedback suggested by
the related work [52] that may lead ADS away from the bugs we
detected (see §6.4), our fine-grained feedback mechanism provides
proper guidance towards unsafe driving scenarios, resulting in the
detection of actual, safety-critical misbehaviors.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan Kim

Table 2: Implementation complexity of DriveFuzz.

Component LoC Language

D
ri
ve

Fu
zz

fr
am

ew
or
k Mutation engine 440 Python

Misbehavior detector and driving test oracles 119 Python
Feedback engine and driving quality metrics 636 Python
Test executor 1125 Python
Additional bridge for Autoware 48 Shell script

5 IMPLEMENTATION

DriveFuzz is prototyped in approximately 2.3K lines of Python 3
code, as shown in Table 2.
ROS and portability. ROS [69] is a de facto middleware that
provides a means of message passing between distributed nodes,
hardware abstraction, and a toolset for the easier development
of robotic systems. DriveFuzz incorporates ROS in the design of
the test executor and makes any ROS-based ADSes [44, 45] and
simulators [28, 71, 74] pluggable into the system.
Bug reproduction. ROS leverages a publisher-subscriber mes-
sage passing scheme; nodes publish messages to a topic, and other
nodes subscribe to the topic to receive the messages. Thus, all flows
including sensory inputs and control commands are summarized
in the messages. DriveFuzz records all underlying ROS messages,
essentially capturing all data flows that happened during fuzzing,
and later replays them to reproduce and debug the buggy scenarios.
Clock synchronization. Depending on the hardware, the sim-
ulation could run slower than a wall clock and stall ADSes from
obtaining real-time sensor data. DriveFuzz synchronizes ADSes
with the simulator’s time, not the wall clock, so that if the simu-
lation runs behind the wall clock while computing and rendering
each frame, ADSes can wait for the data and react upon correctly.

6 EVALUATION

We evaluate the effectiveness of DriveFuzz as a fuzzer for ADSes
by assessing the number of bugs detected by DriveFuzz (§6.1) with
their analyses (§6.2), the feasibility of exploiting the discovered
bugs in the real world (§6.3), how DriveFuzz fares against a state-
of-the-art approach (§6.4), the correctness of the driving test oracles
(§6.5), the correctness of driving quality measurement (§6.6), the
effectiveness of feedbacks (§6.7), and the fuzzing performance (§6.8).
Experimental setup. We ran DriveFuzz on a server machine
running Ubuntu 18.04, powered by 16-core Intel Xeon Gold 5218
CPU, 192-GB main memory, and 8 GeForce RTX 2080 Ti graphics
cards. To allow parallel execution of testing workloads and increase
the testing performance, we used Docker containers. We simulta-
neously ran four pairs of CARLA and ADS containers connected
via a ROS bridge, and assigned a dedicated GPU to each container.
For the effectiveness and performance evaluations (§6.7 and §6.8)
where randomness can skew the results, we report the average of
repeated runs, following the suggestions in [50].
Test targets. We tested the following ADSes:
• Autoware: A full-fledged ADS with active development status.
Started in 2015, it has been internationally adopted by many well-
known automobile manufacturers, e.g., BMW [6], and qualified to
run driverless vehicles on public roads in Japan since 2017 [80].
• Behavior Agent: An ADS developed by CARLA, implementing
path planning, feedback-based PID control, compliance with
traffic laws, and collision avoidance.

Seed scenarios. For the experiments, we used 40 valid seed scenar-
ios to test target systems in various environments and conditions,
obtained by the procedure described in Appendix A.

6.1 Detected Misbehaviors

DriveFuzz found multiple scenarios that trigger various safety-
critical misbehaviors, stemming from a total of 34 bugs in Autoware,
Behavior Agent, and CARLA; 17 previously unknown bugs and one
known issue in Autoware, of which 8 bugs are already confirmed,
and 13 bugs in Behavior Agent, which are awaiting confirmation. In
CARLA, three critical simulation bugs are detected, and two of them
have been acknowledged so far. All bugs have been responsibly
reported to and discussed with the developers.

Table 3 summarizes all the new bugs we found, the component
they are located in, the impact and the root cause of each bug.
By comprehensively testing the entire ADS end-to-end with high-
fidelity driving scenarios, DriveFuzz identifies misbehaviors from
all components of the system, including sensing, perception, plan-
ning, and actuation. The videos of the bugs are available at https:
//youtube.com/channel/UCpCrUiGanDKX-qxj8jcUVGQ.
Root cause identification. To identify the bug and the root cause
of observed misbehaviors, we replay the recorded simulation data
and analyze critical events. This procedure involves a component-
wise data- and control-flow analysis of answering the following
diagnostic questions:
• Did sensors accurately read the environment?
• Did the perception layer correctly interpret the sensor data?
• Did the planning layer find a feasible path?
• Did the actuation layer emit appropriate control commands?
Contribution of test oracles. The “Impact” column in Table 3
shows the accumulation of all misbehaviors triggered in multiple
scenarios, which stem from the same root cause. For example, bug
#28 (impact C, L) caused a collision in some scenarios, and a lane
invasion in other scenarios, depending on the location on the map
and the nearby objects at themoment the bugwas triggered. Overall,
the collision oracle contributed to the detection of the most (76%)
bugs, because ADS bugs usually make the vehicle lose control and
susceptible to a collision. Traffic infractions (V, L, and S) were
triggered by 60% of the bugs. We can also observe that all bugs
that caused a lane invasion caused a collision as well. This does not
imply that the collision oracle can replace the lane invasion oracle;
these oracles were individually triggered in different scenarios. For
versatility under any circumstances, both oracles should be utilized.

6.2 Case Study

We present an in-depth analysis of the selected bugs DriveFuzz
found. The bugs are categorized into four different types as follows.
Cross-layer bugs. DriveFuzz identifies bugs that are caused by
multiple layers, requiring comprehensive testing of the ADS with
all layers. Cross-layer bugs are difficult to detect by testing the
individual layers because their symptoms often become visible in a
different layer from the buggy layer.
• Bug #15 (see Figure 4(d)) stems from two subtle problems in the
perception and planning layers. First, the perception layer measures
the distance to the obstacle from the center of the ego-vehicle,

https://youtube.com/channel/UCpCrUiGanDKX-qxj8jcUVGQ
https://youtube.com/channel/UCpCrUiGanDKX-qxj8jcUVGQ

DriveFuzz: Discovering Autonomous Driving Bugs through DrivingQuality-Guided Fuzzing CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 3: New bugs DriveFuzz revealed in multiple layers of Autoware, Behavior Agent, and CARLA simulator. Impact indicates which system-

level misbehaviors were captured by the driving test oracles during testing, strategy shows the mutation strategy used, and the root cause is

determined by our manual analysis afterward. ACK indicates whether bugs are confirmed by the developers.

Bug # Layer Component Description Impact Strategy Root cause ACK

A
ut
ow

ar
e

01 Sensing Fusion LiDAR & camera fusion misses small objects on road C all Logic err
02 Perception Detection Perceives the road ahead as an obstacle at a steep downhill I all Logic err ✓
03 Perception Detection Fails to semantically tag detected traffic lights and cannot take corresponding actions C, V all Logic err
04 Perception Detection Fails to semantically tag detected stop signs and cannot take corresponding actions C, V all Logic err
05 Perception Detection Fails to semantically tag detected speed signs and cannot take corresponding actions V all Logic err
06 Perception Localization Faulty localization of the base frame while turning C, L all Logic err ✓
07 Perception Localization Localization error when moving underneath bridges and intersections C, L all Logic err ✓
08 Planning Global planner Generates infeasible path if the given goal is unreachable C, L all Logic err ✓
09 Planning Global planner Generates infeasible path if the goal’s orientation is not aligned with lane direction C, I, L all Logic err ✓
10 Planning Global planner Global path starts too far from the vehicle’s current location C, I, L all Logic err ✓
11 Planning Local planner Target speed keeps increasing at certain roads, overriding the speed configuration S, C all Logic err ✓
12 Planning Local planner Fails to avoid forward collision with a moving object C all Logic err
13 Planning Local planner Fails to avoid lateral collision (ADS perceives the approaching actor before collision) C ent Not impl
14 Planning Local planner Fails to avoid rear-end collision (ADS perceives the approaching actor before collision) C ent Not impl
15 Planning Local planner While turning, ego-vehicle hits an immobile actor partially blocking the intersection C ent Logic err
16 Actuation Pure pursuit Ego-vehicle keeps moving after reaching the destination C, L all Logic err ✓
17 Actuation Pure pursuit Fails to handle sharp right turns, driving over curbs C, L all Faulty conf

Be
ha
vi
or

A
ge
nt

18 Perception Detection Indefinitely stops if an actor vehicle is stopped on a sidewalk I ent Logic err
19 Perception Detection Flawed obstacle detection logic; lateral movement of an object is ignored C con Logic err
20 Planning Global planner Generates inappropriate trajectory when initial position is given within an intersection C, L, V all Logic err
21 Planning Local planner Improper lane changing, cutting off and hitting an actor vehicle C man Logic err
22 Planning Local planner Vehicle indefinitely stops at stop signs as planner treats stop signs as red lights and waits for green I all Logic err
23 Planning Local planner Vehicle does not preemptively slow down when the speed limit is reduced S all Logic err
24 Planning Local planner Always stops too far (> 10 m) from the goal due to improper checking of waypoint queue F all Logic err
25 Planning Local planner Collision prevention does not work at intersections (only checks if actors are on the same lane) C all Logic err
26 Planning Local planner Fails to avoid lateral collision (ADS perceives the approaching actor before collision) C man Not impl
27 Planning Local planner Fails to avoid rear-end collision (ADS perceives the approaching actor before collision) C man Not impl
28 Planning Local planner No dynamic replanning; the vehicle does infeasible maneuvers to go back to missed waypoints C, L ins Not impl
29 Actuation Controller Keeps over-accelerating to achieve the target speed while slipping, creating jolt back on dry surface C, L ins Not impl
30 Actuation Controller Motion controller parameters (PID) are poorly tuned, making the vehicle overshoot at turns C, L all Faulty conf

CA
RL

A 31 Simulator Simulation does not properly apply control commands C, L, V all Logic err ✓
32 Simulator Vector map contains a dead end blocked by objects as a valid lane I, V all Data err
33 Simulator Occasionally inconsistent simulation result I, V all Logic err ✓

[Impact] C: Collision / F: Fails to complete a mission / I: Vehicle becomes Immobile / L: Lane invasion / S: Speeding / V: Miscellaneous traffic Violation
[Strategy] all: all strategies /man: Adversarialmaneuver-based / con: congestion-based / ent: entropy-based / ins: instability-based

LiDAR detection
range

Obstacle!
Stop!

(a) Bug #2

current_location = ?

(b) Bug #7 (c) Bug #12

Plans to stop here

(d) Bug #15

look-ahead
point

current
position

(e) Bug #17

actor
vehicleEnters roundabout

w/o checking
other vehicles

(f) Bug #25

Figure 4: Notable cases of detected bugs. The images (top) show the

snapshots of the camera feed at the moments when the bugs were

detected. The diagrams (bottom) briefly describe the situation.

treating the vehicle as a point. At this layer, this error does not
necessarily cause a visible impact. However, when the planner
checks if the obstacle is blocking the path based on this invalid
distance, it does not consider the dimension of the ego-vehicle, as
well. When the trajectory is not linear (e.g., facing an obstacle while
turning), the dimension of the ego-vehicle is considered as zero by
both layers, making the edge of the bumper hit the obstacle.
• Bug #17 (see Figure 4(e)) is due to a faulty configuration in the ac-
tuation layer, which is aggravated by faulty perception. Autoware’s
controller smooths a trajectory by constantly following the virtual
curve from the vehicle’s position to the look-ahead point, rather
than strictly shooting for every point of a path. The default con-
figuration of the controller sets the minimum look-ahead distance
parameter too large, which causes the ego-vehicle to cut through a
curb when it enters a sharp right curve at a low speed. When this
fault manifests, the perception layer fails to identify the objects on
the unexpected trajectory, and the vehicle ends up colliding with
the static objects on the curb, e.g., fences or street lights.
Logic errors. Amajority of the bugsDriveFuzz discovered turned
out to be logic errors, where the logic behind the implementation
of a component is the cause of misbehavior.
• Bug #2 (see Figure 4(a)) is caused by both sensor and perception
layers; at the end of a steep downhill where the ego-vehicle faces
down while the road ahead flattens, the LiDAR of Autoware senses
the road ahead as an obstacle. Without any verification of the point
cloud data published by the LiDAR, the perception layer concludes

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan Kim

that there is a massive object blocking the way, and the local planner
subsequently decides to stop immediately. As the entire path is
seemingly blocked, the ego-vehicle becomes immobile thereafter.
• Bug #7 (see Figure 4(b)) is a critical bug that causes a localization
error. Autoware utilizes the Normal Distributions Transform (NDT)
matching algorithm,which estimates the current position of the ego-
vehicle on the map by combining the data from the LiDAR, Inertial
Measurement Unit, Global Navigation Satellite System sensors, and
vehicle odometer data. The localization plays a pivotal role in the
correctness of an ADS, as all driving decisions are made based on
the estimated current position. Unfortunately, the NDT matching
fails to correctly estimate the position when the ego-vehicle is
under a bridge, presumably because its estimation relies solely on
the latitude and longitude, but not the altitude.
• Bug #12 (see Figure 4(c)) is notable as it is directly related to the
safety of passengers. When a vehicle cuts in from either side to the
front of the ego-vehicle, the LiDAR sensor detects the vehicle, and
the perception layer perceives it as a vehicle. However, the local
planner ignores the perceived vehicle and fails to command a stop.
• Bug #25 (see Figure 4(f)) presents a devastating logic error in the
planner of Behavior Agent. The planner should slow down and
stop if an obstacle is ahead. However, as a part of optimization, it
only checks if anything is on the same lane as the ego-vehicle. As
a result, when the ego-vehicle is switching lanes or turning at an
intersection/roundabout to enter another lane, the planner fails to
notice the obvious objects, causing collisions.
Missing features. DriveFuzz found that some of themisbehaviors
stem from not implementing essential features.
• Bugs #13, 14, 26, and 27 demonstrate that none of the compo-
nents of Autoware and Behavior Agent handles lateral and rear-end
collision avoidance. Even though the LiDAR sensor covers all 360
degrees and perceives approaching vehicles from all directions, the
local planner only considers the objects lying in front of the vehi-
cle when revising the path plan, e.g., taking a detour. Thus, when
reckless vehicles approached the ego-vehicle from behind or side
in some scenarios, the ego-vehicle did not try to avoid them, (e.g.,
by accelerating or steering), being subject to collisions.
• Bug #29: Electronic Stability Control (ESC) [53] is one of the essen-
tial and common in-vehicle safety features that prevents and helps
recover from oversteer and understeer by automatically braking
individual wheels and limiting engine powers. Unfortunately, this
essential feature is missing in Behavior Agent, being vulnerable to
bug #29. When the vehicle starts to slip due to a puddle, the rotation
of the wheels is not converted to vehicular speed. Not considering
the slipping state, the controller keeps generating greater torques
on the wheels to achieve the target velocity, which creates an ex-
cessive burst of acceleration when the vehicle finally gets out of
the puddle and makes the vehicle lose control.
Simulation errors. DriveFuzz also identifies errors within the
simulator, showing its end-to-end testing strategy’s effectiveness.
Bugs #31–33 manifested themselves as one of the misbehaviors
the detector examined and later turned out to be the faults of the
CARLA simulator while debugging them.
• Bug #31: the ego-vehicle deviated from the planned path while
turning left at an intersection. It did not turn as much as it was
required to follow the curved path, but still throttled, and crashed

into a building. By analyzing the control commands Autoware
issued, we found that the ego-vehicle tried to steer more and more
towards the left as it deviated from the path. The culprit was CARLA,
which did not properly simulate the vehicle states by applying
the control commands it received from Autoware. In real vehicles,
mechanical errors can cause similar problems if it does not apply
physical controls, (e.g., steering), as requested by the software stack.
• Bug #32 is a data-related error. In one of the CARLA maps, the
vector map mistakenly listed a dead end blocked by gas tanks
as a valid lane. The lane was included in the path found by the
global path planner in some scenarios, and the ego-vehicle ended
up getting stuck behind the gas tanks blocking the path. Similarly
in the real world, an autonomous vehicle could make inadequate
path plans if the ground truth data, such as a map, is not up to date.

6.3 Feasibility of Bug Exploitation

It is feasible to reliably exploit all 17 Autoware bugs (except for
two) and all 13 Behavior Agent bugs, adhering to the threat model
presented in §3; controlling external inputs. Specifically, we evalu-
ate the viability of launching object-based attacks or location-based
attacks targeting the discovered bugs.
Object-based attacks. There are 11 bugs (#1, 12–15, 18, 19, 21,
25–27) that enable object-based attacks. To understand how easy it
is to exploit the bugs in the real world, we run experiments on how
sensitive each bug is to multiple variables (i.e., potential require-
ments of the exploitation), including the color and shape (model)
of the vehicle, location/trajectory of the controlled object, and the
weather. If a bug requires many attributes for its exploitation, it
essentially means that its exploitability is low. As shown in Table 4,
only one attribute needs to be controlled for all bugs, except for
bug #1, which requires two attributes to be controlled. Specifically,
to exploit bug #1, an attacker can use an object of any color at any
location near the path of the ego-vehicle as long as its height is
lower than approximately 50 cm, which is commonplace. Bugs #13,
14, 26, and 27 are even easier to exploit; having any vehicle of any
model and color, or pedestrian approach towards the ego-vehicle
from behind or side is sufficient. The same set of attributes does not
affect bug #12. However, after moving into the ego-vehicle’s path,
the object (vehicle or pedestrian) has to be located within one meter
of the ego-vehicle’s front bumper. For bug #15, the only relevant
attribute is the location of the object. As illustrated in Figure 5,
the adversarial object has to be placed within a certain range of
distance from the ego-vehicle, which allows a window of 66 cm.
While it seems tight, it is obviously viable, considering that the
window is approximately a third of the width of a mid-sized sedan.
Location-based attacks. Bugs #2–11, 16, 17, 20, 22–24, 28–30 can
be exploited by taking advantage of location-based attacks. Bugs
#3–5 can be triggered at any location with traffic lights, stop signs,
or speed limit signs, regardless of the weather condition, as they
stem from software errors not being able to find matching tags for
detected objects. Bugs #8 and 9 are triggered immediately when the
planning layer receives the mission, if the goal position is unreach-
able or not aligned with the lane. An attacker may provide such
adversarial destinations to the system through social engineering,
e.g., sharing a Google Maps link that sets the destination through
navigation API. Bugs #2, 7, 16, 17, 28, and 29 require an attacker to

DriveFuzz: Discovering Autonomous Driving Bugs through DrivingQuality-Guided Fuzzing CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 4: Enumeration of the object types, the attributes that are

irrelevant to the successful attack (✱, meaning that they can have

arbitrary values), and the attributes that should be controlled.

Bug #

Object type Irrelevant

Need to control

O P V C L S T W

01 ✱ ✱ ✱ L: be close to the path, S: height < 50cm
12, 19 ✱ ✱ ✱ ✱ T: cut in from side to dist < 1m
13, 26 ✱ ✱ ✱ ✱ T: approach from behind
14, 27 ✱ ✱ ✱ ✱ T: approach from side
15 ✱ ✱ ✱ ✱ L: located within 66cm range
18 ✱ ✱ ✱ ✱ L: located on sidewalk
21 ✱ ✱ ✱ ✱ T: drive at a similar speed alongside
25 ✱ ✱ ✱ ✱ L: located on the cross lane of intersection

[Object types] O: object / P: pedestrian / V: vehicle
[Attributes] C: color / L: location / S: shape / T: trajectory / W: weather

15.27 m

I llustrationDistance

16.0 m

(a) 16 m away (pass)

(b) 15.27 m away (pass)

15.26 m

(c) 15.27 m away (crash)

I llustrationDistance

14.6 m

(d) 15.27 m away (crash)

14.59 m

(e) 14.59 m away (stop)

I llustrationDistance

5 m

(f) 5 m away (stop)

Figure 5: Testing the variants of bug #15 by changing the distance of

the obstacle from the initial position of Autoware ego-vehicle. When

the obstacle is at a moderate distance (14.6–15.26 m), i.e., (c) and (d),

the ego-vehicle initiates a turn and hits the object, even though it

senses and perceives the existence of the object correctly.

lure the ego-vehicle to any location that has a certain property; any
downward slope of an angle greater than 30 degrees that abruptly
flattens at the end (bug #2), any location under a bridge that the ve-
hicle has already passed over, e.g., an underpass of an interchange
(bug #7), any destination at a location the ego-vehicle can suffi-
ciently accelerate before reaching it, e.g., the end of a long straight
road (bug #16), any 90-degree curve connecting the rightmost lanes,
which can be observed at most three-way or four-way intersections,
(bug #17), and puddles covering an area vehicle turns (bug #28, 29).
Bug #6 and #30 happen at arbitrary curves. Notably, bugs #10 and
#11 are the only bugs that require a specific location of the map,
and thus can be harder to exploit in the real world.
Summary. All 30 bugs except for two (#10 and #11) have a wide
window of exploitation in the input space that an adversary can
easily control in the real world to cause safety-critical misbehaviors.

6.4 Comparison with AV-Fuzzer

AV-Fuzzer [52] is a state-of-the-art ADS testing approach that mu-
tates the trajectory of two actor vehicles driving nearby, aiming to
detect vehicle-to-vehicle collisions. It uses the longitudinal distance
from the ego-vehicle to actor vehicles as a fitness function for the
mutation to create scenarios with smaller distances. It detected
five buggy scenarios: (1) hitting an overtaking vehicle, (2) hitting
another vehicle while trying to cut in, (3) hitting a vehicle that cuts
in, (4) rear-ending a suddenly braking vehicle, and (5) interpreting
two adjacent vehicles as one and hitting one.

Quantitative comparison. DriveFuzz was able to automatically
generate all five crash scenarios AV-Fuzzer found and success-
fully detected misbehaviors (bugs #12-14, 19, 21, 25-27). On the
other hand, AV-Fuzzer is bound to miss 26 out of 34 (76%) bugs
DriveFuzz found due to fundamental limitations in the design. We
discuss the reasons in the following, referring to the latest source
code of AV-Fuzzer3. First, the input space of AV-Fuzzer is a subset
of DriveFuzz’s driving scenarios. AV-Fuzzer divides a scenario
into five time-slices (line 10 in drive_experiment.py and lines 11-
34 in Chromosome.py), and randomly mutates the target speed and
the maneuver (e.g., go straight, change to the left lane, or change to
the right lane) (lines 203-234 in GeneticAlgorithm.py) of two hard-
coded actor vehicles (line 9 in drive_experiment.py), which always
start driving at fixed positions (lines 180-181 in simulation.py). In
contrast, DriveFuzz explores a multifaceted input space including
the mission, weather, locations, and trajectories of an unbounded
number of actor vehicles and/or pedestrians, and puddles. Second,
DriveFuzz detects not only collisions (to vehicles, people, and ob-
jects), but also safety-critical traffic violations (e.g., running red
lights) with the driving test oracles. However, AV-Fuzzer only con-
siders vehicle-to-vehicle collisions (lines 190-215 in simulation.py),
which is a subset of the misbehaviors DriveFuzz detects.
Qualitative comparison. In addition to the size of the input space
and the types of errors a fuzzer handles, the quality of fuzzing feed-
back is tightly coupled with the quality of bugs a fuzzer can detect.
As we discussed in §4.5.2, the feedback engine of DriveFuzz gen-
erates a fine-grained feedback of the recklessness by referring to
the physical vehicular states that is highly relevant to the targeted
misbehavior. For example, when mutating the input scenario that
triggered bug #29 in Table 3, DriveFuzz placed puddles at the loca-
tions that decreased the driving quality the most due to oversteering
and hard acceleration, and could eventually cause a misbehavior.
In the case of AV-Fuzzer, it only favors scenarios in which the
ego-vehicle gets closer to the actor vehicles, without considering
the physical states of the ADS. Unfortunately, merely reducing the
vehicular distance is not sufficient to find scenarios (such as the
one for bug #29) where no other vehicles are involved.

6.5 Correctness of Driving Test Oracles

The accuracy of misbehavior detection depends on the correctness
of the driving test oracles DriveFuzz leverages. We evaluate it by
injecting errors that cause the misbehavior that each oracle targets.
Table 5 shows each misbehavior and corresponding errors that are
injected to synthesize scenarios where each misbehavior must be
observed. For example, to test the collision oracle, the input mutator
is set to create a high-speed vehicle driving directly towards the
ego-vehicle at 100 different locations. After injecting each error,
we run DriveFuzz to check whether the intended misbehavior is
detected or not from each mutated scenario. Except for the four rare
false negatives caused by a known issue in CARLA’s lane invasion
sensor [18], the oracles never missed any misbehavior.

6.6 Correctness of Driving Quality Metrics

DriveFuzz analyzes the vehicle states to generate driving quality
feedback by detecting vehicular events. To ensure that DriveFuzz
3https://github.com/cclinus/AV-Fuzzer/tree/4f67868/freeway

https://github.com/cclinus/AV-Fuzzer/tree/4f67868/freeway

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan Kim

correctly implements the detection of each event, we tested the
feedback engine under a few synthesized experiments that are de-
signed to trigger the events. Due to space constraints, we show the
correctness of detecting the two most complicated events: under-
steer and oversteer, which require correct implementation of fuzzy
logic, and present the figures in Appendix C.
Understeer experiment. When understeer is triggered, a vehicle
cannot turn in the direction it desires, as the frontal grip is lost. The
situation can be contrived by placing a puddle at an intersection
where the vehicle has to make a turn because the steering will not
have any effect on turning the vehicle once it starts slipping (see
Figure 10). The feedback engine successfully detected such events
as shown in Figure 11, spotting the moments of understeer.
Oversteer experiment. If a vehicle with a non-zero yaw speed
enters a section of a road with reduced friction, tires easily lose grip
and cause the vehicle to oversteer. By synthesizing a scenario where
the ego-vehicle diagonally enters a puddle as shown in Figure 12,
we triggered oversteer and tested the feedback engine. As shown
in Figure 13, the feedback engine reliably detected the oversteers.

6.7 Effectiveness of Driving Quality Feedback

By associating the likelihood of observing misbehaviors with low
quality (e.g., reckless or clumsy) driving, the driving quality feed-
back prevents themutation engine from over-exploring less interest-
ing (i.e., hardly buggy) driving scenarios. As a result, it contributes
to the effectiveness of DriveFuzz in revealing more bugs within a
given time frame. To demonstrate this, we run two configurations
of fuzzers; one with the driving quality feedback (i.e., the proposed
setting) and the other without the feedback to fuzz Autoware start-
ing with the same seed scenario. As shown in Figure 6, DriveFuzz
with the feedback found an average of 19 misbehaviors, which are
caused by bugs #12–14 (Table 3) in different situations (note that the
initial seed scenario was the one that revealed bug #13). Meanwhile,
without any guidance, DriveFuzz blindly mutated scenarios and
only discovered an average of 10 misbehaviors, showing a signifi-
cant decline (-47%). The result substantiates the design choice of
DriveFuzz that favoring the scenarios with lower driving quality
results in a better chance of finding bugs.

6.8 Fuzzing Overhead

The total duration of one fuzzing round varies significantly depend-
ing on the length of a scenario and the existence of the bug since
buggy scenarios would terminate early. In our experiments, the
average throughput of DriveFuzz was 150 seconds per end-to-end
execution. Figure 7 presents the breakdown of the average time
spent by each module per fuzzing execution. The time required
by DriveFuzz-specific modules (white boxes) including mutation
engine, misbehavior detector, driving quality feedback engine, and
logger, only accounted for 6% of the total fuzzing time. The mu-
tation time includes time spent for retries to ensure semantically
correct scenarios (§4.2.3), where the number of retries ranged from
zero to 2K times (in an extreme case) with an average of 300 retries.

This is negligible compared to the simulation overhead (black
box), which dominates the overall fuzzing time (94%). Thus, employ-
ing a GPU with more computing power, or parallelizing the simula-
tions to multiple GPUs can contribute to resolving the inevitable

Table 5: Driving test oracles and the injected errors that trigger

each misbehavior. 100 different scenarios are created and tested for

each error (# TP: misbehavior was detected, # FN: oracle missed the

misbehavior). Wemanually confirmed that there was no false alarm.

Misbehavior Injected error # TP # FN

Collision Have a vehicle rear-end the ego-vehicle 100 0
Speeding Set target speed to above limit 100 0
Running red lights Disable traffic light detection 100 0
Immobility Disable control module 100 0
Lane invasion Force steer left 96 4

0
5
10
15
20
25

0 1 2 3 4 5 6

avg: 19

0 1 2 3 4 5 6

avg: 10

#
m
is
be
ha
vi
or
s

Fuzzing time (hour)

With feedback

1st
2nd
3rd

Fuzzing time (hour)

Without feedback

1st
2nd
3rd

Figure 6: Number of misbehaviors observed while fuzzing Autoware

for six hours with (left) and without (right) the driving quality feed-

back. Each configuration is repeated three times.

0.25
1
4
16
64
256

mutation detector feedback logging simulation
tim

e
(s
,l
og

sc
al
e)

2.16

0.13
0.28

6.3

141.3

Figure 7: Breakdown of the fuzzing time per round.

bottleneck. Moreover, although the throughput of DriveFuzz may
seem low compared to traditional fuzzing approaches that fea-
ture a high fuzzing speed, the use of a driving simulator enables
DriveFuzz to scale testing with significantly lower cost than phys-
ically testing autonomous vehicles (§4.3.2); we could detect all 34
bugs by running DriveFuzz for a week.

7 RELATEDWORK

Testing autonomous driving systems. Most existing approaches
focus on the white-box testing of individual layers: sensing [15, 33,
42], perception [67, 82, 87], and planning [16, 63, 83]. For example,
the series of works on the perception layer [67, 82, 87] tests the
robustness of the neural network model with synthetically trans-
formed camera images based on the model’s activation patterns.
PlanFuzz [83] tries to find denial of service vulnerabilities in the
planning layer by introducing physical objects into driving scenes
and guiding the input scenario generation based on the code execu-
tion that it monitors through instrumentation. Unlike these works,
DriveFuzz considers a targetADS as a whole system rather than fo-
cusing on a specific layer or problem. This holistic approach allows
us to find not only those bugs that individual layer testing covers,
but also other types of bugs with propagating impacts across multi-
ple layers that cause critical accidents. Besides, our approach does
not require the source code, instrumentation, or domain knowledge
of the target ADS in contrast to those white-box approaches.

A few testing works take a holistic approach similar to ours [35,
52]. The closest to our work is AV-Fuzzer [52]. AV-Fuzzermutates
the trajectory of nearby vehicles with an objective to find scenarios
where the ego-vehicle gets too close to them. Although conceptually
similar, its input dimension and the scope of safety violations are
a small subset of what DriveFuzz considers, as evaluated in §6.4.
Han et al. [35] propose an adversarial testing approach, which tests

DriveFuzz: Discovering Autonomous Driving Bugs through DrivingQuality-Guided Fuzzing CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

autonomous vehicles under rather unrealistic test cases (e.g., a static
obstacle suddenly appearing and disappearing). This approach does
not necessarily focus on the feasibility of exploiting the bugs from
the attacker’s perspective. In contrast, our approach focuses on
generating semantically valid test cases that attackers can exploit.

Fremont et al. [31] tackle the testing problem from a different
but complementary angle by applying a formal methods-based
approach. They focus on generating test cases that will run on a
real track based on the formal verification of driving scenarios,
rather than finding bugs in ADSes.
Adversarial example attacks. Many existing works focus on
finding adversarial attacks that deceive the machine learning model
of the perception layer [13, 17, 24, 39, 57, 75, 77, 79]. These attacks
input sensor data with carefully crafted perturbations to cause mis-
classification, such as camera images with a modified traffic sign, or
spoofed LiDAR data. Similar to the testing approaches on individual
layers, these works target a specific layer and problem; i.e., the lack
of robustness of machine learning model in the perception layer.
Complementary to these works, the goal of DriveFuzz is finding
vulnerabilities in any layer of an ADS regardless of their location.
Coverage-guided fuzzing. Many existing fuzzers are geared to-
wards improving bug detection abilities across various domains. In
previous studies, some focus on improving the code coverage feed-
back [2, 3, 86], while others retrieve more advanced information
(e.g., data flow) to handle systems in new domains or platforms (e.g.,
drone control) [22, 23, 27, 29, 43, 46–48, 65, 70, 76]. Unfortunately,
none of these approaches can be directly applied to ADSes as they
are designed to find typical software bugs only (e.g., memory safety
violation), relying on obvious symptoms of program failures (e.g.,
segmentation faults) and general code coverage to guide the input
mutation. To address this limitation, DriveFuzz is designed specifi-
cally for holistically fuzzing ADSes leveraging new test oracles and
quality metrics that focus on driving semantics and vehicle states.

8 DISCUSSION AND FUTUREWORK

Fidelity of simulation. Despite a potential gap between the sim-
ulated and real environments, the use of high-fidelity simulation
brings the quality of test cases in close proximity to that of phys-
ical testing and significantly enhances the quality of automated
ADS testing over existing methods. This is also demonstrated by
the fact that DriveFuzz discovers 33 new ADS and simulator bugs
in the corner case driving scenarios that existing testing methods
could not attempt to generate. 10 (out of 33 reported) bugs have
been acknowledged by the ADS developers, and most are readily
exploitable with concrete attacks by an adversary as we demon-
strate in §6.3. More importantly, it not only enables a full degree of
automation, but also provides other practical benefits, such as low
cost and safety of testing, in comparison with physical testing with
real vehicles. It is also supported by the fact that majorADS vendors
rely heavily on simulators to develop and test their systems before
physical testing [37, 84]. In our future work, we plan to reproduce
the ADS issues in this paper with a real autonomous vehicle.
Definition of good/bad behaviors. Defining good and bad behav-
iors is challenging as it is a subjective matter that depends on the
circumstance and the intent of the behaviors. For example, Crossing
a yellow line at a two-lane expressway is considered an infraction,

while it is circumstantially benign if it is to avoid a collision with
an object, e.g., a vehicle blocking the road. In light of this, we made
the misbehavior oracles configurable so that they can be adjusted
per target. In addition, when misbehaviors are detected,DriveFuzz
generates detailed reports with all sensor data including the camera
feed, so that users can further reconfigure and fine-tune the oracles.
Extensibility of DriveFuzz. DriveFuzz is designed with an ex-
tensibility in mind; the mutation engine, misbehavior detector, and
driving quality feedback engine are generic, operating indepen-
dently of the ADS under test. In addition, the test executor, which
bridges the ADS with the simulator and DriveFuzz, supports ROS
to maximize the compatibility with the ROS-based systems. This is
showcased by testing a ROS-based system, Autoware in §6.
Limitation. Our driving quality-based feedback directsDriveFuzz
to scenarios where an ADS performs unsafe maneuvers. We have
proven that such feedback is effective in triggering misbehavior
that we target. However, similar to most feedback-driven fuzzers
that register a specific fitness function as a feedback, DriveFuzz
can have a local optima problem [54], i.e., reaching a local optimum
in the search space as a result of feedback guidance, and ends up
missing other potential bugs that are less related to the feedback.

In addition, there may exist attacks that do not affect the driv-
ing quality score but still cause misbehaviors. For example, if an
adversary draws a fake curved lane on a straight road and misleads
an ADS to invade a sidewalk, the driving quality score can still be
good if an ego-vehicle seamlessly follows the fake lane, while the
resulting circumstance is a lane invasion. As a mitigation, we can
extend and diversify the driving quality score metrics, e.g., consid-
ering the adherence to the original plan, to deal with the bugs that
are not necessarily coupled with clumsy driving behaviors.

9 CONCLUSION

This paper presents DriveFuzz, an end-to-end fuzzing framework
designed to find bugs in all layers of ADSes that are readily ex-
ploitable by attackers. DriveFuzz detects bugs by (1) automatically
generating and mutating high-fidelity driving scenarios, (2) check-
ing for safety-critical misbehaviors using driving test oracles con-
trived by studying real-world traffic rules, and (3) measuring our
novel driving quality score by inspecting the vehicle states and
using it as feedback to guide the mutation engine towards buggy
scenarios. DriveFuzz has found 17 new bugs in Autoware, 13 bugs
in Behavior Agent, and three bugs in the simulator, showing that
it can discover bugs in all layers of the tested system. Our study
shows that the bugs we found can be triggered by only controlling
legitimate inputs and cause devastating vehicle accidents.

ACKNOWLEDGMENT

We thank the anonymous reviewers, and our shepherd, Ziming
Zhao, for their insightful feedback. This work was supported in
part by the University of Texas at Dallas Office of Research through
the NFRS program, Texas A&M Engineering Experiment Station
on behalf of its SecureAmerica Institute, Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No.2022-0-00745, The
Development of RansomwareAttack Source Identification andAnal-
ysis Technology), and a gift from Cisco Systems.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan Kim

A SEED GENERATION AND VERIFICATION

We present our seed generation and verification process in Al-
gorithm 2, which can be performed without substantial domain
knowledge of a particular ADS.
Seed construction. Our seed scenarios are created on top of the
maps CARLA provides (https://carla.readthedocs.io/en/0.9.10/core_
map/), which have various road components (e.g., lanes, junctions,
traffic lights) along with static objects such as trees and build-
ings. Specifically, we first selected five common components of the
road system; urban street, highway, interchange, intersection, and
roundabout. For each of the five road components, we select 𝑛𝑠 = 8
missions, in which the mission (line 10) consisting of the initial po-
sition (𝑝𝑖) and the goal position (𝑝𝑔) requires either driving within
or around the component. Other than having the pre-selected map
and mission assigned, each seed driving scenario is in a clean slate,
having no other actors (line 11) or puddles (line 12) with sunny
weather (line 13).
Checking the validity of seeds. The legitimacy of all 40 seeds
is verified (line 18) prior to fuzzing by dry-running the target ADS
with the seed scenario (line 19) and confirming that it successfully
completes the mission (line 20).
Examples. Figure 8 shows concrete examples of the seed scenarios
generated and verified through the aforementioned procedure. The
black circles indicate the predefined valid waypoints in the CARLA
map (please note that the number and density of the waypoints
shown are greatly reduced for an illustration purpose). A random
waypoint can be retrieved by get_random_position_near() func-
tion in Algorithm 2. The yellow arrow connecting the blue (initial
position, 𝑝𝑖) with the red circles (goal position, 𝑝𝑔) indicates the
mission assigned to each seed scenario.

Algorithm 2: Seed generation and verification
Input :𝐶 - a set of road components

= {𝑢𝑟𝑏𝑎𝑛,ℎ𝑖𝑔ℎ𝑤𝑎𝑦, 𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑𝑎𝑏𝑜𝑢𝑡 },
𝑛𝑠 - # scenarios per road component

Output :𝑆 - a set of seed scenarios
1 procedure 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑠𝑒𝑒𝑑 ()
2 foreach 𝑐𝑜𝑚𝑝 ∈ 𝐶 do

3 for 𝑖 ← 1 to 𝑛𝑠 do

4 while 𝑡𝑟𝑢𝑒 do

5 𝑝𝑖 ← 0 // initial position
6 𝑝𝑔 ← 0 // goal position
7 while 𝑝𝑖 == 𝑝𝑔 do

8 𝑝𝑖 ← 𝑔𝑒𝑡_𝑟𝑎𝑛𝑑𝑜𝑚_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑛𝑒𝑎𝑟 (𝑐𝑜𝑚𝑝)
9 𝑝𝑔 ← 𝑔𝑒𝑡_𝑟𝑎𝑛𝑑𝑜𝑚_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑛𝑒𝑎𝑟 (𝑐𝑜𝑚𝑝)

10 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ← {𝑝𝑖 , 𝑝𝑔 }
11 𝑎𝑐𝑡𝑜𝑟𝑠 ← ∅
12 𝑝𝑢𝑑𝑑𝑙𝑒𝑠 ← ∅
13 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 ← 𝑠𝑢𝑛𝑛𝑦

14 𝑠𝑒𝑒𝑑 ←
𝑖𝑛𝑖𝑡_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑎𝑐𝑡𝑜𝑟𝑠, 𝑝𝑢𝑑𝑑𝑙𝑒𝑠, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟)

15 if 𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 {𝑠𝑒𝑒𝑑 } == 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then

16 break

17 𝑆 ← 𝑆 ∪ 𝑠𝑒𝑒𝑑

18 procedure 𝑣𝑒𝑟𝑖 𝑓 𝑦_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (𝑠)
19 𝑠𝑡𝑎𝑡𝑒𝑠 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟 .𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 (𝑠)
20 if 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 .𝑐ℎ𝑒𝑐𝑘_𝑚𝑖𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 (𝑠𝑡𝑎𝑡𝑒𝑠) == 𝑓 𝑎𝑙𝑠𝑒 then

21 return 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 // seed mission successfully completed
22 else

23 return 𝑟𝑒𝑡𝑟𝑦 // seed mission failed

(a) Example seed scenario at urban streets

(b) Example seed scenario at a highway

(c) Example seed scenario at a cloverleaf interchange

(d) Example seed scenario at an intersection

(e) Example seed scenario at a roundabout

Figure 8: Example seed scenario at each road component.

https://carla.readthedocs.io/en/0.9.10/core_map/
https://carla.readthedocs.io/en/0.9.10/core_map/

DriveFuzz: Discovering Autonomous Driving Bugs through DrivingQuality-Guided Fuzzing CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

B ON THE EFFECTIVENESS OF CODE

COVERAGE-BASED METRICS

As we discuss in §4.5, the coverage-based feedback of traditional
grey-box fuzzers (e.g., AFL [86]) is less effective in estimating the
effectiveness of test driving scenarios when testing a distributed and
stateful system, because the behavior of such system is dominantly
driven by the data being communicated between distributed nodes,
rather than the control flow.

We demonstrate this in Figure 9, which shows the code cover-
age measured using the gcov coverage test program while fuzzing
Autoware for six hours. Since AFL cannot be directly applied to
testing Autoware, we measured the code coverage while fuzzing
with DriveFuzz. Even though the code coverage was quickly satu-
rated at approximately 32%, the ego-vehicle showed a wide variety
of behaviors driving in the mutated scenarios after it reached the
saturation point, e.g., navigating through different parts of the map,
and exhibited multiple misbehaviors including collisions and speed
limit violations. The uncovered code included unused and irrel-
evant portions of Autoware, such as visualization, graphic user
interface (GUI), and unused modules (e.g., alternative controllers).
This substantiates our claim that code coverage is not an effective
metric to approximate the test coverage in finding bugs of ADSes.

0

10

20

30

40

0 30 60 90 120 150 180 210 240 270 300 330 360

Co
ve
ra
ge

(%
)

Fuzzing time (min)

Figure 9: Change of code coverage while fuzzing Autoware for six

hours with DriveFuzz.

C FIGURES FOR DRIVING QUALITY METRICS

CORRECTNESS EVALUATION

Figure 10∼13 show the correctness of driving quality metrics. They
are omitted in §6.6 due to the space.

(a) Frame 1 (b) Frame 150 (c) Frame 178 (d) Frame 220

Figure 10: Simulated scenario of the understeer experiment. At the

frame 150, the vehicle enters the puddle (the blue box) while turning

left to get to the destination. At the frame 178, the vehicle is sliding

out to the right even though it tries to turn left, and at the frame

220, the vehicle exits the puddle right before invading the sidewalk.

0
0.02
0.04
0.06
0.08
0.1

0
2
4
6
8
10

−60
−40
−20

0
20
40
60

0
5
10
15
20
25
30

0

1

0 50 100 150 200 250

FD
U
SI

SW
A
(𝑑
𝑒
𝑔
)

𝑉
𝑥
(𝑘
𝑚
/ℎ

)
U
nd

er
st
ee
r

frame #

Figure 11: Fractional drop (𝐹𝐷) of the lateral acceleration (𝐴𝑦), un-

dersteer indicator (𝑈𝑆𝐼), steering wheel angle (𝑆𝑊𝐴), longitudinal

speed (𝑉𝑥), and final understeer detection throughout the scenario

shown in Figure 10. The blue dotted lines shown in the 𝑆𝑊𝐴 (10

deg) and𝑉𝑥 (5 𝑘𝑚/ℎ) graphs are activation thresholds;𝑈𝑆𝐼 combined

with 𝑆𝑊𝐴 and𝑉𝑥 above thresholds lead to final understeer calls at

the frames 177, 178, and 197 (marked by dashed vertical lines).

(a) Frame 1 (b) Frame 58 (c) Frame 108 (d) Frame 185
Figure 12: Simulated scenario of the oversteer experiment. At the

frame 58, the vehicle enters the puddle (the blue box) with a non-

zero yaw speed (𝑉𝑥). At the frame 108, the rear end of the vehicle

rotates counter-clockwise even though the steering amount small.

The rotation stops, but the vehicle continues to slide until it reaches

the end of the puddle at the frame 185.

0
0.2
0.4
0.6
0.8
1

0
0.05
0.1
0.15
0.2

0
10
20
30
40
50
60

0
5
10
15
20
25
30

0
2
4
6
8
10

0

1

0 50 100 150 200 250

𝑑
𝑆
𝑊

𝐴
(𝑑
𝑒
𝑔
)

𝑑
𝐴
𝑦
(𝑔
𝑠
)

𝐴
𝑉
𝑧
(𝑑
𝑒
𝑔
/𝑠
)

𝑉
𝑥
(𝑘
𝑚
/ℎ

)
O
SI

O
ve
rs
te
er

frame #

Figure 13: Difference of lightly- and heavily-filtered steering wheel

angles (𝑑𝑆𝑊𝐴), difference of filtered lateral acceleration (𝑑𝐴𝑦), yaw

speed (𝐴𝑉𝑧), longitudinal speed (𝑉𝑥), oversteer indicator (𝑂𝑆𝐼), and

final oversteer detected in the scenario shown in Figure 12. When

the vehicle starts to oversteer at the frame 108 as the rear-end loses

grip and slips out, and when the state exacerbates at the frame 114,

the oversteer events are detected (marked by dashed vertical lines).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan Kim

REFERENCES

[1] 2008. National Motor Vehicle Crash Causation Survey: Report to Congress. Tech-
nical Report. National Highway Traffic Safety Administration, United States
Department of Transportation.

[2] 2017. LibFuzzer – a library for coverage-guided fuzz testing. https://llvm.org/
docs/LibFuzzer.html.

[3] 2018. syzkaller - kernel fuzzer. https://github.com/google/syzkaller.
[4] 2019. Baidu Apollo: An Open Autonomous Driving Platform. http://apollo.auto/.
[5] 2020. The Autoware Foundation. https://www.autoware.org/.
[6] Michael Aeberhard, Thomas Kühbeck, Bernhard Seidl, M Friedl, J Thomas, and

O Scheickl. 2015. Automated Driving with ROS at BMW. ROSCon 2015 Hamburg,
Germany (2015).

[7] Allstate. 2021. Drivewise from Allstate. https://www.allstate.com/drive-wise.
aspx.

[8] Jeffery R Anderson and E Harry Law. 2011. Fuzzy Logic Approach to Vehicle
Stability Control of Oversteer. SAE International Journal of Passenger Cars-
Mechanical Systems 4 (2011), 241–250.

[9] Associated Press News. 2020. 3 Crashes, 3 Deaths Raise Questions About Tesla’s
Autopilot. https://apnews.com/ca5e62255bb87bf1b151f9bf075aaadf.

[10] Association for Standardization of Automation and Measuring Systems. 2021.
ASAM OpenDRIVE. https://www.asam.net/standards/detail/opendrive/.

[11] BBC News. 2019. Tesla Model 3: Autopilot Engaged during Fatal Crash. https:
//www.bbc.com/news/technology-48308852.

[12] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2017).

[13] Adith Boloor, Karthik Garimella, Xin He, Christopher Gill, Yevgeniy Vorobey-
chik, and Xuan Zhang. 2020. Attacking Vision-Based Perception in End-to-End
Autonomous Driving Models. Journal of Systems Architecture 110 (2020).

[14] Assaf Botzer, Oren Musicant, and Yaniv Mama. 2019. Relationship between
Hazard-perception-test Scores and Proportion of Hard-braking Events during
On-Road Driving – An investigation Using a Range of Thresholds for Hard-
braking. Accident Analysis & Prevention 132 (2019).

[15] Alberto Broggi, Michele Buzzoni, Stefano Debattisti, Paolo Grisleri, Maria Chiara
Laghi, Paolo Medici, and Pietro Versari. 2013. Extensive Tests of Autonomous
Driving Technologies. IEEE Transactions on Intelligent Transportation Systems 14,
3 (2013), 1403–1415.

[16] Alessandro Calò, Paolo Arcaini, Shaukat Ali, Florian Hauer, and Fuyuki Ishikawa.
2020. Generating Avoidable Collision Scenarios for Testing Autonomous Driving
Systems. In Proceedings of the IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST 2020).

[17] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Ram-
pazzi, Qi Alfred Chen, Kevin Fu, and Z Morley Mao. 2019. Adversarial Sensor
Attack on LiDAR-Based Perception in Autonomous Driving. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security (CCS
2019).

[18] CARLA simulator. 2021. Lane invasion detector. https://carla.readthedocs.io/en/
0.9.11/.

[19] Marco Ceccarelli. 2004. Fundamentals of the mechanics of robots. In Fundamen-
tals of Mechanics of Robotic Manipulation. Springer, 73–240.

[20] Ching-Yao Chan. 2017. Advancements, Prospects, and Impacts of Automated
Driving Systems. International Journal of Transportation Science and Technology
6, 3 (2017), 208–216.

[21] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. DeepDriving:
Learning Affordance for Direct Perception in Autonomous Driving. In Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV 2015).

[22] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin, Xi-
aoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-
based Fuzzing. In Proceedings of the 25th Network and Distributed System Security
Symposium (NDSS 2018).

[23] Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen, Xinyu Xing,
Long Lu, and Bing Mao. 2019. PTrix: Efficient Hardware-Assisted Fuzzing for
COTS Binary. In Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security (ASIACCS 2019).

[24] Alesia Chernikova, Alina Oprea, Cristina Nita-Rotaru, and BaekGyu Kim. 2019.
Are Self-Driving Cars Secure? Evasion Attacks against Deep Neural Networks
for Steering Angle Prediction. In Proceedings of the 2019 IEEE Security and Privacy
Workshops (SPW 2019).

[25] SAE On-Road Automated Vehicle Standards Committee. 2014. Taxonomy and
Definitions for Terms Related to Driving Automation Systems for On-Road Motor
Vehicles. Technical Report.

[26] Thomas A. Dingus, Sheila G. Klauer, Vicki Lewis Neale, Andy Petersen, Suzanne E.
Lee, Jeremy Sudweeks, Miguel A. Perez, Jonathan Hankey, David Ramsey, San-
tosh Gupta, C. Bucher, Zachary Doerzaph, J. Jermeland, and Ronald Knipling.
2006. The 100-car Naturalistic Driving Study, Phase II-results of the 100-car Field
Experiment. Technical Report. National Highway Traffic Safety Administration,

United States Department of Transportation.
[27] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle Zeng, Alexandros

Kapravelos, Gail-Joon Ahn, Tiffany Bao, Ruoyu Wang, Adam Doupé, and Yan
Shoshitaishvili. 2021. Favocado: Fuzzing the Binding Code of JavaScript Engines
Using Semantically Correct Test Cases. In Proceedings of the 28th Network and
Distributed System Security Symposium (NDSS 2021).

[28] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning (CoRL 2017).

[29] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri de Ruiter, Konstanti-
nos Sagonas, and Juraj Somorovsky. 2020. Analysis of DTLS Implementations
Using Protocol State Fuzzing. In Proceedings of the 29th USENIX Security Sympo-
sium (USENIX Security 2020).

[30] McKinsey Center for Future Mobility. 2019. The Future of Mobility Is at Our
Doorstep. (2019).

[31] Daniel J. Fremont, Edward Kim, Yash Vardhan Pant, Sanjit A. Seshia, Atul Acharya,
Xantha Bruso, Paul Wells, Steve Lemke, Qiang Lu, and Shalin Mehta. 2020. For-
mal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the
Real World. In In Proceedings of the 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC 2020).

[32] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Alfred
Chen. 2020. A Comprehensive Study of Autonomous Vehicle Bugs. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE
2020).

[33] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are We Ready for Au-
tonomous Driving? The Kitti Vision Benchmark Suite. In Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012).

[34] Bart LJ Gysen, Jeroen LG Janssen, Johannes JH Paulides, and Elena A. Lomonova.
2009. Design Aspects of an Active Electromagnetic Suspension System for Au-
tomotive Applications. IEEE Transactions on Industry Applications 45, 5 (2009),
1589–1597.

[35] Jia Cheng Han and Zhi Quan Zhou. 2020. Metamorphic Fuzz Testing of Au-
tonomous Vehicles. In Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops (ICSEW 2020).

[36] Andrew Hill, Mark S. Horswill, John Whiting, and Marcus O. Watson. 2019.
Computer-Based Hazard Perception Test Scores Are Associated with the Fre-
quency of Heavy Braking in Everyday Driving. Accident Analysis & Prevention
122 (2019), 207–214.

[37] WuLing Huang, Kunfeng Wang, Yisheng Lv, and FengHua Zhu. 2016. Au-
tonomous Vehicles Testing Methods Review. In Proceedings of the IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC 2016).

[38] Seok-Hwan Jang, Tong-Jin Park, and Chang-Soo Han. 2003. A Control of Vehicle
Using Steer-by-Wire System with Hardware-in-the-Loop Simulation System. In
Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelli-
gent Mechatronics (AIM 2003).

[39] Pengfei Jing, Qiyi Tang, Yuefeng Du, Lei Xue, Xiapu Luo, Ting Wang, Sen Nie,
and Shi Wu. 2021. Too Good to Be Safe: Tricking Lane Detection in Autonomous
Driving with Crafted Perturbations. (2021).

[40] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, and Myoungho Sunwoo.
2014. Development of autonomous car—Part I: Distributed system architecture
and development process. IEEE Transactions on Industrial Electronics 61, 12 (2014),
7131–7140.

[41] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, and Myoungho Sunwoo.
2015. Development of autonomous car—Part II: A case study on the implementa-
tion of an autonomous driving system based on distributed architecture. IEEE
Transactions on Industrial Electronics 62, 8 (2015), 5119–5132.

[42] Maria Jokela, Matti Kutila, and Pasi Pyykönen. 2019. Testing and Validation
of Automotive Point-cloud Sensors in Adverse Weather Conditions. Applied
Sciences 9, 11 (2019).

[43] Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa
Bertino. 2020. ATFuzzer: Dynamic Analysis Framework of AT Interface for
Android Smartphones. Digital Threats: Research and Practice 1, 4 (2020).

[44] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya Takeda,
and Tsuyoshi Hamada. 2015. An Open Approach to Autonomous Vehicles. IEEE
Micro 35, 6 (2015), 60–68.

[45] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato
Hirabayashi, Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii,
and Takuya Azumi. 2018. Autoware on Board: Enabling Autonomous Vehi-
cles with Embedded Systems. In Proceedings of the ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS 2018).

[46] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. 2019. Touching the Un-
touchables: Dynamic Security Analysis of the LTE Control Plane. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy (S&P 2019).

[47] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. 2019. Finding Semantic Bugs in File Systems with an Extensible Fuzzing
Framework. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 147–161.

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/syzkaller
http://apollo.auto/
https://www.autoware.org/
https://www.allstate.com/drive-wise.aspx
https://www.allstate.com/drive-wise.aspx
https://apnews.com/ca5e62255bb87bf1b151f9bf075aaadf
https://www.asam.net/standards/detail/opendrive/
https://www.bbc.com/news/technology-48308852
https://www.bbc.com/news/technology-48308852
https://carla.readthedocs.io/en/0.9.11/
https://carla.readthedocs.io/en/0.9.11/

DriveFuzz: Discovering Autonomous Driving Bugs through DrivingQuality-Guided Fuzzing CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[48] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu, Gregory
Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu. 2019. RVFuzzer: Find-
ing Input Validation Bugs in Robotic Vehicles Through Control-Guided Testing.
In Proceedings of the 28th USENIX Security Symposium (USENIX Security 2019).

[49] Sheila G. Klauer, Thomas A. Dingus, Vicki L. Neale, Jeremy D. Sudweeks, and
David J. Ramsey. 2009. Comparing Real-world Behaviors of Drivers with High
Versus Low Rates of Crashes and Near Crashes. Technical Report.

[50] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2018).

[51] Philip Koopman and Michael Wagner. 2016. Challenges in Autonomous Vehicle
Testing and Validation. SAE International Journal of Transportation Safety 4, 1
(2016), 15–24.

[52] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Ku-
mar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar Iyer. 2020. AV-FUZZER:
Finding Safety Violations in Autonomous Driving Systems. In Proceedings of
the IEEE 31st International Symposium on Software Reliability Engineering (ISSRE
2020).

[53] EK Liebemann, KMeder, J Schuh, and G Nenninger. 2004. Safety and performance
enhancement: The Bosch electronic stability control (ESP). SAE Paper 20004,
2004 (2004), 21–0060.

[54] Valentin JM Manès, Soomin Kim, and Sang Kil Cha. 2020. Ankou: Guiding Grey-
box Fuzzing Towards Combinatorial Difference. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. 1024–1036.

[55] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. 2019. The Art, Science,
and Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering
(2019).

[56] Wassim G Najm, John D Smith, and Mikio Yanagisawa. 2007. Pre-Crash Scenario
Typology for Crash Avoidance Research. Technical Report. National Highway
Traffic Safety Administration, United States Department of Transportation.

[57] Ben Nassi, Dudi Nassi, Raz Ben-Netanel, Yisroel Mirsky, Oleg Drokin, and Yuval
Elovici. 2020. Phantom of the ADAS: Phantom Attacks on Driver-Assistance
Systems. (2020).

[58] National Highway Traffic Safety Administration (NHTSA). 2018. Traffic
Safety Facts 2018 Data: Speeding. https://crashstats.nhtsa.dot.gov/Api/Public/
ViewPublication/812932.

[59] BBC News. 2016. Google Self-driving Car Hits a Bus. https://www.bbc.com/
news/technology-35692845.

[60] BBC News. 2016. Uber in Fatal Crash Had Safety Flaws Say US Investigators.
https://www.bbc.com/news/business-50312340.

[61] Vilém Novák, Irina Perfilieva, and Jiri Mockor. 2012. Mathematical Principles of
Fuzzy Logic. Vol. 517. Springer Science & Business Media.

[62] Takashi Ogawa and Kiyokazu Takagi. 2006. Lane Recognition using On-Vehicle
LiDAR. In Proceedings of the 2006 IEEE Intelligent Vehicles Symposium (IV 2006).

[63] Hiroki Ohta, Naoki Akai, Eijiro Takeuchi, Shinpei Kato, and Masato Edahiro.
2016. Pure Pursuit Revisited: Field Testing of Autonomous Vehicles in Urban
Areas. In Proceedings of the IEEE 4th International Conference on Cyber-Physical
Systems, Networks, and Applications (CPSNA 2016).

[64] National Committee on Uniform Traffic Laws and Ordinances. 1972. Traffic Laws
Annotated. National Committee on Uniform Traffic Laws and Ordinances.

[65] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.
Parmesan: Sanitizer-Guided Greybox Fuzzing. In Proceedings of the 29th USENIX
Security Symposium (USENIX Security 2020).

[66] Chinmay Pandit. 2013. A Model-Free Approach to Vehicle Stability Control. Mas-
ter’s thesis. Clemson University.

[67] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP 2017).

[68] Progressive. 2021. Snapshot Rewards You for Good Driving. https://www.
progressive.com/auto/discounts/snapshot/.

[69] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. 2009. ROS: An Open-Source Robot
Operating System. In ICRA 2009 Workshop on Open Source Software in Robotics.

[70] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
Proceedings of the 24th Network and Distributed System Security Symposium (NDSS
2017).

[71] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke,
Mārtin, š Možeiko, Eric Boise, Geehoon Uhm, Mark Gerow, Shalin Mehta, Eu-
gene Agafonov, Tae Hyung Kim, Eric Sterner, Keunhae Ushiroda, Michael Reyes,
Dmitry Zelenkovsky, and Seonman Kim. 2020. LGSVL Simulator: A High Fidelity
Simulator for Autonomous Driving. In Proceedings of the IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC 2020).

[72] Root Insurance. 2021. Test Drive and Save. https://www.joinroot.com/test-drive/.
[73] Young-Woo Seo and Ragunathan Rajkumar. 2014. Tracking and Estimation of

Ego-Vehicle’s State for Lateral Localization. In Proceedings of the 17th International
IEEE Conference on Intelligent Transportation Systems (ITSC 2014).

[74] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. 2017. AirSim:
High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Pro-
ceedings of the 11th Conference on Field and Service Robotics (FSR 2017).

[75] Junjie Shen, Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen. 2020. Drift
with Devil: Security of Multi-Sensor Fusion based Localization in High-Level
Autonomous Driving under GPS Spoofing. In Proceedings of the 29th USENIX
Security Symposium (USENIX Security 2020).

[76] Zisis Sialveras and Nikolaos Naziridis. 2015. Introducing Choronzon: An Ap-
proach at Knowledge-Based Evolutionary Fuzzing. Proceedings of ZeroNights
2015.

[77] Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir
Rahmati, Florian Tramèr, Atul Prakash, and Tadayoshi Kohno. 2018. Physical
Adversarial Examples for Object Detectors. In Proceedings of the 12th USENIX
Workshop on Offensive Technologies (WOOT 2018).

[78] State Farm. 2021. Drive Safe & Save Program. https://www.statefarm.com/
insurance/auto/discounts/drive-safe-save.

[79] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. 2020. Towards
Robust LiDAR-Based Perception in Autonomous Driving: General Black-Box Ad-
versarial Sensor Attack and Countermeasures. In Proceedings of the 29th USENIX
Security Symposium (USENIX Security 2020).

[80] The Autoware Foundation. 2021. Autoware Story. https://www.autoware.org/
visionandmission.

[81] The Mercury News. 2018. Tesla: Autopilot Was On During Deadly Mountain
View Crash. https://www.mercurynews.com/2018/03/30/tesla-autopilot-was-on-
during-deadly-mountain-view-crash/.

[82] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Auto-
mated Testing of Deep-Neural-Network-driven Autonomous Cars. In Proceedings
of the 40th International Conference on Software Engineering (ICSE 2018).

[83] Ziwen Wan, Junjie Shen, Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi Ma, and
Qi Alfred Chen. 2022. Too Afraid to Drive: Systematic Discovery of Semantic DoS
Vulnerability in Autonomous Driving Planning under Physical-World Attacks.
In Network and Distributed System Security (NDSS) Symposium, 2022.

[84] Waymo. 2020. Off road, but not offline: How simulation helps advance ourWaymo
Driver. https://blog.waymo.com/2020/04/off-road-but-not-offline--simulation27.
html.

[85] Lotfi A Zadeh. 1988. Fuzzy Logic. Computer 21, 4 (1988), 83–93.
[86] Michal Zalewski. 2014. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.
[87] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.

2018. DeepRoad: GAN-based Metamorphic Testing and Input Validation Frame-
work for Autonomous Driving Systems. In Proceedings of the 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2018).

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812932
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812932
https://www.bbc.com/news/technology-35692845
https://www.bbc.com/news/technology-35692845
https://www.bbc.com/news/business-50312340
https://www.progressive.com/auto/discounts/snapshot/
https://www.progressive.com/auto/discounts/snapshot/
https://www.joinroot.com/test-drive/
https://www.statefarm.com/insurance/auto/discounts/drive-safe-save
https://www.statefarm.com/insurance/auto/discounts/drive-safe-save
https://www.autoware.org/visionandmission
https://www.autoware.org/visionandmission
https://www.mercurynews.com/2018/03/30/tesla-autopilot-was-on-during-deadly-mountain-view-crash/
https://www.mercurynews.com/2018/03/30/tesla-autopilot-was-on-during-deadly-mountain-view-crash/
https://blog.waymo.com/2020/04/off-road-but-not-offline--simulation27.html
https://blog.waymo.com/2020/04/off-road-but-not-offline--simulation27.html
http://lcamtuf.coredump.cx/afl

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Design
	4.1 Overview of DriveFuzz
	4.2 Mutation Engine
	4.3 Test Executor
	4.4 Misbehavior Detector
	4.5 Driving Quality Feedback Engine

	5 Implementation
	6 Evaluation
	6.1 Detected Misbehaviors
	6.2 Case Study
	6.3 Feasibility of Bug Exploitation
	6.4 Comparison with AV-Fuzzer
	6.5 Correctness of Driving Test Oracles
	6.6 Correctness of Driving Quality Metrics
	6.7 Effectiveness of Driving Quality Feedback
	6.8 Fuzzing Overhead

	7 Related Work
	8 Discussion and Future Work
	9 Conclusion
	A Seed generation and verification
	B On the effectiveness of code coverage-based metrics
	C Figures for Driving Quality Metrics Correctness Evaluation
	References

