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ABSTRACT

Malware written in dynamic languages such as PHP routinely
employ anti-analysis techniques such as obfuscation schemes and
evasive tricks to avoid detection. On top of that, attackers use
automated malware creation tools to create numerous variants
with little to no manual effort.

This paper presents a system called Cubismo to solve this press-
ing problem. It processes potentially malicious files and decloaks
their obfuscations, exposing the hiddenmalicious code intomultiple
files. The resulting files can be scanned by existing malware detec-
tion tools, leading to a much higher chance of detection. Cubismo
achieves improved detection by exploring all executable statements
of a suspect program counterfactually to see through complicated
polymorphism, metamorphism and, obfuscation techniques and
expose any malware.

Our evaluation on a real-world data set collected from a commer-
cial web hosting company shows that Cubismo is highly effective
in dissecting sophisticated metamorphic malware with multiple
layers of obfuscation. In particular, it enables VirusTotal to detect
53 out of 56 zero-day malware samples in the wild, which were
previously undetectable.
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1 INTRODUCTION

Web-based malware, particularly server-side malware, is one
of the most prevalent security threats nowadays. Numerous re-
ports describe the prevalence of server-side malware. Sucuri, a firm
specializing in managed security and system protection, analyzed
34,371 infected websites and reported that 71% of those contained
PHP-based, hidden backdoors [52]. Incapsula discovered that out
of 500 infected websites detected on their network, the majority
of them contained PHP malware [27]. Verizon’s 2017 Data Breach
reported that a sizable number of web server compromises are a
means to an end, allowing attackers to set up for other targets [26].

This prevalence is in part because server-side malware is typ-
ically equipped with advanced anti-analysis and anti-debugging
techniques such as obfuscation and metamorphism. These tech-
niques are implemented using dynamic language features such as
dynamic code generation (e.g., eval), creating several challenging
analysis problems [25, 31].

Detecting server-side malware is a hard problem.While there are
a handful of malware detection tools, most of them are signature-
based tools that are ineffective in detecting polymorphic and meta-
morphic malware. Specifically, the signatures are extracted from
known malware samples and the given target malware by aggregat-
ing particular patterns (e.g., byte patterns) and keywords found in
the samples. The detectors then compare the signatures to identify
malware.

To avoid detection, server-side malware uses various obfuscation
techniques, such as polymorphism and dynamic code generation,
to produce malware that has a different signature from the origi-
nal code. Moreover, attackers leverage various tools that generate
malware variants with little to no effort, also making the signature-
based approaches less effective [40, 49, 55].

From our experience in analyzing various real-world malware
samples, we have observed that many malware are equipped with
multiple obfuscation layers (e.g., constructing calls to eval() dy-
namically) and various evasive techniques (e.g., requiring a particu-
lar input to trigger the malware). Obfuscation techniques enable
malware to thwart analysis and detection by static analysis tools,
while evasive techniques hide malicious behaviors behind compli-
cated logic to prevent dynamic analysis.

Moreover, we have observed that many malware samples found
in the wild turn out to be variants of the same family, but with dif-
ferent obfuscation techniques applied. Interestingly, while existing
malware detectors are not able to detect the obfuscated malware
variants, they do recognize deobfuscated malware samples, indicat-
ing that obfuscation techniques are effective at thwarting detection
tools in practice.
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As a result, we hypothesize that revealing malicious code hidden
behind anti-analysis techniques such as obfuscation and metamor-
phism is a key challenge in detection of server-side web malware.
Unfortunately, dynamic analysis or static analysis alone is not able
to handle this challenge. Specifically, dynamic analysis techniques
can handle obfuscations but not evasive techniques. On the other
hand, while static analysis can handle evasive tricks, it has difficulty
handling obfuscation.

We propose a fully automated system, Cubismo, that more effec-
tively uncloaks sophisticated server-side malware by neutralizing
anti-analysis tricks such as obfuscation and metamorphism. Specif-
ically, we aim to resolve parts of malware that hinder analysis and
detection. In particular, we identify blocks of code that are hiding
their original intention (i.e., via obfuscation). We then resolve (i.e.,
counter) evasion tricks to expose hidden malicious logic (e.g., often
by executing the code). The exposed malicious code is then used to
create new malware files by replacing the decoding and dynamic
execution sequence with the deobfuscated code.

Given a program, Cubismo1 analyzes the program to break it
into small pieces, reveals the real intentions of these pieces, then
reassembles the revealed intentions into the original program. The
reassembled program essentially depicts the target program from
multiple perspectives to present diverse aspects of the target. We
call this analysis Cubist Program Analysis as inspired by cubist art
which aims to present a subject from a multitude of viewpoints to
show the piece in a greater context.

Our extensive evaluation results show that Cubismo is highly
effective in revealing malicious code hidden behind sophisticated
obfuscation and evasive techniques, boosting the effectiveness of ex-
isting malware detectors to find 53 new zero-day malware samples.
The major contributions of this research are as follows:

• A fully automated method for decloaking obfuscated code
and exposing evasive malicious behavior, called Cubist Pro-
gram Analysis (CPA).

• Development of a prototype system called Cubismo that
employs CPA and can be integrated into existing malware
detectors, resulting in more accurate malware detection.

• An evaluation of Cubismo using a large corpus of real-world
website deployments that shows Cubismo is effective in
enabling VirusTotal to detect 53 out of 56 zero-day malware
samples found in the dataset, with no false positives.

2 BACKGROUND

In this section, we provide background information on server-
side malware and state-of-the-art malware detection tools, and we
explain the challenges in detecting server-side malware.

2.1 Server-side Malware

Server-side malware aims to infect a server system (e.g., a web
server). PHPmalware is themost prevalent form ofmalware that tar-
gets web servers [26]. A distinctive characteristic of PHP malware
is that it requires intervention, either via a victim user browsing the
infected website to trigger execution or via an attacker manually

1Cubismo is a Spanish word for cubism. This paper is inspired by cubist art which
analyzes multiple aspects of an object, breaks them down, and reassembles them for
presentation.

triggering the malware. PHPmalware often checks a handful of con-
ditions (e.g., checking a particular input is provided by an attacker)
to decide whether to expose malicious behavior/logic. Moreover,
PHP malware actively leverages PHP’s dynamic language features
(e.g., eval()) to make analysis difficult. From our study of real-
world malware (§6), we find that the majority of existing malware
detectors is unable to detect obfuscated malware, even if its original
malware itself is already known to be malicious.

2.2 Challenges

In this section, we enumerate three major challenges in detecting
web server-side malware. These challenges motivate Cubismo’s
design.
Challenge 1: Multiple Layers of Obfuscation and Dynamic

Constructs. PHPmalware heavily leverages obfuscation techniques,
often using multiple layers of obfuscations to thwart static analy-
sis’s ability to recognize malicious code. As a result, many malware
detectors decide to simply flag obfuscated files as malware. How-
ever, this strategy suffers from false positives as there are benign
applications that use obfuscation techniques to protect intellectual
property (e.g., source code or key algorithms) [29, 62].

PHP also supports various dynamic constructs that can cre-
ate and modify program code introspectively (e.g., Reflection,
eval() or include()). These dynamic constructs are commonly
used in malware to implement obfuscation techniques. Moreover,
PHP also provides methods to alter the current running program
code, such as modifying and removing methods at runtime. This
self-modification allows malware to delete or alter the critical code
under analysis. Furthermore, PHP allows indirect and dynamic call-
ing of functions (or methods) via a string variable that holds their
name. Such features make it further challenging to statically reason
about the code.

In short, static analysis based techniques are ineffective in an-
alyzing malicious code hidden behind obfuscation. Note that 2
and 6 in Fig. 1-(a) are obfuscated. Static analysis techniques fail
to see malicious code through the obfuscated blocks (depicted as
✕ marks) in Fig. 1-(b).
To solve this problem, dynamic analysis based approaches are

proposed. These approaches execute programs and observe their
behavior to determine whether a target program is malicious. How-
ever, they are commonly thwarted by evasive logic in malware
(details in challenge 2 below).
Challenge 2: Evasive Logic in Malware. Malware (including
non-PHP malware) commonly leverages evasive techniques to hide
malicious behaviors. Specifically, they often check host environ-
ment variables and client versions to identify which vulnerability
they want to exploit [54]. In Fig. 1-(a), there are two obfuscated
basic blocks ( 2 and 6 ) and to exercise both of them within an
execution, the execution should satisfy the condition x = 1 ( 1 )
and y != 1 ( 4 ). In addition, note that the obfuscated block 2 ( 6 )
is dependent on the obfuscated block 1 ( 2 ), meaning that without
a proper execution of the block 1, the block 2 would not execute as
intended. While resolving the satisfying condition is trivial in this
example, conditions can be arbitrarily complex in practice, making
analysis challenging. As a result, simple dynamic analysis is often
unable to completely expose hidden malicious code. Fig. 1-(c) and
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Figure 1: Limitations of Static and Dynamic Analysis
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(d) illustrate that dynamic analysis techniques can only see the pro-
gram from a specific execution path, missing potentially malicious
code.

Moreover, executing code blocks does not always lead to suc-
cessful analysis. For example, in Fig. 1, block 6 ’s execution is
dependent upon code executed in block 2 , meaning that if block
2 is emitted from a dynamic execution, block 6 will not expose
any malicious behavior (denoted with the yellow exclamation).
Challenge 3: AutomatedTools forMalwareCreators.Another
challenge in detecting web server malware is that there are many
automated tools used by attackers to create and obfuscate mal-
ware [40, 55]. In practice, attackers can easily generate a number of
malware variants automatically with diverse obfuscations within
the origin malware itself. Detectors often rely on known signatures
of malware and heuristics that detect keywords and patterns of
malicious code which can be easily changed by applying a simple
obfuscation. As even a very small change (e.g., changing a vari-
able/function name) in malware results in a different signature,
such detectors have fundamental difficulty in catching up with the
growing number of newmalware variants. Note that our evaluation
results also echo the prevalence of such malware variants. Specif-
ically, we find many malware variants in the wild, are generated
from a few original malware samples (§ 6.4).
Summary. Table 1 summarizes the effectiveness of different anal-
ysis techniques in handling the three challenges. We group exist-
ing malware detection techniques into three categories: signature-
based, static analysis based, and dynamic analysis based. Signature-
based techniques represent tools that utilize signatures (e.g., key-
words and patterns in malware) to detect malware. Static analysis

based techniques syntactically analyze malicious programs without
running malware. Dynamic analysis based techniques run malware
and monitor malicious behaviors exhibited at runtime.

Obfuscation Evasive Techs Auto. Tools

Signature-based ✕ △ ✕
Static Analysis ✕ ⃝ △

Dynamic Analysis △ ✕ ⃝

* ✕: Ineffective, △: Partially effective, ⃝: Effective.
Table 1: Effectiveness of Malware Detection Techniques.

As shown in Table 1, signature-based techniques are not effective
in handling obfuscation and dynamic constructs (Challenge 1) as
well as malware variant generation tools (Challenge 3) because even
a small change in malware variants may change its signature. Static
analysis based techniques are effective in handling evasive tech-
niques (Challenge 2) (e.g., complex predicates that mask malicious
behaviors at runtime) while they have difficulty handling sophis-
ticated obfuscations and identifying generated malware variants
(Challenge 1 and 3). Dynamic analysis based techniques are effec-
tive in handling malware variant generation tools and obfuscation
(Challenge 1 and 3) while they are often ineffective in analyzing
evasive logic (Challenge 2).

3 SCOPE OF WORK

Cubismo is a system that reveals malicious code in malware
and presents them as multiple files which can then be fed into
existing malware detectors or analysis tools. It is important to
mention that Cubismo itself is not a malware detection technique
and it does not decide whether a given program is malware or not.
Given an unknown malware, even after Cubismo reveals all the
malicious behaviors, it is possible that all existingmalware detection
techniques are not able to detect the malware. In such case, it does
not mean Cubismo is ineffective. It rather suggests that the existing
detectors are unable to identify the given malware, indicating that it
might be a completely newmalware sample (i.e., zero-day malware).

Given a target program, Cubismo may generate multiple deob-
fuscated files if the target contains multiple layers of obfuscation
or multiple instances of dynamic code generations (e.g., eval()).
To confidently decide whether the given program is malicious or
not, malware detectors need to scan all of the generated files. Hence,
it often requires more time to scan all the files. Note that the goal
of this paper is to create a practical automated system that exposes
malicious code of malware for existing malware detector tools, not
optimizing the detection pipeline. However, it should be obvious
that one could prioritize and parallelize the scanning process to
optimize performance.

4 OVERVIEW

Fig. 2 shows a typical workflow of Cubismo. Given an input PHP
file, Cubismo exposes hidden program code blocks and merges each
discovered hidden code block into the original input program to
create a new output file. Note that it is important to merge deobfus-
cated code back to the original program because deobfuscated code
alone may not form a complete malware. Given N revealed code
blocks, Cubismo generates N output files. The output files are then
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fed into an existing malware detector such as VirusTotal [1]. If any
of them are flagged as malware, the input file is likely malware.

Figure 2: Workflow of Cubismo
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…
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(a)	Cubism	Program	Analysis (b)	Leveraging	Existing	Tools

…

5 DESIGN

Fig. 3 shows the architecture of Cubismo. It consists of three
phases: normalization (§ 5.1), counterfactual execution (§ 5.2), and
code generator (§ 5.3).
Phase 1: Normalization. Cubismo statically parses the given in-
put file to obtain an Abstract Syntax Tree (AST) of the input pro-
gram. The AST is then normalized (e.g., pruning deprecated func-
tionality, removing syntactically invalid statements). This normal-
ized AST is then used in subsequent analyses instead of the original
file, and is the output of this phase.
Phase 2: Counterfactual execution. Cubismo dynamically ex-
ecutes the input program under a controlled environment (i.e., a
sandbox) to reveal malicious code. To enhance the code coverage
that is a fundamental limitation of dynamic analysis, Cubismo lever-
ages a dynamic analysis technique called counterfactual execution
that drives executions into all observable control paths regardless
of the predicate conditions (i.e., without solving the predicate con-
ditions) to discover hidden malicious code and obtain decloaked
ASTs.
Phase 3: Code generator. Cubismo creates multiple output pro-
gram files from decloaked ASTs. The output files can then be fed
into existing malware detection (or analysis) tools.

5.1 Normalization

Cubismo first parses an input program and obtains Abstract
Syntax Tree (AST) of the program. During this process, certain parts
of the code that do not affect the semantics such as deprecated code,
syntactically invalid statements, extra whitespaces, and comments
are pruned out.

Cubismo creates a one-to-one mapping between AST and code
(which is useful when decloaking parts of the code) so that de-
cloaked code can be properly merged back to the original AST to
create multiple decloaked ASTs.

Fig. 4 shows an example of the normalization process. Given a
difficult-to-read original program (Fig. 4-(a)), Cubismo parses it into
an AST which is then used to create a normalized program (Fig. 4-
(b)). Note that each statement is now on a separate line and some of
PHP specific tags such as the closing tag (“?>”) are removed, as they
do not change the semantics of the original program in modern
PHP syntax.

Based on our evaluations, we noticed that the normalization
process in itself sometimes enhances detection results of existing
detectors. Enhanced detect can occur because some malware de-
tectors use subsequences of malware source code as a signature
and some malware variants intentionally insert unnecessary code
snippets (e.g., adding comments and closing tags) to break these
signatures.

Malicious code is typically ill-formatted. More often than not,
malicious code is injected in the middle of a benign file by the
attackers, in a single line of code that constitutes several statements,
using old PHP features to ensure portability. Moreover, maliciously
crafted statements may break specific PHP parsers while they can be
properly executed. For example, Fig. 5-(a) is a PHP program that
contains namespaces. Note that it contains a line of comment outside
of the namespaces (Line 13). The program runs correctly without
any errors. However, PHP-Parser [44], a widely used parser for PHP
programs, fails to parse the program, resulting in an error [16]. The
normalization process removes the comment as shown in Fig. 5-(b),
allowing the parser to parse the program without errors.

5.2 Counterfactual Execution

To expose hidden malicious code effectively, Cubismo system-
atically explores multiple execution paths of the target program
to handle evasive techniques and obfuscation. Traditionally, ex-
ploring various execution paths requires either knowing various
inputs to drive the execution paths or applying symbolic execution
to resolve the predicate conditions [15]. However, due to, in part,
the dynamic nature of PHP language and the sheer complexity of
modern PHP programs including malware (e.g., reliance on sev-
eral external applications and services in control-flow decisions),
it is challenging to identify sufficient inputs or resolve predicate
conditions via symbolic execution.

Instead, we leverage a concept called counterfactual execution
which systematically explores all executable statements. It neither
requires any inputs of the program, nor is based on symbolic ex-
ecution which has difficulty handling a large number of complex
conditions in real-world PHP programs.

Counterfactual execution enables discovery of parts of code that
would not be accessible in a vanilla dynamic analysis [48]. Specifi-
cally, counterfactual execution (1) forcibly drives an execution into
branches even if the branch conditions are not satisfied, (2) past
exit nodes so that it can execute the pieces of code that are not
normally covered, and (3) continuing executions when exceptions
occur. It enables us to unwrap, decode, and expose the original code
of obfuscated and encoded code.
Malicious Code Discovery in Dynamic Languages. Counter-
factual execution shares the idea of forcing executions into all
possible branches with multi-path exploration [36] and forced exe-
cution [34]. However, counterfactual execution differs from them in
that it focuses on discovery of new code in addition to exploring all
possible paths. Specifically, counterfactual execution treats dynamic
constructs such as eval(), include(), and dynamic function calls,
each of which might lead to discovery of new files and generation
of new paths along the program execution, specially. It does so
by creating nested isolated program states every time a branch
or dynamic construct is encountered. The isolated states not only
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Figure 3: Architecture of Cubismo
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<?php
error_reporting(0);@ini_set('erro
r_log',NULL);@ini_set('log_errors
',0);@ini_set('display_errors','O
ff');@eval(base64_decode('aWYobWQ
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ni_restore('error_log');@ini_rest
ore('display_errors'); ...
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<?php
error_reporting(0); 
@ini_set('error_log',NULL); 
@ini_set('log_errors',0); 
@ini_set('display_errors','Off'); 
@eval(base64_decode('aWYobWQ1KCRf
UE9TVFsicGYiXSkgPT09ICI5M2FkMD...
sgfSA7fTsNCiB9DQoNCiB9')); 
@ini_restore('error_log');
@ini_restore('display_errors'); 
...
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Figure 5: Crash Inducing Program for PHP-Parser

<?php
namespace A {

class ClassA {
function funcA() { 

... 
} 

}
}
namespace {

$a = new \A\ClassA();
...

}
// Comment to break parser
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<?php
namespace A {

class ClassA {
function funcA() { 

... 
} 

}
}
namespace {

$a = new \A\ClassA();
...

}
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(b)	Normalized	Program
(No	Crash)

Normalization

ensure integrity of program state, they also enable continuation of
execution past exceptions and fatal errors (by creating new isola-
tions with negated error conditions). Moreover, PHP malware often
uses nested predicates with dynamic constructs, making analysis at-
tempts by symbolic execution approaches particularly challenging.
Specifically, resolving string arguments of dynamic constructs (e.g.,
eval()) is a challenging problem in symbolic approaches. Counter-
factual execution does not have such problems as it forcibly drives
execution paths regardless of predicate conditions and handles run-
time faults that can be caused by the forced execution paths via its
sandboxed fail-free environment. When there is a runtime error or
an exception that may terminate the execution, Cubismo creates
a new nested isolated program state and continues the execution.
Loops and recursive calls can also hinder analysis. We handle them
by limiting the number of iterations and recursions (e.g., 100 itera-
tions/recursion in this paper). For example, if a loop iterates more
than 100 times, we terminate the loop by manipulating its control
flow.
Sharing Artifacts between Isolated Executions.A vital feature
of counterfactual execution is that it enables sharing of discovered
artifacts throughout isolated executions. Database connections, file

pointers, network connections, function and class redefinitions and
system resources are among the artifacts that can be procured and
shared via counterfactual execution. The importance of this artifact
sharing is shown in Fig. 1, where the obfuscated code in block
6 requires a key obtained in block 2 to decloak itself. Without
counterfactual execution forcing itself into block 2 to discover
and share the key, counterfactual execution of block 6 will yield
no malicious code.

When counterfactual execution encounters a dynamic construct
statement, it checks if other isolated executions have different defi-
nitions for the statement (e.g., including different files via include
or creating different dynamic code). If they do, counterfactual ex-
ecution creates new isolated execution for each of the definitions
from other isolated executions using the current execution context.
We find that such new executions contribute to the discovery of
new statements, resulting in the discovery of a significant propor-
tion of the program code. Indeed our evaluation show that vanilla
multi-path exploration (without sharing analysis results between
explored paths) discovers 36,034 statements in Wordpress (a popu-
lar PHP application), whereas counterfactual execution discovers
58,786 statements, 63% more code.

Figure 6: Example of Counterfactual Execution Discovering

Malicious Code

if (!isset($_GET[1]))
die(“Invalid Access”);

if ($_GET[1]==$password) {
decode_malicious();
if (ip2long($_SERVER[...]) 

<=$IP)    
copy_the_malware();

} else 
do_benign();

...
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Robust Sandbox. Counterfactual execution is also bundled with
a robust sandbox to prevent malicious behavior from affecting the
host system, while guarding against reflective and introspective be-
havior. Counterfactual execution sandboxes more than 50 functions
and classes of the original interpreter to make it ever harder for the
malware to recognize it is being analyzed by Cubismo. Counter-
factual execution analyzes dynamically generated code recursively
until it comprehensively covers all possible dynamically gener-
ated code. PHP malware actively leverages recursive dynamic code
generation.
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Figure 7: Decloaking Process Example
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Running Example. Consider the code in Fig. 6-(a). Line 1 checks
if an input is provided to the script. When no input is available,
line 2 exits the script (die() is the exit expression in PHP). Line
3 checks if the provided input is the expected password. If not, it
executes benign statements on line 8 and exits. If the password is
provided correctly, it decodes and executes malicious code (e.g.,
sending spam mails) on line 4. Then, it checks the range of client’s
IP address. If it is lower than a certain IP (e.g., $IP on line 5), it
copies the malware which is another malicious activity (controlled
spreading of the malware).

A naive dynamic analysis is unable to expose the malicious
behavior as it is not able to drive execution past lines 2 and 3 (Dyn.
in Fig. 6-(b)), missing the entire malicious logic.

5.3 Code Generator

For each decloaked AST, we generate a program file by travers-
ing the tree. The generated program is different from the original
program in two ways. First, it is based on the normalized AST from
the first phase. The generated file may have different syntactic fea-
tures such as indentations, whitespaces and line count. Second, it
contains the decloaked version of obfuscated code in the original
file, i.e., the respective parts of the AST that deobfuscate and ex-
ecute dynamic code are replaced by the actual executed dynamic
code.
Decloaking Process Example. Fig. 7 shows how Cubismo re-
veals malicious code in malware. First, Cubismo first normalizes
the original input program and obtains its AST. Then, Cubismo
uses the counterfactual execution to expose malicious code pieces.
Specifically, whenever Cubismo executes dynamic constructs (e.g.,
Decoder 1 ( A ) in Fig. 7-(a)) that are used for deobfuscation, it
replaces the resulting deobfuscated code ( B and C ) with the orig-
inal (obfuscated) code as depicted in Fig. 7-(b). Malware may also
include multiple layers of obfuscations. For instance, Fig. 7-(b)’s
deobfuscated code includes another piece of nested obfuscated code
(Obfuscated Code 2) and its decoder (Decoder 2) ( C ).

Cubismo repeatedly executes dynamic constructs (i.e., deobfusca-
tor) until it does not observe any new resolvable dynamic construct.
For instance, it executes the decoder 2 ( C ) to get the deobfuscated
code 2 in Fig. 7-(c) and stops there as there is no more decoders

that can expand code. Note that even if there is the decoder 1, exe-
cuting it does not lead to newly observable code. Cubismo stops
its exploration when arguments of dynamic constructs are attacker
controlled inputs (e.g., eval($_GET[$var])). As a program con-
taining dynamic constructs with inputs from untrusted sources (e.g.,
other websites) is generally considered malicious (e.g., web shell
malware), Cubismo intentionally leaves such dynamic execution
code intact so that detectors can use them to detect malware. For
example, a malware detector that is aware of Decoder 2 (i.e., having
a signature of Decoder 2) can detect the program after the first
obfuscation layer (annotated with 1 ) while it cannot detect the
program after the second obfuscation layers (Fig. 7-(c)) as Decoder
2 is removed after its execution (annotated with 2 ).

A malicious program may also alter itself in order to hinder
analysis tools. For instance, after the deobfuscation in Fig. 7-(b),
Decoder 2 is removed ( 2 ) and is not a part of the program any more
in Fig. 7-(c) ( D ). In PHP, alternation can be done by using the built-
in tokenizer and code inspection and modification functions, which
can remove an existing function in the current program. Because
of these self-modifying behaviors, the last deobfuscated file does
not always contain all malicious code snippets. It is also noteworthy
that the obfuscations can be nested, and by unwrapping one layer
of obfuscation, Cubismo can observe a new obfuscation in the
generated code. There can be an arbitrary number of obfuscation
layers.

6 EVALUATION

We evaluated Cubismo in order to answer the following research
questions.
RQ 1. How effective is Cubismo in revealing malware disguised
behind multiple layers of obfuscation? (§ 6.1)
RQ 2. Does Cubismo cause false positives on benign files? (§ 6.2)
RQ 3.What is the performance overhead? (§ 6.3)
RQ 4. How effective is Cubismo in handling real-world malware?
(§ 6.4)
Experiment Setup. All experiments are run on an iMac 27" 2017
base model, running macOS 10.14.1 and PHP version 7.2. Samples
were submitted to VirusTotal (VT) [1] via its API. Submissions are
done in parallel and submitted samples are processed within a small
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time window (i.e., in a few minutes), reducing the side effects of
our submission to the VT. As for each malware, the submissions
are analyzed within a few minutes, we did not observe anti-virus
engines in VT changing their behaviors because of our submissions
(i.e., learn new malware samples because of our submission). From
our experience, such learning behaviors happens a few days (e.g., 3-
5 days) after the first submission. For example, many VT anti-virus
engines were able to detect malware samples a few days after our
submissions that they were not able to detect initially, .

Dataset Selection. To evaluate the effectiveness of Cubismo in
practice, we leverage a large data set of real-world websites de-
ployed in the wild obtained from a web hosting company, that
maintains nightly backups of over 400,000 websites [2]. For each
backup, Linux Malware Detector [47] is used to scan every file in
the backup. Any website included in our dataset had at least one file
flagged as malware. Hence, the dataset includes both benign and
malicious PHP files, some of which are flagged by Linux Malware
Detector. The total size of the dataset is 1TB including more than 3
million files. We filtered non-program files which are not the focus
of this work, by parsing every file in the dataset and looking for
PHP code in the parse tree, resulting in approximately 700k files.

From the 700k files, we selected files including dynamic code exe-
cution constructs (such as eval(), create_function(), include(),
etc.), totaling 1,269 files with dynamic constructs. Note that this
selection was static. We selected files that had dynamic code gen-
eration and execution constructs in their parse tree. We realized
that a static filtering may not precisely identify all files containing
dynamic features. However, we did this filtering to obtain a reason-
able data set that includes PHP malware, and it was not meant to
be exhaustive.

From the 1,269 files, we removed duplicate files, resulting in
1,040 unique files. These files were then all submitted to VT to get
a baseline for detection. All but 352 (i.e., 688) files were detected by
VT as previously known malware.

From the undetected 352 files, we manually inspected all files to
obtain 56 malicious files. The 56 unique malicious files are zero-day
PHP malware that are not detected by VT, and are the basis of this
evaluation. We also manually selected 100 benign files from the
remaining files for false positive evaluations (§ 6.2).

6.1 Decloaking Real-world Malware

By processing the 56 malware samples through Cubismo, we
obtained 200 decloaked sample files that can be scanned bymalware
detection tools. We used VirusTotal (VT) as our malware detection
oracle in this work, even though there are some other PHP mal-
ware detection tools [20, 43, 47]. VirusTotal is an aggregate virus
scanning engine that scans submitted files with up to 60 different
anti-virus engines, and aggregates the detection results.

The 200 files consisted of 56 original malware samples (which
were undetected by VT), 56 normalized versions of the same mal-
ware samples, and 1 to 4 additional decloaked files per malware
sample (depending on how many layers of obfuscation could be
decloaked). All of these files were submitted to VT for scanning,
and Table 2 shows the results. Each cell in the table shows how
many engines in VT detected a particular file as malicious. Note

that there are malware samples employing multiple obfuscation
layers (namely m2, m34, m40, m45) to hide malicious behavior.
Observations. First, normalization is necessary in detecting real-
world malware samples that actively exploit ill-formatted code
snippets. Specifically, several malware samples (namely m1, m10,
m14, m19, m33, m36, m38, m42 and m53) are detected after normal-
ization, even before decloaking. Our further investigations revealed
that this is due to the fact that normalization fixes several dubious
syntax issues present in the original malware.

Second, scanning each deobfuscated layer is necessary for accu-
rate detection. Specifically, in some malware samples such as m21,
we saw that decloaking the last obfuscation layer enables several
more engines to detect maliciousness, jumping from 1 detection
at first decloaking layer to 5 in the second layer. In other samples
such as m34, we observed that the third decloaking layer results
in no more engines discovering the maliciousness. This result is
because the engines that detect malicious behavior on first and
second decloaking layers have signatures for detecting obfuscation,
which are removed from the code gradually. However, on the last
(fourth) deobfuscation, a new engine recognizes the (now revealed)
maliciousness. The same pattern can be observed on m40 where
detection goes from 3 to 1, and then back to 3. Complementary
to this behavior, samples such as m11, m14 and m33 go from 3 de-
tections on the first deobfuscation layer to 1 on the second layer.
These patterns establish that no particular layer is always the most
suitable for detection, and best result is achieved by scanning results
of all decloaking layers.

Third, there are 3 samples that are not flagged as malware even
after the decloaking: m17, m27 and m50. These samples are true
zero-days, i.e., no signature exists for them, and thus even after
decloaking, the malicious behavior is not detected.

6.2 Cubismo on Benign Applications

To evaluate whether Cubismo introduces false positives in de-
tection, as previously noted, we manually selected 100 benign PHP
files from our dataset that included dynamic code generation and
execution. Additionally, we randomly selected 200 files from Word-
press to evaluate whether Cubismo causes false positives in benign
applications. These samples were decloaked using Cubismo and
submitted to VT, along with their normalized and original versions.
None of these samples and their different versions were flagged
as malicious by VT (i.e., no false positives). Note that, for benign
applications, Cubismo simply unfolds the dynamic constructs if
possible, without changing any semantics. In benign applications,
dynamically generated code should also be benign (e.g., they should
not form webshells). Hence, we argue that doing so is unlikely to
cause false positives (FP). Even if it does cause false positives, it
means that malware detectors contain wrong signatures.

6.3 Performance

The execution times on Table 3 show that counterfactual execu-
tion typically takes around 20 milliseconds (ms) per sample. Some
samples need up to 740 ms to completely decloak themselves. The
average execution time is 52 ms. Scan times vary among different
underlying scan engines. Antivirus engines typically take 10 to 120
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Table 2: Results of Scanning Decloaked Malware Samples with VirusTotal

Orig. Norm. Layer 1 Layer 2 Layer 3 Layer 4 Orig. Norm. Layer 1 Layer 2 Layer 3 Layer 4

m1 0 1 2 – – – m29 0 0 1 1 1 –
m2 0 0 1 1 1 2 m30 0 0 1 – – –
m3 0 0 1 – – – m31 0 0 1 – – –
m4 0 0 1 – – – m32 0 0 1 – – –
m5 0 0 1 1 – – m33 0 1 3 1 – –
m6 0 0 1 – – – m34 0 0 1 1 0 1
m7 0 0 1 1 – – m35 0 0 1 – – –
m8 0 0 1 – – – m36 0 1 1 – – –
m9 0 0 1 – – – m37 0 0 1 – – –
m10 0 1 1 – – – m38 0 1 1 – – –
m11 0 0 3 1 – – m39 0 0 1 – – –
m12 0 0 1 – – – m40 0 0 3 1 3 3
m13 0 0 1 – – – m41 0 1 1 – – –
m14 0 1 3 1 – – m42 0 1 1 – – –
m15 0 0 1 – – – m43 0 0 1 1 1 –
m16 0 0 1 1 – – m44 0 0 1 1 – –
m17 0 0 0 0 – – m45 0 0 1 1 1 1
m18 0 0 1 – – – m46 0 0 1 – – –
m19 0 1 1 – – – m47 0 0 1 – – –
m20 0 0 1 1 1 – m48 0 0 1 – – –
m21 0 0 1 5 – – m49 0 0 1 1 – –
m22 0 0 2 2 – – m50 0 0 0 – – –
m23 0 0 1 – – – m51 0 0 1 – – –
m24 0 0 1 – – – m52 0 0 1 – – –
m25 0 0 3 – – – m53 0 1 2 1 – –
m26 0 0 1 1 – – m54 0 0 1 – – –
m27 0 0 0 0 – – m55 0 0 1 – – –
m28 0 0 1 – – – m56 0 0 1 – – –

Figure 8: Malware Sample with Multiple Layers of Obfuscations

<?php
error_reporting(0); 
@ini_set('error_log',NULL); 
@ini_set('log_errors',0); 
@ini_set('display_errors','Off'); 
@eval(base64_decode(' 
aWYobWQ1KCRfUE9TVFsicGYiXSkgPT09I
CIuLi...DQ4YzJOeWFYQi4uLkwySnZaSG
srUEM5b2RHMXNQZzBLIikpOw==')); 
@ini_restore('error_log');
@ini_restore('display_errors'); 
...

1
2
3
4
5
6

7
8
9

(a) Normalized Program

<?php
error_reporting(0); 
@ini_set('error_log',NULL); 
@ini_set('log_errors',0); 
@ini_set('display_errors','Off'); 
if(md5($_POST["pf"]) === "...") 

eval(base64_decode($_POST["..."])); 
...
if($patchedfv === "..." ) {

@ob_end_clean();  die;   
}
eval(base64_decode("JHVFUkN6ID0gJys9I
FpYUy4uLj...ka0N4dE9KT2prcigpOyA=")); 
@ini_restore('error_log');
@ini_restore('display_errors'); 
...

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

<?php
error_reporting(0); 
@ini_set('error_log',NULL); 
@ini_set('log_errors',0); 
@ini_set('display_errors','Off'); 
if(md5($_POST["pf"]) === "...") 

eval(base64_decode($_POST["..."])); 
...
if($patchedfv === "..." ) {

@ob_end_clean();  die;   
}
$uERCz = '+= ZXS...>68,Q;';
$kCxtOJOjkr = $uERCz('', '8ZfCK<:.> 
==72-XE08...RA715e<Ei>Z5M83fSbQ:O');
$kCxtOJOjkr();
@ini_restore('error_log');
@ini_restore('display_errors'); 
...

40
41
42
43
44
45
46
47
48
49
40
41
42

43
44
45
46

(b) Deobfuscated Program 1 (c) Deobfuscated Program 2

…

ms to scan each individual file. Another factor impacting perfor-
mance is that each file is converted into multiple files, each of which
need to be scanned by the underlying detection engine. With an
average of 4 files per malware sample, underlying engine scan times
can take from 40 to 480 ms, on average. The decloaking process
would then be adding 11% to 130% runtime overhead. However,
these times are only applicable for files that include dynamic code
generation. For memory space overhead, counterfactual execution
needs less than 200MB of memory.

6.4 Case Study

Wedissect two real-worldmalware samples thatCubismo reveals
their hidden malicious code to show the effectiveness.

6.4.1 Exposing Multiple Layers of Malware. Fig. 8 shows a zero-
day malware sample with multiple obfuscation layers. Fig. 8-(b)
shows its first deobfuscated layer. Specifically, line 6 in Fig. 8-(a) is

deobfuscated to lines 15-22 in Fig. 8-(b). Note that from a single line,
multiple lines (i.e., lines 15-22) are generated. Then, Fig. 8-(c) repre-
sents another deobfuscated piece of code from Fig. 8-(b). Note that
while Fig. 8-(b) has multiple instances of dynamic constructs (e.g.,
eval()) on lines 16 and 21, only the eval() on line 21 is deobfus-
cated. This obfuscation occurs because eval() on line 16 depends
on an attacker provided input which cannot be resolved. Interest-
ingly, we observed a unique obfuscation technique on lines 41-43 in
Fig. 8-(c). When executed, the malware generates another eval()
function with base64_encoding. We omit the details about sub-
sequent obfuscation layers due to space constraints.
Analysis.We scanned each obfuscated program with VirusTotal
(VT). Note that submissions of the deobfuscated files are done in
parallel within a small time window (i.e., in a few seconds). The
deobfuscated program 1 (Fig. 8-(b)) is flagged as malware by one
tool called bkav [10], showing that resolving obfuscation layers via
Cubismo is effective in practice.



Cubismo: Decloaking Server-side Malware via Cubist Program Analysis ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

The deobfuscated program 2 (Fig. 8-(c)), however, is not detected
as malware due to the new code generated from the previous pro-
gram (Fig. 8-(b)), resulting in a different signature. Note that the
deobfuscated program 2 is not flagged while it includes malicious
code from the deobfuscated program 1which was already detected as
malware. This result essentially shows that the detection accuracy
of the underlying tools is very sensitive to changes in the target
program, suggesting a fundamental limitation of signature based
techniques.

Malware detectors detect the following layers’ deobfuscated code
after the deobfuscated program 2 as malware. It also shows that
on each obfuscated layer, different malicious code and obfuscation
techniques can be used. As malware detectors may only recognize
some of those techniques, analyzing individual deobfuscated layer
independently can increase the chance to detect malware compared
to analyzing the last deobfuscated layer. Note that the deobfuscation
process may remove or alter the program itself. Hence, the last
deobfuscated file may not include all the malicious code.

6.4.2 Handling Variants of Existing Malware.
Fig. 9-(a) shows the one malware sample which has many poly-

morphic variants throughout the data set. The code decompresses a
string that represents a zip stream returned from the base64_decode
function on line 2. Then, the eval function on line 3 dynamically
runs the decompressed string. The size of the original malware
sample is 34 KB, and is simplified in the figure.

Note that an automated tool can easily be used to create the vari-
ants shown in Fig. 9-(b), (c), and (d). The variants are semantically
identical. Each variant has only two polymorphic differences: (1)
the value of $s_pass (lines 10, 20, and 30) which is essentially a
hashed password used by the malware, and (2) the means of split-
ting the string used in eval() (lines 11, 21, and 31). It is trivial
to create a new password hash and to split a string into multiple
substrings with different lengths, which are essentially the only
two changes used to automate this process.
Detecting Malware via Cubismo. Fig. 9-(e) shows the deobfus-
cated malware from the variants decloaked through Cubismo. The
malware contains HTML tags on lines 41-42 (in $buff) as well as
lines 45-48. The malware is a popular webshell called b374k [5],
which provides ssh-like access to the web server via a web interface.

We used VT to scan the original malware and 10 different vari-
ants generated in the same fashion as shown in Fig. 9-(b), (c), and
(d). Only one engine (bkav [10]) detected the original malware.
Consequently, none of the 60 malware detectors in VT were able
to detect any of the polymorphic variants, showing the effective-
ness effective of a simple polymorphic malware variant generation
technique. The deobfuscated result of the malware obtained via
Cubismo, Fig. 9-(e), is detected by 4 engines of VT (Avast [3],
AVG [4], Baidu [6], and bkav), showing Cubismo’s effectiveness in
detecting variants.

7 DISCUSSION

Signature Updates of AV Tools. Once we submit malware sam-
ples to VT, it is possible that AV engines obtain the samples and
analyze them to update their signatures. In fact, we have observed
such updates two weeks after our submission. As we used auto-
mated scripts to submit all samples, during our experiments no

such issues arose. After two weeks, we noticed that several samples
(m2, m17, m27, m33, m40, and m45) are now detected by VT in their
original state. Furthermore, m17, m27, and m50, which remained
undetected even after decloaking in the original experiments, were
still undetected. This result is most likely because the signatures
defined for these new malware samples are not mature yet, and
narrowly match the original file, hence any modifications to the
original file will result in no detection.
Hiding Malicious Code Snippets in Comments. It is possible
for malware to store its payload in comments that are removed dur-
ing normalization (as a means of bypassing Cubismo). The current
implementation of Cubismo is not able to handle such malware.
However, we did not observe any such cases in our evaluations. We
leave handling such malware to future work.
Overhead When Integrated into Malware Detectors. When
Cubismo is integrated into existing malware detectors to provide
an end-to-end malware detector system, additional overhead can
be introduced because Cubismo generates multiple decloaked files
(4 files on average) from a single malware sample to be scanned. To
mitigate this additional overhead, we can run malware detectors in
parallel.

Specifically, if we assume that malware detectors’ executions
can be fully parallelized without additional overhead, Cubismo
will cause additional 52ms overhead as reported in § 6.3. When we
parallelize the scanning task, we create multiple malware detector
processes by forking an already initialized process (i.e., a Zygote
process) to minimize the overhead of process initialization. To this
end, we minimize the overhead of parallelizing, resulting in less
than 10% overhead (i.e., 5 ∼ 10 ms) on average when there are
sufficient computing resources.

In the worst case scenario (i.e., when we cannot run malware
detectors in parallel), Cubismo incurs approximately N times slow-
down where N is the number of decloaked files (N is 4 in our
experiments). However, we argue that most modern machines can
run more than 4 instances of malware detectors at the same time
without significant additional overhead. We leave improving the
efficiency of Cubismo under the malware detector integration sce-
nario as future work.

8 RELATEDWORK

Research in dynamic server-side code analysis has opened the
door for our work [25].

Malicious Payload/Behavior Discovery. A large number of re-
lated work have focused on discovering malicious payloads on
servers by investigating their client-side HTML and JavaScript out-
put [7, 12, 17, 28, 32, 50, 57]. However, they may not reveal the
existence of evasive malware on a server reliably. Malware that
can recognize detection attempts do not emit full behavior to the
client [17]. There has been a line of research that focuses on discov-
ering malicious behavior in binaries [8, 21, 35, 39], in contrast with
dynamic scripted code, binaries require code that enables them
to pervasively modify themselves. Many of these works focus on
finding the self-modifying code generator, which has a distinct
signature in binaries, rather than the actual malicious behavior,
which is hard to pinpoint due to the diverse functionality of bina-
ries [9, 19, 41].
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Figure 9: Polymorphic Variants

<?php
error_reporting(0); @set_time_limit(0); $s_name

= "b374k"; $s_ver = "2.2"; ... $xback_pl ="dZFfT4 
MwFMXf+RQVmSvJEuYzqcmCaJZlYwH0xT+EwVUbR0vaLmZx87P
blq...T48AvMIWsuocP3lWb2pQZp+Q0="; $xbind_pl ="bZ
FvS8MwEMbf51...V7Dvky3ZfgI="; $xback_c = "XVFNawI
xEL0L/o...zh000oZ7hp8fP4B"; ... $buff = "<table 
class=\"explore sortable\">
<tr><th>name</th><th style=\"width:60px;\">size 
</th>..."; ...
<?php
} ?>
</td></tr></table>
<p class="footer">Jayalah Indonesiaku &copy;<?php
echo date("Y",time())." ".$s_name; ?></p>
</body>
</html>
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41

42

43
44
45
46

47
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$s_pass = '4b34f78fbd220513438011562320d47f’;
$x=gzinflate(base64_decode("7b1pe+O4lSj8OfM88x8
U3XpT5chVXLV1LRlKFEVt1L5QnVw/3EmJm7hTufnvL0BSsm
zLdl...+JDlu+vGCe/m0F3+e7PpQzuf97sMYN0MIA7DsAeZ
PX/5/"));
eval('?>'.$x);

1
2

3

(e)	Deobfuscated Malware

(a)	Original	Malware

$s_pass = '4b34f78fbd220513438011562320d47f’;
eval('$x=gzin'.'flate(base'.'64_de'.'code("7b1p
e+O4lSj8OfM88x8U3XpT5chVXLV1LRlKFEVt1L5QnVw/3Em
Jm7hTufnvL0BSsmzLdl...+JDlu+vGCe/m0F3+e7PpQzuf9
7sMYN0MIA7DsAeZPX/5/"));');
eval('?>'.$x);

10
11

12

(b)	Malware	Variant	1
$s_pass = 'b4616d42a983401bcf344f9c18675777';
eval('$x=gzi'.'nflate(ba'.'se64_dec'.'ode("7b1p
e+O4lSj8OfM88x8U3XpT5chVXLV1LRlKFEVt1L5QnVw/3Em
Jm7hTufnvL0BSsmzLdl...+JDlu+vGCe/m0F3+e7PpQzuf9
7sMYN0MIA7DsAeZPX/5/"));');
eval('?>'.$x);

20
21

22

(c)	Malware	Variant	2
$s_pass = '62908bf72c21a3d8eaa23a55dec98e4b';
eval('$x=g'.'zin'.'fla'.'te(base6'.'4_dec'.'ode
("7b1pe+O4lSj8OfM88x8U3XpT5chVXLV1LRlKFEVt1L5Qn
Vw/3EmJm7hTufnvL0BSsmzLdl...+JDlu+vGCe/m0F3+e7P
pQzuf97sMYN0MIA7DsAeZPX/5/"));');
eval('?>'.$x);

30
31

32

(d)	Malware	Variant	3…
Counterfactual Execution. Counterfactual execution (or forced-
execution) as a means of discovering the hidden behavior of mal-
ware has been used [13, 22, 34, 41, 45, 61]. In particular, Peng
et. al. advance counterfactual execution on binaries by providing
several error recovery features as well as better path expansion
algorithms [45]. Unlike that work, Cubismo handles a new set
of challenges caused by server-side dynamic languages such as
dynamic constructs and multiple layers of obfuscations (Details
in §2). J-Force [34] and Rozzle [36] use a similar method to an-
alyze JavaScript malware (i.e., client-side malware). Specifically,
Cubismo’s underlying analysis technique, called counterfactual
execution, shares the basic idea of forcing the execution into all
possibilities. However, counterfactual execution differs from forced-
execution [34] and multi-path exploration [36] as it shares analy-
sis artifacts (e.g., database connections and file pointers) between
isolated executions (Described in Section 5.2). Unlike client-side
malware that J-Force and Rozzle target, server-side malware are of-
ten injected into large and complex benign application frameworks
such as Wordpress and Joomla. To reveal injected malicious code
snippets in such benign applications, simply exploring all branches
is not sufficient as statements in the explored branches may depend
on resources such as database connections and file handles cre-
ated in other execution paths or functions. As a result, the artifact
sharing scheme is crucial for revealing server-side malware.

Furthermore, Cubismo focuses on handling server-side specific
evasive techniques such as obfuscations and polymorphic malware
as discussed in §2. To name a few, Cubismo handles recursive dy-
namic code generations (e.g., recursive eval) and code generation
across executions (e.g., metamorphic malware that generates new
malware during its execution). Hallahan et al. [24] introduce a con-
cept of counterfactual symbolic execution. While using a similar term,
they explore differences between two alternative implementations
of a function (e.g., the function’s concrete implementation and an
abstract implementation derived from the function’s specification)
whereas Cubismo explores all possible dynamic execution paths
of a concrete program (i.e., a concrete implementation). Moreover,
the goal of Cubismo differs significantly from [24] which aims to

identify the causes of failure of static verifications (i.e., fault local-
ization). We focus on exposing hidden malicious code in dynamic
malware.

9 TOOL AVAILABILITY

To help facilitate future research, we are releasing the research
artifacts, including the source code and datasets, to the research
community [42].

10 CONCLUSION

In this paper, we describe the problem of obfuscated dynamic
web server malware and its impact. We presented a practical system,
Cubismo, that enables decloaking of highly evasive server-side mal-
ware. Cubismo is capable of generating decloaked versions of the
original malware in which the obfuscated parts are replaced with
deobfuscated code. It enables traditional malware detection engines
such as VirusTotal to detect obfuscated malware. Our evaluations
on real-world website data show that it enables detection of 53 out
of 56 zero-day malware samples in the data set.
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A EFFECTIVENESS OF COUNTERFACTUAL

EXECUTION

Table 3 lists details of counterfactual execution on the 56malware
samples, including the depth of nested dynamic evaluations, file size,
number of statements per file, and number of statements generated
dynamically, etc. On average, counterfactual execution is unveiling
45 new statements per sample (19% increase), and is exercising 9
new paths (48% increase) in the program.
Revelaing Hidden Malicious Code. Counterfactual execution
is highly effective in revealing hidden malicious code snippets.
In particular, m21 has only 1 statement (highlighted in Table 3),
which is a deobfuscation and dynamic code execution statement,
resulting in generation of 475 new statements. This sample is a fully
obfuscated malware, in contrast to many other samples, where an
obfuscated malicious block is injected to a pre-existing, benign
application file. m48 is also another malware that is very similar,
using 4 statements (highlighted) to deobfuscate and dynamically
execute itself.
Undetected Zero-day Malware. m17, m27, and m50 (highlighted
rows) are zero-day malware samples that are not detected by ex-
isting malware detectors. As apparent in Table 3, m17 and m27 are

from the same malware family (their analysis results are identi-
cal). This shows that malware variants are commonly observed in
practice. m50 is different from the other two, meaning that it might
be originated from another malware family. Note that those are
undetected not because of Cubismo, but because existing malware
detectors do not have signatures for them. In fact, our analysis
result provides useful information such as m17 and m27 are vari-
ants from the same malware family. It essentially suggests that
deploying Cubismo would significantly reduce the manual efforts
to handle variants. Specifically, with Cubismo, a single signature
will be sufficient to detect two variants m17 and m27.
Unresolvable Dynamic Constructs. Note the Unresolvable Ob-
fuscations column in Table 3, which shows the number of dynami-
cally generated code snippets that could not be resolved through
counterfactual execution. This is mostly due to the fact that these
blocks are directly generated by user input (i.e., user input gets ex-
ecuted as code). Such patterns are common in malware, and serve
as an omnipotent backdoor to the application. It is vital that we do
not attempt to decloak (i.e., replacing with nothing, as there is no
user input) such dynamic executions, thus removing them from the
file, as they are often used as the signature to detect backdoors and
webshells.
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Table 3: Details of Counterfactual Execution of Malware Samples
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m1 138 3 2 17 10 13 4 7 2 20ms 10.4 KB
m2 1 7 2 57 30 36 7 13 3 740ms 573.2 KB
m3 62 3 2 17 10 13 4 7 2 20ms 18.4 KB
m4 66 3 2 17 10 13 4 7 2 10ms 11.8 KB
m5 40 4 2 22 14 17 4 7 2 20ms 10.2 KB
m6 70 3 2 17 10 13 4 7 2 20ms 18.4 KB
m7 194 4 2 22 16 19 4 7 2 20ms 15.2 KB
m8 2 3 2 17 10 13 4 7 2 10ms 3.5 KB
m9 42 3 2 17 10 13 4 7 2 10ms 5.9 KB
m10 210 3 2 17 10 13 4 7 2 30ms 11.7 KB
m11 8 4 2 22 14 17 4 7 2 10ms 4.0 KB
m12 434 3 2 17 11 14 4 7 2 50ms 30.4 KB
m13 254 3 2 17 10 13 4 7 2 40ms 17.3 KB
m14 40 4 2 22 14 17 4 7 2 20ms 7.0 KB
m15 32 3 2 17 10 13 4 7 2 10ms 4.7 KB
m16 1 4 2 22 14 17 4 7 2 20ms 6.1 KB
m17 1828 4 2 22 22 30 10 17 2 170ms 151.9 KB
m18 10 3 2 17 10 13 4 7 2 20ms 24.9 KB
m19 156 3 2 17 10 13 4 7 2 20ms 11.4 KB
m20 1 5 2 27 21 24 4 7 2 20ms 9.1 KB
m21 1 2 1 475 9 12 2 3 0 60ms 30.8 KB
m22 1 4 2 22 14 17 4 7 2 20ms 6.0 KB
m23 56 3 2 17 10 13 4 7 2 70ms 11.9 KB
m24 2 3 2 17 10 13 4 7 2 30ms 14.7 KB
m25 20 3 2 17 10 13 4 7 2 10ms 4.3 KB
m26 104 4 2 22 14 17 4 7 2 20ms 9.7 KB
m27 1828 4 2 22 22 30 10 17 2 180ms 151.9 KB
m28 40 3 2 17 10 13 4 7 2 20ms 11.8 KB
m29 214 6 2 39 23 29 7 13 3 30ms 25.2 KB
m30 718 3 2 17 10 13 4 7 2 80ms 75.1 KB
m31 58 3 2 17 10 13 4 7 2 20ms 15.9 KB
m32 276 3 2 17 10 13 4 7 2 60ms 38.5 KB
m33 52 4 2 22 14 17 4 7 2 20ms 4.8 KB
m34 1214 7 2 57 30 36 7 13 3 160ms 140.4 KB
m35 34 3 2 17 10 13 4 7 2 10ms 14.6 KB
m36 158 3 2 17 10 13 4 7 2 30ms 13.5 KB
m37 28 3 2 17 10 13 4 7 2 20ms 10.3 KB
m38 454 3 2 17 10 13 4 7 2 40ms 18.5 KB
m39 76 3 2 17 10 13 4 7 2 30ms 20.5 KB
m40 10 7 2 57 31 38 7 13 3 30ms 10.8 KB
m41 140 3 2 17 10 13 4 7 2 30ms 12.6 KB
m42 124 3 2 17 10 13 4 7 2 20ms 9.0 KB
m43 1 5 2 39 20 23 4 7 2 20ms 9.1 KB
m44 1 4 2 22 14 17 4 7 2 20ms 5.3 KB
m45 578 7 2 57 30 36 7 13 3 120ms 206.6 KB
m46 1104 3 2 17 10 13 4 7 2 80ms 119.7 KB
m47 148 3 2 17 10 13 4 7 2 30ms 51.5 KB
m48 4 2 2 885 49 59 44 53 1 150ms 19.7 KB
m49 1236 4 2 22 14 17 4 7 2 140ms 136.9 KB
m50 198 1 1 1 59 68 16 24 0 30ms 5.7 KB
m51 104 3 2 17 10 13 4 7 2 40ms 50.0 KB
m52 422 3 2 17 10 13 4 7 2 40ms 18.8 KB
m53 4 4 2 22 15 18 4 7 2 10ms 4.0 KB
m54 208 3 2 17 10 13 4 7 2 40ms 34.1 KB
m55 2 3 2 17 10 13 4 7 2 10ms 3.4 KB
m56 230 3 2 17 10 13 4 7 2 30ms 29.6 KB
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