CPR: Cross Platform Binary Code Reuse via Platform
Independent Trace Program

Yonghwi Kwon
Purdue University
kwon58@cs.purdue.edu

Xiangyu Zhang
Purdue University
xyzhang@cs.purdue.edu

ABSTRACT

The rapid growth of Internet of Things (IoT) has been created a
number of new platforms recently. Unfortunately, such variety of
IoT devices causes platform fragmentation which makes software
development on such devices challenging. In particular, existing
programs cannot be simply reused on such devices as they rely
on certain underlying hardware and software interfaces which we
call platform dependencies. In this paper, we present CPR, a novel
technique that synthesizes a platform independent program from a
platform dependent program. Specifically, we leverage an existing
system called PIEtrace which can generate a platform independent
trace program. The generated trace program is platform indepen-
dent while it can only reproduce a specific execution path. Hence,
we develop an algorithm to merge a set of platform independent
trace programs and synthesize a general program that can take
multiple inputs. The synthesized platform-independent program
is representative of the merged trace programs and the results
produced by the program is correct if no exceptions occur. Our
evaluation results on 15 real-world applications show that CPR is
highly effective on reusing existing binaries across platforms.

CCS CONCEPTS

- Software and its engineering — Software reverse engineer-
ing; Maintaining software;

KEYWORDS

Binary-reuse; Reverse-engineering; Binary-analysis; Cross-platform

ACM Reference format:

Yonghwi Kwon, Weihang Wang, Yunhui Zheng, Xiangyu Zhang, and Dongyan
Xu. 2017. CPR: Cross Platform Binary Code Reuse via Platform Independent
Trace Program. In Proceedings of 26th International Symposium on Software
Testing and Analysis , Santa Barbara, CA, USA, July 2017 (ISSTA’17), 12 pages.
https://doi.org/10.1145/3092703.3092707

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA’17, July 2017, Santa Barbara, CA, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5076-1/17/07...$15.00
https://doi.org/10.1145/3092703.3092707

Weihang Wang
Purdue University
wang1315@cs.purdue.edu

158

Yunhui Zheng
IBM T.J. Watson Research Center
zhengyu@us.ibm.com

Dongyan Xu
Purdue University
dxu@cs.purdue.edu

1 INTRODUCTION

Internet of Things (IoT) allows interconnected software, physi-
cal systems, electronics, and sensors to deliver unprecedented in-
telligent capabilities such as smart houses and auto-driving ve-
hicles [33]. As a consequence of the growing deployment of IoT
systems, various new platforms [6, 12, 15-17, 21, 24] have been
introduced and deployed [2, 3, 18]. More importantly, the pressing
demand of software on such platforms is superinduced as well.
Unfortunately, despite the need, many platforms suffer from insuf-
ficient software support and developing cross platform software
is still challenging especially on such IoT devices. This is mainly
because unlike traditional desktop platforms such as Windows and
Linux, developers have to work with different hardware and low-
level software systems. In particular, besides the different low-level
software systems (e.g., OS/system library), some devices may even
have a different set of underlying hardware (e.g., displays, HCI
devices, and storage devices). As a result, even with source code,
handling such differences is very challenging. In particular, consider
a developer implemented a tool that uses some platform specific
APIs/libraries. He/she later wants to try the tool on another platfor-
m. To do so, the developer should identify and handle all platform
dependencies, which is extremely tedious and error-prone.

Binary reusing techniques have been proven to be useful. First,
many legacy applications are running on important systems, and
their source code is inaccessible. In particular, US government agen-
cies (e.g., DARPA and ONR) asked for techniques that can extract
components from binaries “because the application source code
is no longer accessible, which means the applications are running
on insecure and outdated systems” [8]. Moreover, many complex
legacy commercial off-the-shelf (COTS) software often include un-
wanted or unused components which might be vulnerable [23].

Hence, automatic binary program reusing technique across plat-
forms is highly desirable. In particular, it avoids re-implementing
software which is time consuming and error-prone (often introduc-
ing new bugs or vulnerabilities) especially on a new or uncommon
platform due to the lack of development support such as debugging
tools. Even when different platforms share the same programming
interface so that a program can be executed on different versions
of platforms (e.g., Windows/Linux), a program may behave dif-
ferently on different platforms due to the subtle implementation
differences of underlying libraries [13, 28, 61]. More importantly,
binary program reusing can extract and securely reuse useful com-
ponents from legacy programs which might include unnecessary
or vulnerable other components.


https://doi.org/10.1145/3092703.3092707
https://doi.org/10.1145/3092703.3092707

ISSTA’17, July 2017, Santa Barbara, CA, USA

Existing Approaches Existing research efforts on reusing binary
programs focus on software dependability and security.
Decompilation has been used to recover source code. However, it
suffers limitations in practice due to the nature of static analysis. For
example, Hey Rays [14] and Boomerang [65] are the state-of-the-art
decompilation tools. They often fail to recover indirect jump/call
targets (e.g., function pointers). They also have limited capacity to
handle obfuscation, hardened or optimized binaries, as hardening
and optimizations often break the common compiler idioms they
rely on. Moreover, source code recovered by decompilation tools
are often not compilable and platform dependent because map-
ping a platform specific assembly code to a high-level language is
extremely difficult, if not impossible.

To overcome the limitations of static analysis, dynamic analysis
tools [42, 49, 73] have been proposed to identify, extract, and reuse
parts of software. BCR [48] and Inspector Gadget [51] can extract
parts of malicious binaries for security analysis. Kim et. al [50]
proposed a system that can identify and reuse certain functionalities.
However, they either do not support software reuse across platforms
or require manual annotations, and hence are not scalable.

Our Approach In this paper, we propose a novel technique to
synthesize a platform independent program from a platform depen-
dent program. We develop an algorithm that allows us to merge a
set of platform independent trace programs (a.k.a executable traces)
produced by PIEtrace [52] from the original platform dependent
program and synthesize a fully functional program that has (part
of) the functionalities of the original program and possesses the
virtue of platform independence. The synthesized program can
handle new inputs and is guaranteed to be sound. Our evaluation
shows CPR is highly effective on reusing existing binaries across
platforms.

In summary, this paper makes the following contributions:

e We formally define the problem of reusing platform de-
pendent binary programs across multiple platforms. We
reduce the problem to a trace merging and resource virtu-
alization problem, and address the challenges to synthesize
a platform independent program.

e We propose a novel scheme, Resource Index, which rep-
resents the state of resources, and use Resource Index to
virtualize the platform dependent resource accesses.

e We develop a prototype system CPR to extract binary com-
ponents from 15 real-world Windows programs and reuse
them on Linux, Raspberry PI, and Cisco IOS. We show that
CPR is highly effective and the synthesized programs are
less vulnerable to attacks.

2 DEMONSTRATIVE EXAMPLE

In this section, we use examples to illustrate the challenges in syn-
thesizing platform independent programs by merging a set of plat-
form dependent program executions and motivate our approach.

2.1 Background: Trace Program

A trace program is a platform independent program generated by
PIEtrace [52] via monitoring an execution of a program. It captures
the same control flow path and data dependencies along one exe-
cution path of the original program. A trace program is platform
independent as it does not have any platform dependencies such as

159

Yonghwi Kwon, Weihang Wang, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu

system calls and platform specific instructions. In particular, such
platform dependencies are replaced with concrete values observed
during the execution which we call Concretized Values.

Source

Raw Trace Trace Program

H 21. char* buf=[0x11CA1360)] |
- 22. buff0...1] | 0xB5DH];
\ﬁ 12. P:}. buff2...3] =|0x78AS;
24. buff4...5] =|0x8BAY|

x™ iteration

13. mov eax,|[esi+ebx - -
M 25. char* in =[{0x4D,
0x5A, ...};

s erctablef infx] ]
6. while (i<len) {

14. xur eax ; cre \

»" iteration N o

- 27. var ™= bufl in[i] ]:

I5. mov eax,|[esit+ebx] /
s crctablef infy] ] }

16. xor|[ebp+0x30] eax ; crc

Figure 1: Trace Program and corresponding Source Code and

Raw Trace (Boxes connected by lines across columns are cor-

respond to each other).

char* crctable;
NtMapViewOfSection(
section, 0, &crctable);

11. push[[ebp+0x10]]
; cretable

)

sysenter
; NtMapViewOfSection

char* in = InputFile();
for (i=0; i <len; i++){

PN

A

[S)

5. crc = crctable[ in[i] J;

% N

Fig. 1 shows parts of a trace program generated from an execu-
tion of a program.

The column “Source” shows a program that calculates a CRC
value. In particular, it calls a platform dependent function (system
call) NtMapViewOfSection() at Line 2 to map a memory section
(a set of memory addresses) into a variable crctable. Then it com-
putes a CRC value of an input file and stores the result onto crc in
aloop at Line 5.

The column “Raw Trace” represents the executed instructions in
the original program. NtMapViewOfSection() at Line 2 is splitted
into two parts: pushing parameters onto the stack at Line 11 and
issuing the system call at Line 12. The address of crctable is de-
termined and returned by the kernel after the sysenter at Line 12.
Lines 13-16 represent two instances of the statement at Line 5 in the
original program. They access contents of the crctable returned
by the system call (Lines 13 and 15) and compute xor and store the
result onto crc (Lines 14 and 16). We only show two iterations of
the loop for simplicity.

The column “Trace Program” shows a trace program generated
from the concrete execution. Note that the sysenter at Line 12 is
replaced by concrete values (at Lines 21-24) observed during the
execution of Line 5 and Lines 13-16. More importantly, the values
of input file at Line 3 are replaced by concrete values at Line 25. By
leveraging such concretized values, a trace program can produce
the same effects of the system call in a platform agnostic way.

Note that a key technique that makes the trace program platform
independent is the concretized values which are used instead of
executing actual platform dependent instructions or system calls.
However, due to the concretized values, a trace program can only
reproduce one recorded execution and cannot take any new inputs
rather than the one used in the recorded run. Moreover, it does
not have any interface to take an input as all the inputs exist as
concretized values in a trace program. We call a program like a
trace program that cannot take another input a closed program. In
contrast, we call a program that can handle any inputs an open
program.

Hence, in this paper, we focus on synthesizing a platform indepen-
dent open program by merging a set of trace programs such that it can
take new inputs and produce correct outputs on different platforms.



CPR: Cross Platform Binary Code Reuse via Platform Independent Trace Program

2.2 Motivation Example

In this section, we use Alzip, a popular file archiver with 1.3M
users [5], to show the challenges of merging trace programs and
motivate our technique. Alzip supports the egg file format, which
is a new file format designed to enhance the existing zip file format.
The egg file format supports Unicode file names and files larger
than 2GB/4GB. More importantly, the file format allows Alzip to
choose different compression algorithms depending on the file type.
Specifically, it chooses the best compression method based on the
content of the files to be compressed. However, the compatibility of
the file format is limited. As Alzip only supports a few platforms
such as x86/64 Windows/Linux and Android, the egg file format
cannot be used on other platforms because other file archivers
such as 7-zip and gzip do not support egg files. Unfortunately,
attackers often use compression to hide malicious files and improve
the success rate of attack. Hence, most anti-virus solutions try to
inspect common compression file formats [9], Interestingly, we
found that most anti-virus programs can detect malware in a zip
file, while they fail to inspect an egg file, leaving malware inside egg
files undetected. Hence, extracting and reusing the decompression
component of Alzip is especially useful for Intrusion Detection
Systems (IDS) to analyze compressed files and check if malware
is present. Therefore, we decide to reuse the component on Cisco
I0S [10] which is a popular platform for IDS.

Unfortunately, a decompression module provided by Alzip de-
velopers does not support powerpc processors which most Cisco
network products such as routers use. Moreover, while the ven-
dor provided its source code, the hyperlink to the source code is
broken [4] as of the time of this paper’s writing. Hence, we aim
to extract and reuse the .egg decompression component in Alzip
on Cisco IOS, which is not originally supported by the program.
Reusing the decompression component on Cisco IOS not only illus-
trates the challenges of reusing software component across different
platforms but also enables a malware detection tool on network
routers, which is practically useful.

2.2.1 Approaches. We first present two naive approaches to get

an open program from multiple trace programs. Then, we explain
the limitations of such approaches and present our approach.
Replacing Concretized Values One way to obtain an open pro-
gram from a trace program is to replace concretized values, which
hold old inputs during the training, with new inputs. However,
due to the input changes and non-determinism, such modified trace
program may take a different path which was not observed during
the training hence not included in the trace program, resulting in a
crash. For instance, the commonly used inflate algorithm [20] in
decompression executes largely different branches depending on
the input.
Selecting A Proper Trace Program To handle the path differ-
ences due to the input changes, one straightforward approach is
adding a set of predicates that selects a proper trace program de-
pending on the input. Fig. 2 shows an example of this approach.

‘ switch ( GetAlgorithmType( /nputFile() ) ) ‘

Figure 2: Selecting a Proper Trace Program.

case ALGORITHM2:
RunTrace2();

case ALGORITHM1:
RunTracel();

case ... ‘

160

ISSTA’17, July 2017, Santa Barbara, CA, USA

Depending on the input (e.g., an egg file), it selects a trace pro-

gram according to the compression algorithm used in the file. How-
ever, such selector requires understanding of the file format to im-
plement GetAlgorithmType() which is difficult in practice. More
importantly, even with such selector, a single trace program of one
particular algorithm may not handle other inputs even if they use
a same algorithm. In particular, A1zip uses a table-based CRC algo-
rithm. Even with inputs using a same compression algorithm, an
execution may take different paths and accesses different portions
of the CRC table depending on input values.
Our Approach: CPR Instead of selecting an isolated trace pro-
gram, we propose a general and sophisticated approach. We com-
bine multiple trace programs that handle different inputs to get an
open program. We call such combined program a merged program.
A salient feature of merged program is that it is not a simple union
of all the trace programs collected. It accepts inputs that are well
beyond the inputs for the trace programs and can execute along
paths different from those represented by the trace programs. It is
more like a normal program (with platform independence).

2.2.2  Challenges in Merging Trace Programs. To obtain a merged
program which can decompress an egg file, we first collect multiple
trace programs by executing Alzip on multiple egg files. Note
that all platform dependencies are replaced by concretized values
in trace programs. However, since each trace program may take
a different execution path and required concretized values may
be different. Hence, aligning and merging the control flows and
concretized values into a merged program are necessary.
Aligning Instructions To allow the same control flow paths of
the original executions, a merged program should include all the
unique statements from all the trace programs.

Source code Executions Trace Programs Merged Program
Lif (p1) Ei: | |Trace Prg. 1:

2 Y124, 923845

el 52 2 Si884 Merged Program:
7 eise 81,82;83;84;...

308 M~ Ea: | |Trace Prg.2: | W

4. 1,34,... $1383:845...

Figure 3: Trace Programs may have different statements.

Fig. 3 shows two executions of a program which has a predicate.
One execution (E7) takes the true branch and the other execution
(E2) takes the false branch. A desired merged program must include
all the unique statements (i.e., {s1, s2, s3, S4, ...}) so that it can re-
produce both executions. Note that the merged program should
include only one unique statement even if the statement is included
in multiple trace programs (e.g., s; and s4) in Fig. 3.

However, aligning and merging statements is challenging as an
instruction can have different addresses across runs due to ASLR
(Address Space Layout Randomization) which randomizes the ad-
dress space of loaded executable modules.

Merging Concretized Values Concretized values can be also
different in different runs even though they are actually seman-
tically identical. For instance, addresses of heap objects are non-
deterministic even without ASLR. Specifically, Alzip allocates and
accesses a CRC table on heap memory. While values in crctable
are semantically identical, they may have different absolute address-
es across runs. For example, crctable can be allocated at address
0x100 and 0x200 across runs. Accessing crctable[4] results in



ISSTA’17, July 2017, Santa Barbara, CA, USA

accessing different absolute addresses (e.g., 0x110 and 0x210) while
they are semantically accessing same data.

Next, we explain two important sources of such non-determinism
on concretized values: Address Correspondence and Resource Driven
Concretized Values.

1) Address Correspondence: Stack variables have different ad-
dresses depending on the calling context. Heap objects are allo-
cated on demand non-deterministically. Fig. 4 shows a program
which invokes a system call at Line 13 in D(). Let one execution
(E1) have p; = true and py = true, taking a path A() — B() — D(),
and another execution (E2) have p; = false, resulting in a path
A() = €O — DO).

5 BO{
6 if (p2) DO;
else C();

AQ { }
if (p1) BO;

else C(); v
} 90 ¢
10 DO
I

L

12 DO {
1, = syscall();

Figure 4: Different Concrete Addresses (r; at Line 14).

Trace programs from Ej and E3 have concretized values on the
same stack variable in D() at Line 13. However, r; holds different
addresses across the runs due to the different stack layouts caused by
different call stacks. Fig. 5 shows two different concretized values of
E1 and E; including their stack allocations. Note that if we simply
merge the concretized values without appropriate alignment, a
concretized value from one execution may overwrite a value of
an irrelevant local variable leading to an incorrect execution. For
example, in Fig. 5, a concretized value in E; (at az) will overwrite
a local variable v in D() in E7. Note that v in E1 and r4 in E; have
the same concrete address 0x12FEF0 as B() and C() have different
frame sizes. The size of B() is 0x30 while the size of C() is 0x60.

Ei: (AO—B0—D() Ex: (AQ—C0O—D()
Stack Frames: Stack Frames:

0x12FF90
Frame of A() Frame of A()
- ... T O0xI2FF60
Frame of B() x Frame of C()
T .. * O0xI2FF30—*
Frame of D()
0x12FF00
"a Frame of D()
0x12FEF0
v Ya
v
A 4 A 4
Concretized Value Concretized Value
Addr (a;) | 0x12FF00 Addr (a;) | 0x12FEF0
Value 40 00 00 00 Value 40 00 00 00

Figure 5: Concretized Values and Stack Allocations.

2) Resource Driven Concretized Values: Concretized values can
be different across runs due to the state differences on resources
such as file system and network. We call such concretized values
Resource Driven Concretized Values.

Fig. 6 shows an example. Although two concretized values (buffer;
and buffery) have the same address (0x12EE00), they have different
values as the ReadFile() returns different contents depending on
the current file position which is adjusted by SeekFile() at Line 6.
Note that depending on the value of p; at Line 4, offset can be either

161

Yonghwi Kwon, Weihang Wang, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu

1 char buffer[1024];
2 intoffset =0,
3 FILE f=..;//afile handle

4 if(py) offset=4;
5 else offset=10;
/* SeekFile moves the current file pointer to offset */
6 SeekFile( f, offset );
/* ReadFile causes concretized values on buffer */
7  ReadFile( f| er|4);

—
buffer, (p\=true, offset=10)

buffer, (pi=true, offset=4)

Address 0x0012EE00 Address | 0x0012EE00
Value 050607 08 Value 0B 0C 0D O0E

- -
File contents -

01 02 03 04[05 06 07 08]09 0A[0B 0C 0D OE]0F 10.... ‘

Figure 6: Resource Driven Concretized Values.

4 or 10, and then it is used in SeekFile() to change the current
file position at Line 6.

2.3 Our Approach

Extraction and Merging To extract and reuse a binary program,
we first use PIEtrace to get multiple trace programs. We then merge
them and synthesize a merged program. To do so, we need to over-
come the challenges discussed in Sec. 2.2.2. First, to align instruc-
tions across trace programs, we use Symbolic Label (Sec. 4.1), a
consistent label across runs, to index instructions. Second, to merge
concretized values, we use Symbolic Address (Sec. 4.2) to unify
address differences across runs. Third, to handle Resource Driven
Concretized Values, we propose Resource Index (Sec. 4.2.3) that es-
sentially represents the current state of external resources (e.g., file
system/network).

Reusing Extracted Component Reusing the merged program is
straightforward. Note that a trace program generated by PIEtrace
is a set of C source code files [52]. Hence, the merged program is
also a C program and can be compiled on any platforms. To sup-
ply new inputs, we identify input related concretized values by
searching trained inputs among the concretized values. Then, we
replace them with new buffer variables. Note that this process does
not require any knowledge on program specific semantics or inter-
faces. Similarly, to obtain outputs from the merged program, we
identify buffers holding outputs by logging all output system calls
(e.g., write()/send()) during tracing and then searching for the
contents representing the outputs in the log. We mark the corre-
sponding buffer variables as output buffers. In the merged programs,
since syscalls are eliminated, outputs are available through the out-
put buffers (in memory) and one can just copy the result after the
execution.

3 PROBLEM DEFINITION

In this section, we briefly explain how PIEtrace removes platform
dependencies and generates trace programs. Then, we formally
define the problem considered in this paper.

3.1 Platform Independent Trace Programs

To extract and reuse components from binaries on different plat-
forms, the extracted components must have no dependencies on
the underlying platforms. In general, there are three types of such



CPR: Cross Platform Binary Code Reuse via Platform Independent Trace Program

dependencies. First, a compiled binary program depends on a cer-
tain instruction set architecture (ISA). For example, x86 instructions
cannot be executed on ARM processors and vice versa. Second, sys-
tem calls are dependent on the underlying OS. For instance, Linux
and Windows have different system call numbers and parameters.
Third, most binary programs depend on underlying libraries such
as libc which also depend on the underlying platform.

To decouple such dependencies, we leverage PIEtrace, a system
that monitors a program execution and generates a platform inde-
pendent program called a trace program. The trace program can
reproduce the same control flow path and data dependencies of the
original execution in a platform independent fashion. To facilitate
discussion, we introduce a low-level language to model normal and
trace programs. The syntax is presented in Fig. 7.

Program u= s

Stmt su=s; s | re=fe | ri=l Rirg) | Wi(ra, ro) |
gotol(£1) | if (r’) then goto(£y) |
callé(y) | ret! | syscallf()\ depinst[()

TraceProgram P o=

TPStmt §u= 8138 | r=Ce | r:=CR(VA(ra)) |
WE(VA(ra), o) | goto! (VL(£y)) |
if (r¢) then goto(VL(¢y)) | call’ (VL(¢1)) |
ret’ | concretize’() | skip

Expr ex=r |c|a|ropr, | ropc

Operator opu=+ | — || /] ...

Register ru= {sp, r, ry,rs, ...}

Const c = {true, false, 0,1,2, ...}

Addr a=x= {0,1,2, ...}

Label €= {b, b, Os, ...}

VL € VirtLabelMap: Label — Label

VA € VirtAddrMap : Addr — Addr

Figure 7: Language.

Language P is a normal program consists of statements s. State-
ments include memory read (R()) and write (W()). Conditional or
loop statements can be modeled using goto and guarded goto. Func-
tion invocations and returns are denoted by call and ret. P depends
on the underlying platform as it has syscall() and depinst(). They
represent system calls and platform dependent instructions that
are only supported on particular platforms (e.g., SSE/MMX).

P denotes a platform independent trace program. It is a sequence
of TPStmts (Trace Program Statements). Since different platforms
have different address space layouts, it virtualizes memory address
space, a, including instruction address space, ¢, so that P can run
on platforms with different memory layouts. VA(a) translates the
given address a in the original execution to the virtualized address
space. VL(¢) maps labels (£) of an original program P to the corre-
sponding labels in the trace program P. concretizef () reproduces
the same effect of syscall() and depinst() by using concrete values
observed during execution. Therefore, P has no dependencies on
the underlying platform.

The definition of concretize?() is shown in Fig. 8. It writes con-
cretized values to memory during the execution of the trace pro-
gram. In particular, it maintains a hit-count of each ¢ which is
HC(). LS is a log storage which contains all concretized values
which can be accessed by Logld which is a unique identifier for
each log entry. When a trace program is running, a concretized
value e that matches with the current ¢ and its hit-count is applied

through W(VA(e.a),e.v).

162

ISSTA’17, July 2017, Santa Barbara, CA, USA

id € Logld c<{lz>
e € LogEntry c<a,v>
HC € Instance : Label — Z

LS € LogStorage : Logld — LogEntry

concretize’ ()
HC(8)++;
e := LS(< ¢, HC(¢)>);
if e # @ then
W(VA(e.a), e.v);

Figure 8: Definition of concretize?().

PlIEtrace(Exec(P, i)) = B

Exec(P, i) = <D;, V;, Ci, PD; >
Exec(P;, 0) = <Dy, Vi,Ci, @ >
Input i =c

Values v =7

PlatformDepOp  dop = depinst() | syscall()
Exception ex =3

Exec : Program X Input — < DD, V, C, PD >
PIEtrace : Exec — TraceProgram
D € DataDep : Register — Register

C € CtrlFlowPath : Label — Label

PD € PlatformDep : PlatformDepOp — Const

Figure 9: Definition of Normal and Trace Program Exec.

Note that system calls and platform dependent instructions,
syscall() and depinst(), are concretized in a trace program. Hence,
a trace program does not take any inputs. Memory allocations are
also concretized and a trace program does not have malloc() or
free(). Specifically, all memory addresses returned by malloc() are
concretized and all accesses to the allocated memory blocks are
redirected to the virtualized address space via VA(). PIEtrace traces
into the library calls and generates corresponding platform inde-
pendent statements and concretized values too. sp denotes the stack
pointer register (e.g., esp on x86) and we assume all platforms have
such a register.

In Fig. 9, Exec(P, i) represents an execution of a given program P
with an input i. The input i is defined as a sequence of constants c.
The output of the execution includes data dependencies (D;), values
(V3), control flow path (C;), and platform dependencies (PD;), where
PD represent invocations of PlatformDepOp.

Exec(P;, @) represents an execution of a trace program P;. It does
not take any input and reproduces the same data dependencies (D;),
values (V;), control flow path (C;) as those produced by the original
execution (Exec(P, i)). Note that it is platform independent as it does
not have platform dependencies (PD). We further define PIEtrace as
a function PIEtrace() which takes an execution of a normal program
P and generates a platform independent trace program P.

3.2 Problem Definition

While a trace program P is platform independent, it can only repro-
duce a single execution and cannot handle new inputs. Therefore,
our goal is to synthesize a merged program Py, which can accept
multiple inputs, by merging multiple trace programs P. Ideally, the
merged program can take any possible input i and produce the
same outputs (i.e., data dependencies (D;), values (V;), and control
flow path (C;)) as the original program P does. Theoretically, we
can obtain such ideal merged program by merging trace programs
generated under all possible inputs. However, it is difficult to cover



ISSTA’17, July 2017, Santa Barbara, CA, USA

all possible inputs as reasoning about all inputs is extremely difficult
in practice.

Problem Statement: Instead, we aim to synthesize a merged
program P,, that can process all the inputs {iy, i2, ..., i } observed
in the trace programs, and a set of new inputs {in+1, in+2, .- in+m -
Py can correctly produce corresponding outputs (D;, V; and C;),
as shown in Fig. 10.

Exec(Pp,, i') := < Dy, Vi, Cyr, @ > | ex
where Py, is a result of merging {f’il, ﬁiz, cou Pin ),
i’ € Input == {ir, iy, .-, in} U {in+1, ins2, -os insm ), and
Exec(P, i’) := < Dy, Vy, Cyr, PDy >

Figure 10: Problem Statement: Merged Program in Practice.

Note that input i’ also includes a set of inputs {in+1, in+2, -+ in+m}
that are not observed in the trace programs. These unseen inputs
should not drive the program to uncovered statements or differ-
ent resource states. In fact, we observe many of such new inputs
which can be handled by merged programs (Sec. 5.1) and show
the empirical results in the evaluation (Sec. 5). However, it is pos-
sible the merged program may take an input beyond this scope.
In this case, Exec(Pp,, i) should throw an exception ex to indicate
Py, cannot handle the input, rather than continuing the execution
and producing an incorrect outcome. In other words, we guaran-
tee Pp, is sound: Exec(Py,, i’) either produces the correct outputs
as the original program does or throws an exception indicating a
merged program cannot handle a given input. Since supporting
all possible inputs is hard or even impossible, we take a practical
approach and synthesize merged programs on demand. In particu-
lar, a merged program produces a correct output or an exception
with an explanation which indicates how to collect additional trace
program to merge. For instance, if an exception is caused, CPR sug-
gests collecting another trace program with the input that caused
the exception. Later, when the new trace program is merged, CPR
checks whether the exception is resolved or not, guarantees the
new merged program handles on the previous exception.

4 CPR DESIGN

In this section, we formally discuss how we overcome the challenges
of combining trace programs.

4.1 Merging Statements

To merge statements correctly, we first need to identify unique
statements across trace programs. While each statement is associ-
ated with a unique label (¢) in each trace program, it is not unique
across different trace programs. Thus, we introduce Symbolic Label
to unify labels across trace programs. Specifically, Symbolic Label
is in the form of < Module, Offset > in x86 Windows/Linux. It is
used instead of a concrete instruction address (£) to identify unique
statements (instructions) across trace programs.

Fig. 11 shows a procedure MergeStatements() for statement
merging. It merges a new statement §l.€ into the trace program
P;, where §f represents a statement § in a trace program P; with a
label £. As label ¢ cannot be used to index a statement across trace
programs, we introduce SL() to map label ¢ to its Symbolic Label.
For example, if two statement labels e Prandy € f’y satisfy

163

Yonghwi Kwon, Weihang Wang, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu

SLx(i)= SLy(j), the two statements are same (L = §£,

they may have different labels (i.e. VLy(55)# VLy(%)).
Once statements across trace programs are unique identified
through Symbolic Label, merging is straightforward: we add a s-

) even though

tatement $¢ to a merged program Py, if the statement is not yet
included.

Module m == {m | mis a unique hash value for each module.}
Offset ou=7Z
SymLabel sl := {< my, 01 >, < mg, 03 >, ...}

SL € SymLabelMap Label — SymLabel
MergeStatementsA(IA’m, s”f):::
for each §/ € P, do where j represents a label of each statement
if SL,,(£) = SL;(j) then
return f’m;
VL(£)= GetLabel(¢);
SLm(0)= SLi(j);
Py =P, - §f,
return Pm;

Figure 11: Algorithm for Merging Statements.

4.2 Merging Concretized Values

As discussed in Sec. 2.2, we also handle the challenges introduced
by Address Correspondences and Resource Driven Concretized Values.
In particular, we introduce Symbolic Address which provides unique
addresses for variables across runs and deploy an abstraction lay-
er of external resources to unify the concretized values caused by
different resource states across trace programs.

4.2.1 Handling Address Correspondence. Similar to Symbolic
Label (Sec. 4.1) for statements, we introduce Symbolic Address, a
relative address that is stable across executions. We replace abso-
lute addresses in concretized values with the symbolic addresses.
Specifically, an address of a stack variable is translated into a pair
of a function and an offset (e.g., (Func, 0x10)). An address of a
global variable is also translated into a pair of a module and an
offset (e.g., (main.exe, 0x1000)). Handling heap variables is more
challenging as heap memory addresses are non-deterministic. We
observe that the concretized values on heap variables are always
caused by external resources (e.g., through system calls). Hence,
we identify and encode the current state of external resources and
associate the state with the concretized values. Details can be found
in Sec. 4.2.3.

4.2.2 Handling External Resources. We introduce a novel con-
cept that abstracts away platform-specific interfaces or internal
semantics of external resources. As interactions between a program
and external resources are done through system calls, values from
external resources are concretized in a trace program. For example,
file contents returned by ReadFile() become concretized values
in a trace program. As shown in Fig. 6 in Sec. 2.2.2, different trace
programs may have different concretized values even from a same
resource (e.g., a same file), depending on the state of the resource.
To abstract such state of external resources, we introduce Resource
Index (RI) which abstracts states of external resources based on
interactions between a program and external resources. A key ob-
servation of Rl is that a state of a resource is essentially a history
of previous interactions on the resource, which represents how



CPR: Cross Platform Binary Code Reuse via Platform Independent Trace Program

previous system calls affected the state of the resource. In other
words, a state of a resource is deterministic as long as the resource
has gone through a same set of operations (e.g., system calls). Note
that there are some exceptions such as a state of a external server. In
this paper, we only focus on local resources such as files, memory,
and local libraries.

Essentially, we first annotate concretized values with Rls, and
merge them by associated RIs. A merged program also contains
routines to update the current RI. Note that while a merged pro-
gram does not execute system calls, it will update the current RI
accordingly. When a concretized value is required, a concretized
value associated with the current Rl is returned to the program in
order to faithfully reproduce the access in a normal program. If
the concretized value required is not present, the merged program
throws an exception to indicate an unobserved RI state is reached.
Thus, we guarantee that the merged program handles an input
correctly if no exception is observed.

4.2.3 Resource Index. When generating a trace program, a con-
cretized value is produced only when a program reads a value which
is not computed by the program itself. To simplify the discussion,
we assume that a program can only access the external resources
through system calls. Note that, however, other methods such as
interrupts or instructions like in and out can be handled in the
same way.

syseall()x—>/ ERy,

7
syscall()y [ ERqum External Resources ""/7
| (e.g. Kernel, External M “

A\

Figure 12: Capturing the State of External Resource. ERy,
represents that an External Resource with state x.

Program

syscall)c—>| ERuc

\ devices, ...)
© >\ ERppmicry

The key property that makes external resource accesses different
from memory accesses is that it is stateful. For example, a file read
may return completely different results depending on previous
accesses. Fig. 12 shows an example. The return of syscall()c may
depend on previous system calls (syscall()4 and syscall()g). We
argue that the same request must return the same values if the external
resources are in the same state and we propose Resource Index (RI)
to represent the operation history and identify states of external
resources.

As state changes are driven by system calls, we model the state of
the external resources as a sequence of system calls that mutate their
states. Hence, Rl is essentially a sequence of executed system calls
on each resource at a point. Note that RI does not include system
calls which do not affect the state of the external resources such
as printf(). A system call invocation is represented as a Resource
ID (ResID) which contains a system call number and parameters
of the system call (i.e., ResId := (SysNum, ry, ra, ..., rp), where r;
denotes the arguments). RI is essentially a sequence of the Resource
ID of each resource. In other words, ResID is added to the current
RI on every system call invocation. Note that different resources
(e.g., different files) maintain separate ResID so that a state of a
resource (e.g., ResID 4) does not interfere with a state of another
resource (e.g., ResIDp).

4.2.4 Concretized Value ID. Similarly, to merge concretized val-
ues, we need to identify unique concretized values across trace

164

ISSTA’17, July 2017, Santa Barbara, CA, USA

programs. We introduce Concretized Value ID (CID) for this purpose,
which is defined in Fig. 13.

As discussed in Sec. 4.2.3, PIEtrace generates concretized values
only when they are not computed by the program itself. Inter-
estingly, it turns out that there are only two types of sources of
concretized values. First, constant values can be accessed during
the execution. Second, they are from external resources (e.g., file
system, network, timer, motherboard, kernel and etc.). For the first
case, constant values are not dependent on external resources and
can be easily inlined. Hence, aligning them only requires Symbolic
Address. For the second case, we need to identify places where
the concretized values are generated and the states of the external
resources at the time of the generation of the concretized values.
As aresult, CID consists of two elements: SymbolicAddress and Re-
sourcelndex, where SymbolicAddress aligns the constant values and
Resourcelndex represents the current states of external resources.

Fig. 13 shows the updated definition of the concretized value.
Compared to those of a trace program (Fig. 8), the differences are
listed as follows. Logld is replaced by CID and LogStorage’ which
maps Logld to a concretized value is also updated accordingly. More
importantly, concretize’(a) takes as input an address of the con-
cretized value (a).

In particular, concretize’ (a) first gets the corresponding CID of
a given address via GetCID(a). Note that the same algorithm is also
used to obtain a CID from an address during the original execution
when PIEtrace generates a trace program. Then, CID is used to
look up the LogStorage’. Since CID includes a RI value, the look up
operation is sensitive to the states of external resources . Finally,
the returned value from LS’ (LogStorage’), which is v, is applied to
the given address a.

SyscallNumber SysNum ::= Z
Resourcelndex ResID ::= < SysNum, ¢ >
ConcretizedValueID  CID := < SymAddr(a), ResID >

LS € LogStorage’ : CID — Value

SymAddr(a) returns a symbolic address of the given address.
GetCID(a) returns a ConcretizedValuelD from the given address.
SM(a) returns a value on the given address from a shadow memory.
M(a) returns a value on the given address from an actual memory.

concretizef(a):::
v = LS'(GetCID(a));
if v # @ then
W(V A(a), v);

LogRead(¢, a):=
if SM(a)# M(a) then
LS’ (GetCID(a)):= M(a);
SM(a):= M(a);

Figure 13: Definitions for symbolization

4.3 Safety Net

A merged program should throw an exception ex (Fig. 10) if it
cannot handle an input correctly. This is the key to making the
design sound. Besides, exception is a good indicator that more trace
programs are needed as more execution states should be covered. In
this section, we explain the design of Safety Net, which guarantees
that a merged program cannot report incorrect execution results.

4.3.1 Missing Statements. A merged program may miss state-
ments compared to the original program, as our technique is based
on dynamic traces. To be safe, we replace such statements with
exception triggering statements. Fig. 14 shows an example. Lines



ISSTA’17, July 2017, Santa Barbara, CA, USA

3-4 in the original program are missing in the merged program
(Lines 13-14). We add statements which throw exceptions instead
of the original statement so that we can detect attempts to execute
the missing statement.

Org. Program Merged Program with Safety Net
1if(pr) 11 if(pr) 21 if(pr)

2 ) 12 S| 22 S|

3 else 23 else

4 5 > > i

5 s3 15 s3 25 s

Figure 14: Replacing Missing Statements with Exceptions.

4.3.2 Missing Concretized Values. Even a merged program in-
cludes all statements from the original program, missing concretized
values can still lead to incorrect operations and erroneous outputs.
Thus, we monitor how concretized values are requested and used
by a merged program. Intuitively, we check if a merged program
requests unobserved parts of external resources at runtime.

In particular, a merged program should throw an exception when
it requests an unobserved RI value, as we do not know the value
corresponding to the uncovered state. Besides, it may also request
a partially concretized buffer. For example, the merged program
for Fig. 6 may want to read buffer[10] which we do not know its
value. To handle such scenarios, we mark the whole buffer Invalid
first and only update the concretized portion Valid. This allows us
to throw an exception if an Invalid portion is requested. In Fig. 6,
only buffer[0, 3] have concretized values while buffer[4,1023]
are not. Hence, buffer[4,1023] is marked Invalid. If a merged
program reads buffer[4,1024], an exception will be thrown.

5 EVALUATION

We apply CPR on 12 Windows applications to reuse them on 3
different platforms, Linux (x86 and x64), Raspberry PI and Cisco
I0S. We also apply CPR on 3 vulnerable Windows applications to
show that the extracted merged programs are resilient to attacks.
Table 1 shows the benchmark programs and the components
to be extracted. The first two columns show program name and
size of the binary. The third column shows # of trace programs
needed to handle all test inputs. The next column represents # of
inputs we prepared for each program. The next four columns show
# of functions, # of instructions, # of concretized values extract-
ed. The coverage means how many instructions are included in
a merged program within the extracted functions. Note that this
briefly captures the coverage of the extracted component. The over-
head column shows runtime performance and size of the merged
programs. We compare the execution time of the original program-
s and the merged programs. The average performance overhead
is 142.2% meaning that the merged programs are approximately
2.4 times slower than the original programs. For the size, we mea-
sure size of compiled binary of the merged programs. We measure
the overhead on the same machine (Intel Pentium 2.70GHz, 8GB
RAM, x86 Windows 7) for fair comparison. We use Visual Studio
2010 to compile the merged programs. The results show that the
size of merged programs are fairly small (mostly less than 100KB)
which we believe reasonable. Note that trace programs generated
by PIEtrace are very slow (more than 20x times overhead) and large
(often more than few megabytes). Hence, we develop and apply sev-
eral optimizations on the merged program to reduce the overhead in

165

Yonghwi Kwon, Weihang Wang, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu

both runtime and size. In particular, we inline constant concretized
values and translate virtualized instructions into corresponding
high-level language idioms. Note that a merged program after such
optimizations is still platform independent. By applying some of
platform dependent optimizations (e.g., replacing commonly used
logics with available library calls on a specific platform), we may
reduce the size and runtime overhead even more. The last column
shows the target component/algorithm we extracted from each
program. Alzip is a file archiver. It supports the egg file format
and it can select an optimum compression algorithm depending
on file contents. We extract its decompression component with
several decompression algorithms. AutoHotKey and SAScript are
scripting language engines. We use CPR to extract and reuse the
language engines so that we can run scripts on a different platform.
We want to reuse the file parsing components in both JPlayer and
OutlookAddressBookView. JPlayer displays videos recorded by
a dash-cam device. OutlookAddressBookView extracts recipients
information from a Microsoft Outlook Address Book file. We ex-
tract the steganography algorithms in PngSteg and HideIt that
are used to hide information in images. Pngrewrite compresses
png files using various tricks and we want to extract the compres-
sion component. ScriptDecoder is a source code deobfuscator for
Visual Basic Scripts and Strings identifies any string inside an ex-
ecutable file. NggolekiGinambaran is an image retrieval program
that compares two images and shows their similarity score. We
extract the image retrieval algorithms in the program. Entropy cal-
culates entropy of an executable file to determine if it is malicious.
In addition, we have 3 vulnerable programs, CastRipper, FreeAmp
and PowerTabEditor. They are vulnerable to memory corruption
issues when reading input files. We use CPR to extract components
that parse input files, and show that the extracted components are
no longer vulnerable.

5.1 Case Studies

5.1.1  Alzip. We collect a set of trace programs by running Alzip
on 100 input files. Table 2 shows the file types.

Fig. 15 shows how many trace programs are needed to handle
100 different egg files. X-axis shows the number of trace programs
merged and Y-axis represents the number of egg files it can handle.
The result shows that after we merge 16 trace programs, the merged
program can handle all 100 egg files. The number of trace programs
(and inputs) needed is far smaller than collected trace programs.
This result also echoes the problem definition in Sec. 3.2 that is
merging some of trace programs (16 trace programs) can handle
new inputs which were not observed during the merged executions.

100
90 1
80
70 4
60
50 4
40

30

1357 91113151719212325272931333537394143454749

Figure 15: # of Inputs handled by Merged Programs.

To reuse a merged program, we scan the concretized values and
match them with original input egg files’ contents. We replace the
matched concretized values with a new buffer variable so that it can



CPR: Cross Platform Binary Code Reuse via Platform Independent Trace Program

ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 1: Evaluation Results.

Program ‘ Size | * of trace #of Merged Programs Overhead | Target

programs | Inputs | #ofFunc. | #ofInst. | # of Concr. Val. | Coverage | Runtime | Size | Component/Algorithm
Alzip 2.8 MB 16 100 15,350 483,840 39,477 73.2% 193% 241 KB Decompression Algos.
AutoHotKey 895 KB 9 50 11,154 368,154 35,900 75.8% 235% 132 KB | Script Language Engine
SAScript 88 KB 11 40 5,223 213,012 6,617 84.0% 223% 81 KB Script Language Engine
JPlayer 5.1 MB 4 20 7,708 347,260 10,274 71.5% 121% 78 KB File Format Parsing
OutlookAddressBookView 102 KB 3 10 4,341 131,340 2,956 84.7% 187% 69 KB File Format Parsing
Pngrewrite 171 KB 12 100 6,318 227,442 15,044 78.0% 133% 50 KB Image Size Optimization
PngSteg 129 KB 7 100 3,392 120,016 5,009 82.2% 93% 48 KB Steganography Algos.
Hidelt 28 KB 5 100 2,592 82,330 2,823 85.9% 84% 50 KB Steganography Algos.
ScriptDecoder 44 KB 7 100 2,296 102,042 1,691 88.4% 198% 48 KB Script Decoding Algos.
Strings 21 KB 4 100 2,047 67,230 9,048 83.1% 102% 30 KB String Identification
NggolekiGinambaran 976 KB 9 100 5,138 127,036 10,764 87.3% 167% 52 KB Image Retrieval Algos.
Entropy 26 KB 7 100 1,685 78,374 1,812 93.1% 82% 24KB | Entropy Calculation
CastRipper 1.4 MB 4 50 2,862 127,245 2,690 91.7% 92% 28 KB (Vulnerable) File Parsing
FreeAmp 2.2 MB 3 50 2,744 129,578 3,404 95.4% 117% 28 KB (Vulnerable) File Parsing
PowerTabEditor 2.2 MB 4 20 3,590 142,732 3,136 83.8% 106% 30 KB (Vulnerable) File Parsing

Table 2: Sample input files for different traces.

Category  Extension Samp. l l Category Extension Samp.
Text .txt, ini, .reg, xml 12 Source code .c, .h, .cpp, .htm 12
Binary .dat, .bin, .img, .vbe 13 Executable .exe 12
Library .sys, .dll, .a 12 Document .pdf, .docx, .xlsx, 13
Image .bmp, .jpg, .png 13 Multimedia .wav, .mp3, .avi, .mpg 13

provide new input, and feed the buffer to ReadFile (). Similarly, we
log all outputs during the execution and identify the output from
the log. In particular, we capture the parameter of NtWriteFile()
in order to get outputs from the merged program.

5.1.2  AutoHotKey and Texter. We use AutoHotKey to show how
CPR can extract and reuse its script language engine. AutoHotKey
is an interpreter that automates many tasks. The program is listed
as one of the top 10 useful Windows applications that should be
ported to Mac by lifehacker.com [26]. There are many projects
using AutoHotKey. In particular, Texter [19] is a text substitution
program that replaces abbreviations with user-defined phrases. We
use CPR to extract the script language engine and reuse it on Linux
to run Texter. Specifically, we first pick 50 different AutoHotKey
script programs that process keyboard inputs on the Internet [1, 7,
25]. We get 50 trace programs from them and we merge the traces.
Interestingly, as shown in Table 1 that we found merging 9 trace
programs is enough to run the 50 different script programs. To
reuse the extracted component, we replace the API calls related
to keyboard and messages (e.g., keybd_event, SetKeyboardState,
and PostMessage) as well as a file read operation (e.g., ReadFile).
To this end, we successfully ran the Texter program on the merged
program on Linux.

5.1.3  Reusing and Fixing Vulnerable Component. We use CPR to
extract a file parsing component from FreeAmp which has a memo-
ry corruption vulnerability to show that the extracted component is
resilient to attacks. FreeAmp is a music player and it accepts several
types of playlist files. However, a function that processes playlists is
vulnerable to code injection attacks. We use CPR to extract the vul-
nerable file parsing function and check if the extracted component
is vulnerable to similar exploits.

First, we get 50 trace programs. Note that we use fairly big benign
inputs (>100KB) to cover most instructions. It turns out that we
reached the fixed point after merging 3 trace programs. Then, we
feed exploits to the merged program and compare the execution
with the original program.

Fig. 16 (a) and Fig. 16 (b) show how the original and merged
program behave. Note that the return statement is replaced with

166

(a) Original Program (b) Merged Program

Error PLS::ReadPlaylist(...) { Error PLS::ReadPlaylist(...) {

char *key = VA(REG_EBP) - 0x304;
char *value = VA(REG_EBP) - 0x404;

| char key/ MAX PATH]; 5

2 char value/ MAX PATH]; 6

&key = (ebp-0x304), &value = (ebp-0x404);

7 if (fscanf(fp, "%["=]=%["\n\r] ", key, value))

if (fscanf(fp, "%[*=]=%[~\n\r] ", key, value))

VL only includes call targets exists in
// the extracted component

4 return ...; // vulnerable return 8 goto (VL(R(REG_ESP) ) );

} }
(c) Stack of the Merged Program (Benign)

(d) Stack of the Merged Program (Attack)

VA(Address) Value VL(Value) VA(Address) Value VL(Value)
0x025FFDOC | 0x03AE2680 Undefined 0x025FFDOC | 0x03AE2729 Undefined
0x025FFD10 | 0x025FFCFC Undefined 0x025FFD10 | 0x025FFD80 Undefined
0x025FFE28 0x120415F4 Func_415F4 0x025FFE28 | 0x025FFCA4 Undefined

Figure 16: Merged Program under the Buffer Overflow.

goto with VL (Fig. 7). Fig. 16 (c) shows the stack during the benign
execution. In particular, the fourth row in Fig. 16 (c) shows a return
address. The first two columns show the stack addresses and values
stored on the stack. The last column shows whether the value stored
on the stack can be translated to another label (e.g., call/jump target).
Note that in Fig. 16 (c), the return address (e.g., 0x120415F4) actually
points to a valid code block (e.g., Func_415F4()).

On the other hand, Fig. 16 (d) shows the stack under the attack.
Note that the fourth row of the stack (the return address) is different.
Specifically, the value stored on the stack is 0x025FFCA4 which
points to injected payload. Since such code never exists while we
collect the trace programs, VL of the value is Undefined. Since the
jump target cannot be resolved, the attack is not successful.

In addition, we further construct ROP attacks and test them on
the both original and merged programs. The result shows that the
merged program is not vulnerable to most ROP attacks as it rejects
most of ROP gadgets as they are not part of the merged program
anymore.

5.1.4  Extracting Component from Infected Programs. Attackers
often inject malicious payloads into a useful benign program and
allure users to run the infected program. In this case study, we use
CPR to extract a component from an infected application and show
that the extracted component is free of malicious payloads.

We pick OutlookAddressBookView [27] that can extract recip-
ient info from the Microsoft Outlook address book files. We use
Metasploit to inject a malicious payload (Reverse TCP) into the
program using msfvenom. Then, we collect several trace programs
and merge them. To reuse the extracted component, we replace file
related functions with the corresponding functions available in the



ISSTA’17, July 2017, Santa Barbara, CA, USA

target platform. Since we want to make sure there is no remote
attack while collecting trace programs, we disabled the network.

(a) Original Program (Infected) (b) Merged Program

int EntryPoint() { int EntryPoint() {
// Infected Code // Infected Code
1 CreateThread(..., Payload, ...); 4 CreateThread(..., Payload, ...);
2 ProcessAddressBook(); 5 ProcessAddressBook();
int Payload() { int Payload() {
3 connect(...); // reverse tcp > // reverse tcp is not included
// More malicious payloads 6 // connect(...);
// beyond this point 7 RaiseException(...);
// No more malicious payload

Figure 17: Merged Program under the Infection

Fig. 17 (a) shows the infected original program. It creates a thread
that executes the malicious payload at Line 1. The malicious payload
decodes the encrypted payload and eventually calls connect() to
establish a reverse TCP connection.

Fig. 17 (b) shows the extracted component from the infected orig-
inal program. At Line 6, connect () function that opens a reverse
TCP connection does not exist. This is because trace programs do
not have platform dependent system calls including network APIs.

Moreover, even if it includes the connect (), the attack cannot
be launched. This is because the merged program does not have
any malicious code beyond the connect () as the network connec-
tion was never established. Hence, any code beyond the function
is not added to any trace programs. Note that we disabled the net-
work connection while collecting trace programs. Thus, any further
execution will throw exceptions (Line 7).

6 RELATED WORK

Binary Extraction and Reuse Inspector gadget [51] and BCR [48]
extracts a part of a program for security analysis and code reuse.
The extracted gadgets and components can take inputs to perform
certain functionalities. However, they are platform dependent hence
cannot be reused on different platforms. TOP [73] is a dynamic anal-
ysis based technique that decompiles a binary to C program. The
resulting C program can also take inputs as the original binary does.
However, it requires the presence of the same environment such as
the same set of libraries and kernel interfaces, hence it is platfor-
m dependent. Virtuoso [42] automatically generates introspection
tools for security applications. The generated tools are python pro-
grams hence platform independent. However, it requires a driver
application in order to specify functions and variables to extract. In
practice, writing such a driver for real-world binary programs due
to the lack of semantic information. In contrast, CPR synthesizes
a platform independent program without any knowledge on the
target software, components, and platform.

Decompilation/Disassembler Decompilers [14, 59, 65] recon-
struct program source code from the lower-level languages [38].
However, most of them are based on static analysis, and they of-
ten fail to recover non-trivial indirect jump/call targets such as
function pointers. Moreover, they have limited capacity to handle
obfuscation techniques, hardened binaries or optimized binaries
as such techniques often break common compiler idioms. When
they cannot find a high-level language representation of the given
binary code, they often generate platform dependent assembly code.
While most disassemblers [14, 39, 59] focus on producing code for
analysis purpose meaning that it cannot be directly recompiled,

167

Yonghwi Kwon, Weihang Wang, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu

there have been several attempts to generate IR (e.g., LLVM IR) from
binaries [11, 22, 31]. However, these tools are not mature enough to
generate recompilable IR code. Recently, Wang et al. propose a re-
assemblable disassembler [68]. However, the disassembled program
still have platform dependencies such as system calls. In contrast,
CPR uses dynamic analysis and synthesizes platform independent
programs even from obfuscated/hardened/optimized binaries.
Software Transplantation Recently, Harman et al. [47] have in-
troduced the idea of software transplantation based on Genetic
Improvement (GI) [32, 45, 46, 53, 63, 70] which improves existing
systems by manipulating program code. There are also some at-
tempts [56, 69] to transplant code from one location to another
within the same system (e.g., different versions of a system). Re-
cently, Earl Barr et al. [35] transplanted code from one system
to different systems. It combines dynamic and static analysis to
identify program dependencies of the transplanted functionality.
However, they require source code which is often not available in
practice. More importantly, even if source code is available, a pro-
gram may use closed sourced libraries and/or up-to-date language
features (e.g., lambda expressions), which are challenging to handle
for source code based approaches. Instead, CPR works directly on
binary programs to automatically identify and decouple platform
dependencies even inside the closed source libraries.

Execution Replication and Replay Execution replication and re-
play has been widely studied [30, 37, 40, 43, 44, 55, 58, 60, 62, 66, 72].
However, most of them do not support cross platform or require
knowledge on target platforms (e.g., system call interface). More-
over, they can only replay a specific execution path and do not allow
new inputs. In contrast, CPR synthesizes a platform independent
open program which can take new inputs. Xu et al. [71] proposed
a compiler based technique to generate two instrumented versions
of a Java program for logging and replay. However, it assumes the
availability of source code and the same set of libraries. Instead,
CPR directly works on binaries and does not require any libraries.
Virtual Machine, Emulation, and Runtime Support Virtual
Machines [34, 54, 67] and Emulators [36, 41, 57, 64] can run appli-
cations from different platforms. However, they often require hard-
ware support or an entire software stack including OS. Moreover,
to reuse a program inside the VM, one needs to know interfaces of
target OS and VM. Docker [54] is fast and handy to run an applica-
tion on different platforms. However, it currently supports only few
desktop OSes. WINE [29] provides a compatibility layer between
Windows applications and POSIX compliant OSes. However, it can
only run programs on the same processor. CPR does not rely on any
knowledge on the target platforms and the synthesized programs
can be reused on any platform even on different processors.

7 CONCLUSION

In this paper, we proposed a novel approach CPR that can gener-
ate a platform-independent program from a platform-dependent
program. In particular, we overcome technical challenges intro-
duced by un-unified differences across executions and merge a set
of platform independent trace programs generated by PIEtrace. The
merged program is representative of the observed program runs.
Our evaluation on 15 real-world Windows programs shows that
CPR is highly effective and the generated programs are often more
secure.



CPR: Cross Platform Binary Code Reuse via Platform Independent Trace Program

REFERENCES

(1]
(2]

(3]

[19]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

1 hour software by skrommel - donationcoder.com. http://www.donationcoder.
com/Software/Skrommel/.

10 enterprise internet of things deployments with actual result-
s. http://www.networkworld.com/article/2848714/cisco-subnet/
10-enterprise-internet- of-things-deployments- with-actual-results.html.

11 amazing success stories to prove that internet of things
(iot) is not just a verbal tic. https://www.linkedin.com/pulse/
11-amazing- success- stories- prove-internet- things-iot-just-sambhani.

404 - file or directory not found. http://www.altools.com/al/downloads/egg
module/unegg_v0.5.tar.bz.

Alzip - cute & easy file compression program - altools. http://www.altools.com/
altools/alzip.aspx.

Arduino. https://www.arduino.cc/.

Autohotkey script showcase. https://autohotkey.com/docs/scripts/.

Binary executable transforms (bet). https://opencatalog.darpa.mil/BET.html.
Bypassing malware defenses. https://www.sans.org/reading-room/whitepapers/
testing/bypassing-malware-defenses-33378.

Cisco ios technologies. http://www.cisco.com/c/en/us/products/
ios-nx-os-software/ios- technologies/index.html.

Dagger. http://dagger.repzret.org/.

Dronecode. https://www.dronecode.org/.

Findfirstfile behaves differently on vista. http://www.yqcomputer.com/1147_
3324_1.htm.

Hex-rays. ida pro disassembler. https://www.hex-rays.com/idapro.
Intel(r)-based drone technology pushes boundaries. http://www.intel.com/
content/www/us/en/technology-innovation/aerial-technology-overview.html.
Intel(r) galileo gen 2. http://www.intel.com/content/www/us/en/embedded/
products/galileo/galileo-overview.html.

Intel(r) iot platform. http://www.intel.com/content/www/us/en/
internet-of-things/infographics/iot- platform-infographic.html.

Internet of things: Why iot is here to stay within the enterprise. http://blogs.
air-watch.com/2015/11/internet- things-iot-enterprise/#.V790zlsrJUQ.
Lifehacker code: Texter (windows). http://lifehacker.com/238306/
lifehacker-code-texter-windows.

Linux cross reference - inflate.c source code. http://Ixr.free-electrons.com/source/
lib/inflate.c.

mbed iot device platform. https://www.arm.com/products/
internet-of-things- solutions/mbed-IoT-device-platform.php.

Mc-semantics. .https://github.com/trailofbits/mcsema.

Onr baa announcement # n00014-17-s-b010. https://www.onr.navy.mil/-/media/
Files/Funding- Announcements/BAA/2017/N00014-17-S-B010.ashx.

Raspberry pi. https://www.raspberrypi.org/.

Scripts and functions - autohotkey community. https://autohotkey.com/boards/
viewforum.php?f=6.

Top 10 windows applications that should be on macs. http://lifehacker.com/
5567174/top-10-windows-applications-that- should-be-on-macs.

View / export the address book of ms-outlook. http://www.nirsoft.net/utils/
outlook_address_book_view.html.

Why does this code work on windows 7, but doesn’t on
windows  xp? http://stackoverflow.com/questions/12638698/
why-does-this-code-work-on-windows-7-but-doesnt-on-windows-xp.
Winehq - run windows applications on linux, bsd, solaris and mac os x. https:
//www.winehq.org/.

G. Altekar and L. Stoica. Odr: Output-deterministic replay for multicore debug-
ging. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP *09, pages 193-206, New York, NY, USA, 2009. ACM.

K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles, and R. Barua. A
compiler-level intermediate representation based binary analysis and rewriting
system. In Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 295-308, New York, NY, USA, 2013. ACM.

A. Arcuri and X. Yao. A novel co-evolutionary approach to automatic software
bug fixing. In 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), pages 162-168, June 2008.

L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Comput.
Netw, 54(15):2787-2805, Oct. 2010.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
1. Pratt, and A. Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst.
Rev., 37(5):164-177, Oct. 2003.

E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke. Automated software
transplantation. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis, ISSTA 2015, pages 257-269, New York, NY, USA, 2015. ACM.
F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC °05, pages
41-41, Berkeley, CA, USA, 2005. USENIX Association.

S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M. Drini¢, D. Mihocka,
and J. Chau. Framework for instruction-level tracing and analysis of program

168

[43]

[44]

[47]

(48]

(49]

[50]

[51

[52]

(54]

[55]

[56

[57

(58]

[59]

(60

(1]

ISSTA’17, July 2017, Santa Barbara, CA, USA

executions. In Proceedings of the 2Nd International Conference on Virtual Execution
Environments, VEE ’06, pages 154-163, New York, NY, USA, 2006. ACM.

P. T. Breuer and J. P. Bowen. Decompilation: The enumeration of types and
grammars. ACM Trans. Program. Lang. Syst., 16(5):1613-1647, Sept. 1994.

D. Brumley, L Jager, T. Avgerinos, and E. J. Schwartz. Bap: A binary analysis
platform. In Proceedings of the 23rd International Conference on Computer Aided
Verification, CAV’11, pages 463-469, Berlin, Heidelberg, 2011. Springer-Verlag.
J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program analysis
from execution in virtual environments. In USENIX 2008 Annual Technical
Conference, ATC’08, pages 1-14, Berkeley, CA, USA, 2008. USENIX Association.
B. Cmelik and D. Keppel. Shade: a fast instruction-set simulator for execution
profiling. SIGMETRICS Perform. Eval. Rev., 22(1):128-137, May 1994.

B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso: Narrowing
the semantic gap in virtual machine introspection. In Proceedings of the 2011
IEEE Symposium on Security and Privacy, SP ’11, pages 297-312, Washington,
DC, USA, 2011. IEEE Computer Society.

G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Revirt: enabling
intrusion analysis through virtual-machine logging and replay. SIGOPS Oper.
Syst. Rev.,, 36(SI):211-224, Dec. 2002.

G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Execution
replay of multiprocessor virtual machines. In Proceedings of the Fourth ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE 08, pages 121-130, New York, NY, USA, 2008. ACM.

C. Goues, S. Forrest, and W. Weimer. Current challenges in automatic software
repair. Software Quality Journal, 21(3):421-443, Sept. 2013.

M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and J. A. Clark. The
gismoe challenge: Constructing the pareto program surface using genetic pro-
gramming to find better programs (keynote paper). In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2012, pages 1-14, New York, NY, USA, 2012. ACM.

M. Harman, W. B. Langdon, and W. Weimer. Genetic programming for reverse
engineering. In 2013 20th Working Conference on Reverse Engineering (WCRE),
pages 1-10, Oct 2013.

N. M. Johnson, J. Caballero, K. Z. Chen, S. McCamant, P. Poosankam, D. Reynaud,
and D. Song. Differential slicing: Identifying causal execution differences for
security applications. In Proceedings of the 2011 IEEE Symposium on Security
and Privacy, SP °11, pages 347-362, Washington, DC, USA, 2011. IEEE Computer
Society.

D.Kim, Y. Kwon, W. N. Sumner, X. Zhang, and D. Xu. Dual execution for on the fly
fine grained execution comparison. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 325-338, New York, NY, USA, 2015. ACM.

D. Kim, W. N. Sumner, X. Zhang, D. Xu, and H. Agrawal. Reuse-oriented reverse
engineering of functional components from x86 binaries. In Proceedings of the
36th International Conference on Software Engineering, ICSE 2014, pages 1128—
1139, New York, NY, USA, 2014. ACM.

C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector gadget: Automated
extraction of proprietary gadgets from malware binaries. In Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP ’10, pages 29-44, Washington,
DC, USA, 2010. IEEE Computer Society.

Y. Kwon, X. Zhang, and D. Xu. Pietrace: Platform independent executable trace. In
2013 IEEE/ACM 28th International Conference on Automated Software Engineering,
pages 48-58, Nov 2013.

Langdon and W. B. Mark Harman. Optimising Existing Software with Genetic
Programming. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.
19, NO. 1, FEBRUARY 2015.

D. Merkel. Docker: Lightweight linux containers for consistent development
and deployment. Linux J., 2014(239), Mar. 2014.

S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously recording
program execution for deterministic replay debugging. SIGARCH Comput. Archit.
News, 33(2):284-295, May 2005.

J. Petke, M. Harman, W. B. Langdon, and W. Weimer. Using genetic improvement
& code transplants to specialise a c++ program to a problem class. In In 17th
European Conference on Genetic Programming (EuroGP, 2014.

J. Polley, D. Blazakis, J. Mcgee, D. Rusk, and J. S. Baras. Atemu: A fine-grained
sensor network simulator. In IEEE SECON °04, 2004.

Y. Saito. Jockey: a user-space library for record-replay debugging. In AADE-
BUG’05, 2005.

E.J. Schwartz, J. Lee, M. Woo, and D. Brumley. Native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring.
In Proceedings of the 22Nd USENIX Conference on Security, SEC’13, pages 353-368,
Berkeley, CA, USA, 2013. USENIX Association.

S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D. Keromytis.
Assure: Automatic software self-healing using rescue points. SIGPLAN Not.,
44(3):37-48, Mar. 2009.

E. H. Spafford. Extending mutation testing to find environmental bugs. Software
Practice and Principle, 20(2):181-189, February 1990.


http://www.donationcoder.com/Software/Skrommel/
http://www.donationcoder.com/Software/Skrommel/
http://www.networkworld.com/article/2848714/cisco-subnet/10-enterprise-internet-of-things-deployments-with-actual-results.html
http://www.networkworld.com/article/2848714/cisco-subnet/10-enterprise-internet-of-things-deployments-with-actual-results.html
https://www.linkedin.com/pulse/11-amazing-success-stories-prove-internet-things-iot-just-sambhani
https://www.linkedin.com/pulse/11-amazing-success-stories-prove-internet-things-iot-just-sambhani
http://www.altools.com/al/downloads/egg_module/unegg_v0.5.tar.bz
http://www.altools.com/al/downloads/egg_module/unegg_v0.5.tar.bz
http://www.altools.com/altools/alzip.aspx
http://www.altools.com/altools/alzip.aspx
https://www.arduino.cc/
https://autohotkey.com/docs/scripts/
https://opencatalog.darpa.mil/BET.html
https://www.sans.org/reading-room/whitepapers/testing/bypassing-malware-defenses-33378
https://www.sans.org/reading-room/whitepapers/testing/bypassing-malware-defenses-33378
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-technologies/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-technologies/index.html
http://dagger.repzret.org/
https://www.dronecode.org/
http://www.yqcomputer.com/1147_3324_1.htm
http://www.yqcomputer.com/1147_3324_1.htm
https://www.hex-rays.com/idapro
http://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-overview.html
http://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-overview.html
http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-overview.html
http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-overview.html
http://www.intel.com/content/www/us/en/internet-of-things/infographics/iot-platform-infographic.html
http://www.intel.com/content/www/us/en/internet-of-things/infographics/iot-platform-infographic.html
http://blogs.air-watch.com/2015/11/internet-things-iot-enterprise/#.V79OzlsrJUQ
http://blogs.air-watch.com/2015/11/internet-things-iot-enterprise/#.V79OzlsrJUQ
http://lifehacker.com/238306/lifehacker-code-texter-windows
http://lifehacker.com/238306/lifehacker-code-texter-windows
http://lxr.free-electrons.com/source/lib/inflate.c
http://lxr.free-electrons.com/source/lib/inflate.c
https://www.arm.com/products/internet-of-things-solutions/mbed-IoT-device-platform.php
https://www.arm.com/products/internet-of-things-solutions/mbed-IoT-device-platform.php
. https://github.com/trailofbits/mcsema
https://www.onr.navy.mil/-/media/Files/Funding-Announcements/BAA/2017/N00014-17-S-B010.ashx
https://www.onr.navy.mil/-/media/Files/Funding-Announcements/BAA/2017/N00014-17-S-B010.ashx
https://www.raspberrypi.org/
https://autohotkey.com/boards/viewforum.php?f=6
https://autohotkey.com/boards/viewforum.php?f=6
http://lifehacker.com/5567174/top-10-windows-applications-that-should-be-on-macs
http://lifehacker.com/5567174/top-10-windows-applications-that-should-be-on-macs
http://www.nirsoft.net/utils/outlook_address_book_view.html
http://www.nirsoft.net/utils/outlook_address_book_view.html
http://stackoverflow.com/questions/12638698/why-does-this-code-work-on-windows-7-but-doesnt-on-windows-xp
http://stackoverflow.com/questions/12638698/why-does-this-code-work-on-windows-7-but-doesnt-on-windows-xp
https://www.winehq.org/
https://www.winehq.org/

ISSTA’17, July 2017, Santa Barbara, CA, USA

[62]

[63]

[64]

[65]

[66]

S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback: A lightweight
extension for rollback and deterministic replay for software debugging. In
Proceedings of the Annual Conference on USENIX Annual Technical Conference,
ATEC 04, pages 3-3, Berkeley, CA, USA, 2004. USENIX Association.

J. Swan, M. G. Epitropakis, and J. R. Woodward. Geno-fix: An embeddable
framework for dynamic adaptive genetic improvement programming. 2014.

B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable sensor network simula-
tion with precise timing. In Proceedings of the 4th International Symposium on
Information Processing in Sensor Networks, IPSN *05, Piscataway, NJ, USA, 2005.
IEEE Press.

M. Van Emmerik and T. Waddington. Using a decompiler for real-world source
recovery. In Proceedings of the 11th Working Conference on Reverse Engineering,
WCRE 04, pages 27-36, Washington, DC, USA, 2004. IEEE Computer Society.
A. Vasudevan, N. Qu, and A. Perrig. Xtrec: Secure real-time execution trace
recording on commodity platforms. In Proceedings of the 2011 44th Hawaii
International Conference on System Sciences, HICSS 11, pages 1-10, Washington,
DC, USA, 2011. IEEE Computer Society.

169

(67
(68

[69]

Yonghwi Kwon, Weihang Wang, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu

B. Walters. Vmware virtual platform. Linux J., 1999(63es), July 1999.

S. Wang, P. Wang, and D. Wu. Reassembleable disassembling. In Proceedings
of the 24th USENIX Conference on Security Symposium, SEC’15, pages 627-642,
Berkeley, CA, USA, 2015. USENIX Association.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches
using genetic programming. In Proceedings of the 31st International Conference
on Software Engineering, ICSE 09, pages 364-374, Washington, DC, USA, 2009.
IEEE Computer Society.

D. R. White, A. Arcuri, and J. A. Clark. Evolutionary improvement of programs.
Trans. Evol. Comp, 15(4):515-538, Aug. 2011.

G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient checkpointing of java software
using context-sensitive capture and replay. In ESEC-FSE, 2007.

M. Xu, R. Bodik, and M. D. Hill. A "flight data recorder" for enabling full-system
multiprocessor deterministic replay. SIGARCH Comput. Archit. News, 31(2):122-
135, May 2003.

J. Zeng, Y. Fu, K. Miller, Z. Lin, X. Zhang, and D. Xu. Obfuscation resilient binary
code reuse through trace-oriented programming. In CCS ’13, 2013.



	Abstract
	1 Introduction
	2 Demonstrative example
	2.1 Background: Trace Program
	2.2 Motivation Example
	2.3 Our Approach

	3 Problem Definition
	3.1 Platform Independent Trace Programs
	3.2 Problem Definition

	4 CPR Design
	4.1 Merging Statements
	4.2 Merging Concretized Values
	4.3 Safety Net

	5 Evaluation
	5.1 Case Studies

	6 Related Work
	7 Conclusion
	References

