
CMASan: Custom Memory Allocator-aware Address Sanitizer

Junwha Hong
Department of Computer Science

UNIST

Wonil Jang
Department of Computer Science

UNIST

Mijung Kim
Department of Computer Science

UNIST

Lei Yu
Department of Computer Science
Rensselaer Polytechnic Institute

Yonghwi Kwon
Department of Electrical and

Computer Engineering
University of Maryland

Yuseok Jeon†

Department of Computer Science
UNIST

Abstract—Custom Memory Allocator (CMA) replaces the
standard memory allocator for various purposes, such as
improving memory efficiency or enhancing security. However,
memory objects allocated by CMA are vulnerable to memory
bugs similar to those allocated by the standard memory allocator.
Unfortunately, existing memory bug detection approaches,
including Address Sanitizer (ASan), do not work properly with
these CMAs because existing approaches are mainly designed
for the standard memory allocator.

This paper presents CMASan, the first CMA-aware address
sanitizer designed to effectively detect memory bugs on CMA
objects that ASan misses without requiring expert knowledge,
manual code modifications, or changing the unique internal logic
of CMAs. According to our evaluation, CMASan successfully
identifies 19 previously unknown CMA memory bugs undetected
by ASan, including some undetected for 9 years. Compared to
ASan, CMASan incurs only an additional 9.63% overhead.

1. Introduction

Custom Memory Allocator (CMA) is used as an alternative
to the standard memory allocator for various purposes [1–6],
such as cache utilization, memory efficiency, and security.
These CMAs are widely used in the real world. For example,
among the top 100 C/C++ applications sorted by GitHub
stars, CMAs have been adopted in 44% of the applications.
However, objects allocated by CMAs can be vulnerable to
invalid memory access due to memory bugs (e.g., buffer
overflow), similar to those allocated by the standard memory
allocator.

Unfortunately, existing memory bug detection approaches
are designed for the standard memory allocator, and therefore,
they are unable to adequately detect memory bugs related to
CMAs, which have unique internal CMA logic and different
CMA API names and types (e.g., clear API). To address this,
several approaches have been proposed for detecting CMA-
related memory bugs. These approaches can be broadly

†. Corresponding author

classified into two categories: symbolic execution-based
approaches [7–11] and Address Sanitizer (ASan)-based [12]
manual code modification approaches [13–17].

Symbolic execution-based detection approaches for CMA
memory bugs are restricted by the inherent limitations [18] of
symbolic execution, such as path explosion, limited handling
of complex data structures, and difficulties with real-world
inputs, preventing them from detecting all types of CMA
memory bugs in large and complex programs.

ASan, unlike symbolic execution, performs instrumen-
tation at compile time and verification during runtime
using precise real-time data. Consequently, ASan does not
suffer from the same limitation as symbolic execution,
thereby allowing for identifying memory bugs in large and
complicated programs. In fact, ASan is the most widely
adopted approach [19] for memory bug detection, and ASan
identifies a significant number of bugs in C/C++ programs.
For instance, ASan has identified more than 10,000 memory
bugs [20–22] across different software.

While ASan effectively detects memory bugs, it does not
properly cover memory bugs related to CMA objects, as it
only tracks objects allocated by standard memory allocators
(e.g., malloc()). To address these limitations, the Shim [13,
14] approach and the ASan manual poisoning APIs [15–
17] have been proposed to support the detection of CMA
memory bugs through ASan. This Shim approach provides
a mode to disable CMA and replace it with a standard
allocator, thereby enabling ASan to treat CMA as a standard
allocator. However, applying the Shim approach requires
an understanding of the target application code and manual
modifications. Furthermore, not all CMAs are compatible
with Shim because their diverse and unique CMA internal
logic can complicate precise mapping with the standard
memory allocator, resulting in less accurate detection.

The ASan manual poisoning APIs support manual poi-
soning while maintaining CMA’s logic. However, using these
APIs also requires code modifications and expert knowledge
of the target program and CMA. Additionally, users need
to manually modify CMA to secure redzone areas for each
CMA object and implement separated Quarantine zones

to delay the freeing of CMA objects for a certain period.
Consequently, the application of both the Shim approach and
ASan manual poisoning APIs to real-world programs is rare
due to these limitations, including the need for manual code
modification and expert knowledge, and limited CMA API
coverage. According to our survey of the top 100 C/C++
applications ranked by GitHub stars, only ten applications
have adopted Shim. Among these, CMAs in five applications
are not fully covered by Shim. Furthermore, only three
applications utilize ASan manual poisoning APIs.

We present CMASan, the first CMA-aware Address
Sanitizer, designed to detect CMA-related memory bugs
in applications that utilize CMAs, without requiring expert
knowledge, code modification, or alterations to the internal
logic of the target CMAs. First, at static time, CMASan
identifies the CMA APIs and instruments these APIs for
memory bug detection. More specifically, CMASan identifies
CMA API candidates using a widely-used static analyzer,
CodeQL [23], and then categorizes these candidates through
CMASan’s semi-automated categorization procedure. For
each identified CMA API (e.g., alloc, realloc, and free),
CMASan automatically inserts the corresponding ASan
instrumentation. Note that to preserve the internal logic of the
CMA allocator, CMASan does not replace the allocator with
ASan’s allocator like ASan. Furthermore, CMASan handles
special APIs that are used uniquely and frequently in CMA.
For example, CMA frequently uses the clear API to release
multiple objects at once, a practice observed in 20% of
arena-type CMA cases, instead of individually freeing objects
through the free. By handling such clear APIs, CMASan
can accurately detect DF and UAF that occur after clear
operations.

In runtime, for fast and accurate memory detection
related to CMA objects, it is important to efficiently manage
the CMA object-related metadata generated by CMASan.
To achieve this, CMASan utilizes a customized two-level
table to handle metadata efficiently. Additionally, CMASan
carefully manages the lifecycle of the metadata to maximize
its detection capability by always maintaining the most up-
to-date, accurate information.

To enhance the detection capability for temporal memory
violations while preserving the logic of CMA, CMASan
introduces instance-specific quarantine zones to maximize
the duration of objects in the freed state. Unlike ASan,
CMASan’s quarantine zone delays free requests by only
marking them in the redzone without actually freeing them.
Additionally, when multiple allocators share a single quaran-
tine zone, it can result in inaccurate detections of Use-After-
Free (UAF) and Double-Free (DF). To address these issues,
CMASan proposes an individual quarantine zone approach,
maintaining a separate quarantine zone for each allocator
instance.

Lastly, to further improve the accuracy of CMA bug
detection, it is necessary to appropriately handle the various
false positive reports. For example, CMASan manages red-
zones without replacing existing CMAs with ASan’s internal
memory allocators. This approach preserves the internal
behavior of CMAs, which could lead to false positives, such

as metadata access on freed objects. To prevent these CMA-
related false positive issues, CMASan proposes four different
false positive suppression techniques.

In our evaluation, we first identify a significant number of
memory accesses to CMA objects—for example, in ncnn [24],
87% of memory accesses are related to CMA—that ASan
is unable to verify. Due to CMASan’s increased detection
coverage for checking memory access to such CMA ob-
jects, CMASan has successfully detected ten known CMA
bugs that native ASan does not detect, without any false
positive reports. In addition, CMASan identifies 19 new
unknown CMA memory bugs in real-world applications.
All these 19 bugs have been reported, and twelve have
received confirmation. Out of these, six have been patched
and assigned CVE IDs. Interestingly, CMA memory bugs
detected by CMASan in SQLite3 and PHP are triggered by
their own unit tests. However, due to the limitations of
existing approaches, these bugs remained undetected for two
years in PHP and nine years in SQLite. Furthermore, due
to several CMASan’s optimization techniques, such as the
two-level metadata table, CMASan incurs only an additional
9.63% performance overhead and 14.83% memory overhead
on average compared to native ASan.

In summary, this paper makes the following contributions:
• We propose the first CMA-aware address sanitizer de-

signed to improve detection capabilities, allowing for the
identification of CMA memory bugs without requiring
specific expert knowledge and code modification.

• We propose several techniques that handle CMA’s unique
logic to improve the precision of detecting CMA memory
bugs and minimize false positives.

• In our evaluation, CMASan identifies 19 previously un-
known real-world CMA memory bugs, of which 5 are
acknowledged, 7 have been fixed, and 6 of them received
CVEs.

2. Background and Motivation

2.1. Mechanism of Address Sanitizer

Address Sanitizer (ASan) pre-allocates shadow memory at a
ratio of 1 byte of shadow memory for every 8 bytes of user-
accessible memory for storing the redzone statuses to validate
accesses during load/store instructions [25]. When allocating
an object, surrounding areas are marked as redzones to detect
Buffer-Overflow (BOF). ASan achieves this by replacing
standard memory allocator APIs (e.g., malloc, realloc, or
calloc) with its internal allocator APIs, which allocate extra
space surrounding the requested-sized object to accommodate
space for redzones. This extra space for redzones helps detect
BOF memory access.

Similarly, to detect Use-After-Free (UAF) and Double-
Free (DF), ASan replaces standard memory allocator APIs
(e.g., free, or realloc) with its internal ASan allocator APIs.
ASan also marks a freed object as a redzone, allowing the
detection of subsequent accesses to and deallocation API
calls on the object as UAF and DF, respectively. However,

CMA
ALLOC

(a) Arena

(b) Recycler

R
e

cy
cl

e
 O

b
je

ct

Asan
Quarantine zone

Asan
FREE

CMA
FREE
DF FN

BOF FN

UAF FN

c1 c2

ptr1+nptr1 ptr2

c3

c3

ptr3 ptr3+n

ptr3

Poisoned

Accessible
(CMA-allocated)

Unpoisoned but
invalid for user

Figure 1: Two examples describe the Arena and Recycler patterns
and possible false negatives.

merely marking redzones (i.e., poisoning) is insufficient, as
the memory allocator tends to recycle the freed memory
in subsequent allocations for efficient memory utilization.
This updates the shadow memory of the object as accessible
(unpoisoning), making it challenging to detect UAF and DF.
To address this, ASan places freed objects into a Quarantine
zone, delaying their recycling until the zone reaches a certain
capacity and extending the duration for bug detection.

While ASan can effectively detect BOF, UAF, and DF
with a high detection rate and low false positive rate using
shadow memory and the Quarantine zone, it has limitations
when dealing with objects allocated by CMAs due to its
inability to recognize CMAs. ASan Manual Poisoning API,
which allows for manual poisoning of CMA objects, or a
Shim mode that supports replacing a CMA with a standard
memory allocator, offers solutions to address the issue.

However, using ASan manual poisoning API requires
tester’s expertise in understanding the target application’s
code and its CMA structures, as well as timely poisoning.
Due to these challenges, our survey of the top 100 C/C++
applications on GitHub, ranked by stars, revealed that only
three have implemented the ASan manual poisoning API.
Moreover, because poisoning must occur whenever a CMA
free takes place, and timely unpoisoning is necessary due to
quick recycling for temporal locality, the detection period
for UAF and DF is limited. This limitation arises from the
absence of a Quarantine zone in the manual poisoning API.
Another approach, Shim mode, offers a solution by designing
CMA with interfaces identical to libc, allowing ASan to rec-
ognize CMA as a libc allocator during testing [14]. However,
it also requires understanding the target application’s code
and its CMA structures, along with having allocators with the
same interface as libc. In some cases, such as in-place realloc
and clear CMA APIs, where there is no direct equivalence
with standard APIs (e.g., malloc, realloc, calloc, or free),
discrepancies can arise between the Shim mode and the
actual program behavior. These issues will be discussed in

1 // ALLOC (Arena)

2 void* allocate(size_t size) {

3 ...

4 if (FOLLY_LIKELY((size_t)(end_ - ptr_) >= size)) {

5 // Fast path: there's enough room in the current block
6 char* r = ptr_;

7 ptr_ += size;

8 assert(isAligned(r));

9 return r;

10 }

11 ...

12 return r;

13 }

1 void clear() {

2 ...

3 currentBlock_ = blocks_.begin();

4 char* start = currentBlock_->start();

5 ptr_ = start;

6 end_ = start + blockGoodAllocSize() - sizeof(Block);

7 ...

8 }

Figure 2: An example of the Arena pattern and clear API in folly

detail in §2.3. Despite efforts by developers to design CMA
to support Shim mode, there may be instances where certain
CMAs are overlooked. Among the surveyed 100 applications,
Shim mode is applied in 10 applications, but five of them
only supported the Shim mode for one type of CMA while
overlooking others.

Therefore, there is a pressing need for a solution that au-
tomates redzone allocation, recognizes CMA lifecycles, and
implements Quarantine zones without manual intervention.
Such a solution would address the gaps in current approaches
and enhance the effectiveness of memory error detection in
applications using CMAs.

2.2. CMA Patterns against ASan

In this section, we thoroughly examine the limitations of
ASan in detecting memory access errors by analyzing the
top 100 C/C++ applications on Github ranked by star ratings.
We identify 78 CMAs from 44 applications. Additionally,
we identify two common CMA patterns, Arena and Recycler,
within these CMAs as the root causes of ASan’s false
negatives on CMAs.
Arena. Among the investigated CMAs, 69% follow an Arena
pattern, which involves allocating a large memory region, or
arena, from the upstream allocator (e.g., standard allocator)
and then subdividing this region (or arena) for the allocation
requests by updating offsets from the start address. However,
ASan only recognizes the arena, not each subdivided object,
and thus inserts redzones solely around the whole chunk,
as shown in Figure 1-(a). Therefore, ASan fails to detect
BOF for adjacent objects allocated within the arena. For
instance, consider the case when CMA allocates an object,
c1, with base pointer ptr1 and size sz1, and then allocates
another object, c2, with base pointer ptr2 and size sz2
immediately after. If a user mistakenly accesses ptr1 + n

On-demand
two-level table

CMA
Identification

1
Instrumentation of
primitive CMA APIs

2
CMA Object

Tracking
3

(Section §3.3)

Enhance UAF
 and DF Detection

4

(Section §3.4)

False Positive
Avoidance

5

(Section §3.5)

Object1 Object2 Object3

Instance specific
quarantine

& allocation zones

Callstack-based
avoidance

1st level table

2nd level tables freedallocated

Compile time Runtime

Func1

Func2

Func3

Func4

(Section §3.1)

CMA API
detection

(Section §3.2)

Source code Instrumented
binary

CallstackInstrumented
CMA APIs

Figure 3: Overview of CMASan

where ptr2 ≤ ptr1+n < ptr2+ sz2, it should be identified
as a BOF. However, since ASan cannot insert a redzone
between CMA objects allocated within the arena, ASan
misses this BOF, which results in a false negative. To detect
such BOFs, a redzone area must also be allocated between
objects.
Recycler. Among the investigated CMAs, 45% follow a
Recycler pattern, utilizing internal data structures (e.g., free-
list) to collect and reuse objects requested for deallocation.
This allows a single object allocated by a standard allocator
to undergo multiple lifecycles. However, as ASan cannot
recognize these lifecycles, it may fail to detect UAF and
DF. In Figure 1-(b), object c3 is initially allocated using
the standard allocator, then re-allocated by CMA alloc,
deallocated by CMA free, and recycled again by CMA alloc.
This cycle repeats until the object enters the ASan quarantine
zone via a standard free. As ASan does not poison the object
as a redzone in CMA free (due to its inability to identify
CMA free), both DF and UAF for object c3 are missed.
Furthermore, even if manual poisoning is performed in CMA
free using ASan manual poisoning API, the absence of a
quarantine zone can hinder the detection of UAF and DF
due to quick object reuse to achieve temporal locality in
CMA, as discussed in §2.1.

2.3. Challenges of Applying Shim Mode

In-place realloc and clear API are the two illustrative
examples where applying the Shim mode to replace a CMA
with a standard allocator is challenging due to the lack of
direct 1:1 correspondence between the functions.

2.3.1. In-place Realloc. Typical realloc function adjusts the
size of a given object to the requested size, but it does not
guarantee that the resizing will occur in the same memory
location [26]. In contrast, in-place realloc is a function that
changes the size of a previously allocated object without
changing its memory location. For example, MicroPython’s
gc_realloc supports resizing in-place through user flags [27].
If gc_realloc is simply replaced by ASan-supported realloc,
and the object returned by realloc is allocated at a different
location than the old object, it can disrupt the program logic
and lead to false positives.

2.3.2. Clear APIs. In the case of Arena-type CMAs de-
scribed in §2.2, the clear API, which resets arena chunks
back to the beginning in one go, is frequently used. Among
the 54 Arena-type CMAs investigated, 20% are found to
utilize the clear API to initialize the Arena to the base pointer
or to collect each object internally. However, since objects
allocated by the CMA are deallocated all at once by resetting
the pointer to the Arena’s base pointer, it is difficult to apply
the Shim approach by simply replacing the clear API with
the standard allocator’s free API. This is because such a
replacement requires managing a list of allocated objects
and releasing them all at once.

For instance, examining the example of the Arena allo-
cator in folly [28] shown in Figure 2, objects are allocated
incrementally from the arena chunk initialized in the allocate
function as in Line 6 to 9 of the function allocate, by
adding the size to ptr_. Once the usage of all objects is
deemed complete, a clear API is used to reset ptr_ to start
in Line 5, allowing objects to be allocated from the base
of the arena. Therefore, the usage of objects after the clear
API operation should be flagged as UAF. However, since
the clear API does not directly translate to a libc equivalent
and cannot be simply replaced by free, applying a Shim
to recognize the deallocation of objects after a clear API
poses challenges. Indeed, among the CMAs investigated in
this study, Shim is not applied to clear APIs. Therefore, a
method to properly handle such clear APIs and detect related
UAF and DF is necessary.

3. Design

CMASan aims to detect memory bugs in applications that
utilize CMAs, by leveraging and extending ASan’s heap
memory bug detection capability. As shown in Figure 3, it
consists of five components. First, at static time, CMASan
identifies CMA APIs and categorizes them based on their
objectives using CodeQL-based CMA allocation API recog-
nition and a semi-automated categorization procedure (§3.1).
Next, CMASan instruments CMA APIs to insert redzones
around the objects and poison the objects after freeing, while
maintaining the internal logic of CMA (§3.2).

3
.2

.2
 F

re
e

Accessible (CMA-allocated)Poisoned Not allocated yet

3
.2

.1
 A

llo
c

BOF will be caughtBOF will be hidden

(a) Asan (b) CMASan

UAF will be caughtUAF will be hidden

size rz_sizesize

From ArenaFrom Arena

CMASan extends size to size+rz_size1

CMASan poisons the redzone2

CMASan poisons the object3

left redzoneCMA allocates the object

User requests an object

User returns the object

Figure 4: Visualization of CMASan instrumentation

At runtime, CMASan efficiently manages the additional
metadata required for detecting CMA memory bugs by
utilizing a two-level table. It also ensures proper handling
of the lifecycles of these metadata (§3.3). To enhance
UAF and DF detection capabilities, CMASan introduces
instance-specific quarantine zones to maximize the duration
of objects in the freed state. In addition, allocation zones
are implemented to support the detection of invalid access
following clear API calls (§3.4). Finally, CMASan avoids
several potential false positives that can arise from the various
internal logic of CMAs and the instrumentation itself (§3.5).

3.1. CMA Identification

To ensure CMASan identifies all CMAs in the target appli-
cation, we first recognize CMA allocator candidates using
CodeQL-based CMA allocation API recognition. We then
categorize these candidates and additional CMA-related
functions (e.g., realloc or clear) through our semi-automated
categorization procedure.

3.1.1. CodeQL-based CMA Allocation API Recognition.
To identify the allocation API candidates, we extend the
prototype-based rule in the HeuristicAllocationFunction
class offered by CodeQL [29]. This rule identifies CMA
allocation API candidates by checking for the presence of
the "alloc" keyword in the function name, whether it returns
a pointer, and whether it includes a size argument. However,
this rule cannot detect various forms of CMA allocation APIs,
such as those without the "alloc" keyword. To address this,
we additionally handle new keywords (e.g., acquire, memory)
based on our analysis of the top 100 C/C++ applications in
Github. While expanding the keyword set increases detection
coverage, it may also lead to the inclusion of non-CMA
functions. To filter out these non-CMA functions, we further
verify whether the size argument is used in comparison or

pointer operations to allocate the requested size internally
and whether the returned object is reachable from internal
CMA metadata storage.

3.1.2. Semi-automated Categorization Procedure. The
semi-automated categorization procedure first identifies alloc,
realloc, and calloc APIs from the allocation API candidates
by utilizing the size and pointer argument information and
tracking the flow of these arguments. Then, it groups the iden-
tified functions into families based on the source locations of
their definitions and collects other family functions defined
in the same module (source and header files). Finally, it
iterates through all functions in each CMA family to identify
free and clear APIs for UAF and DF detection, as well as
object accessing, size querying, and object collecting APIs
for false positive avoidance, as will be discussed in §3.5. To
facilitate this, CMASan implements Algorithm 1, detailed in
Appendix §A, within a script, enabling users to easily conduct
this semi-automated process based on the rules defined
in Table 6 in Appendix §A. More specifically, CMASan
provides users with the code of each function body along
with the corresponding rules to determine the type of that
function.

3.2. Instrumentation of primitive CMA APIs

CMASan instruments primitive CMA APIs (alloc, realloc,
and free) to secure the redzone space for detecting Buffer-
OverFlow (BOF) and poison (or unpoison) objects to detect
Use-After-Free (UAF) and Double-Free (DF). CMASan
carefully implements and places fine-grained, variable-sized
redzones without modifying CMA’s internal logic.

3.2.1. Alloc. Figure 4 shows an example of Arena type CMA
which internally allocates a large memory chunk first and
returns a smaller chunk of the requested size from this base

chunk. Since it only uses the standard memory allocator
for the allocation of the base chunk, ASan places redzones
solely around the base chunk, not individual CMA-allocated
objects. As a result, ASan could fail to detect Buffer-Overflow
(BOF) bugs for these CMA objects. Unfortunately, a naive
approach of poisoning around each CMA object would result
in overlapping redzones with adjacent objects. To handle this,
CMASan instruments the CMA allocation APIs by adjusting
the allocation size argument to be the given size plus the
redzone size (1 in Figure 4) and poison the redzone area
(2).

Note that we also handle calloc and typed alloc where
the arguments of those functions are not the memory size in
bytes (e.g., typed alloc’s input is the number of particular
data type objects to be allocated). In such cases, the requested
size is calculated as num ∗ granularity, where num is the
argument indicating the number of objects to be allocated,
and granularity is the object size derived from another
argument or the return type. To support calloc and typed
alloc, we add the redzone size to num, and the size of the
redzone is calculated by dividing the byte size of the redzone
by granularity. Additionally, when an object allocated by
alloc is freed through free API, CMASan requires the precise
size of the object for proper poisoning. To facilitate this,
CMASan stores the object’s size information in the metadata
at alloc.
Position of Redzones in CMASan. Unlike ASan, which in-
serts redzones on both sides of an allocated object, CMASan
only adds a redzone to the right side. This design choice is
due to existing CMA implementations often storing metadata
at the left side of the object. However, this does not mean
that CMASan misses left-side BOF; the right redzone of one
object naturally serves as the left redzone for the next object
to be allocated, as shown in Figure 4-(b).

3.2.2. Free. To detect the Use-After-Free (UAF) vulnerabil-
ities, CMASan poisons the freed object memory as redzone
(3 in Figure 4). On each CMA’s memory-free request,
CMASan retrieves metadata to identify the allocated memory
area (i.e., the base address and size, and CMASan’s metadata),
and then marks the state of corresponding shadow memory
as poisoned. To detect Double-Free (DF) vulnerabilities,
CMASan checks whether a memory-free request has the
same CMA instance information as a previous memory-free
request. Note that ASan detects the DF regardless of the
type of allocator/deallocator used. Unfortunately, this can
cause a problem in applications that utilize multiple CMAs,
where a memory object might be allocated and freed by
multiple different CMAs. In such cases, following ASan’s
approach could lead to false positive double-free detections.
For example, suppose that CMAa allocates an arena for
CMAb, and CMAb allocates an object from the start of
the arena. If CMAb frees the object and then CMAa frees
the arena, this would be incorrectly detected as a DF if the
instance information is not considered. To correctly detect
DF bugs after the memory is freed, we keep the CMA ID,
which could be the address of the CMA instance or an
assigned family ID as outlined in §3.1.2,

1110

0000

for 1 level for 2 level offset

0000

… …1111

…

1111

Lookup key
for 1st level

Lookup key
For 2nd level

Shadow
offset

1st level table 2nd level tables

1112

CMA
Instance

…0001

0 b 1 1 1 0 0 0 1 0 0 0 1

0010

Figure 5: Two-level table for efficient object tracking

3.2.3. Realloc. Realloc has two characteristics: it either
resizes the given object at the same memory location
(through in-place or general realloc), or it frees the given
object and allocates a new one of the requested size. To
distinguish between these two behaviors, CMASan compares
the address of the old object with the address of the newly
allocated object upon exit from the function (i.e., at the return
instructions). If the two addresses are the same, indicating
that the resizing occurred within the same memory location,
CMASan only poisons the right side of the memory, similar
to its allocation API instrumentation. If the addresses are
different, CMASan additionally poisons the old memory to
detect incorrect access to these objects. Note that CMASan
secures the redzone space for the resized object by adding
redzone size to the requested size, just as it does for the
allocation API.

3.3. CMA Object Tracking

CMASan introduces two different types of metadata: one
for each object and another for each CMA instance. This
section describes how CMASan efficiently maintains the
metadata for each object. The metadata for each CMA
instance, including the quarantine zone and the allocation
zone, will be explained in the next section (§3.4). For fast and
accurate detection of memory bugs related to CMA objects,
it is important to efficiently manage the metadata generated
by CMASan. To achieve this, we utilize and customize a
two-level table to store CMASan’s metadata. Additionally,
CMASan carefully manages the lifecycle of the metadata to
maximize its detection capability by removing the outdated
metadata properly.

3.3.1. On-demand Metadata Storage for CMA Objects.
CMASan uses a two-level table to keep track of the metadata
associated with the allocated object. Note that the two-
level table is also previously used by CFIXX [30] to
manage frequent allocations of polymorphic objects within
a small amount of area, which is a similar problem to
ours. Specifically, CMAs typically allocate an arena memory

. . .

. . .

. . .

Without
CMASan

QZ for CMA instance k

CMA FREE request on the object allocated by CMA instance k

R
e

cy
cl

in
g

Freed object

. . .

Delaying period (count)

1

Find the QZ for CMA instance k2

Poison the object
and push to the QZ

3 Pop the first-in object4

Free the first-in object instead5

Poisoned

Accessible (CMA-allocated)

Quarantine zone (QZ) for CMA instance

Figure 6: Overview of instance-specific free-delaying quarantine
zone

and repeatedly allocate and recycle objects; the allocation
happens within a relatively narrow memory address range.
Thus, allocating a second-level table on-demand for only
CMA-managed areas increases efficiency. For example, as
shown in Figure 5, if the address is 11-bits long, and first-
level table lookup keys, second-level table lookup keys, and
shadow offset are 4, 4, and 3 bits, respectively, and a CMA
instance uses memory in the address range [11100000000,
111200000000), CMASan will only need to maintain the
second-level tables corresponding to the lookup keys of the
first-level table, 1110 and 1111.

3.3.2. Handling Metadata Lifecycle. When the memory
allocated by a CMA is fully utilized and then returned to
the system, CMASan clears all related metadata to prevent
potential issues (e.g., using outdated metadata). In particular,
CMASan tracks a CMA object with the metadata from the
CMA allocation. This metadata is removed from a two-
level table if the object’s memory region is no longer valid
(e.g., CMAs destroy the arena or objects). This removal
ensures that CMASan does not retain outdated metadata.
Such collision-free metadata management helps CMASan
distinguish standard objects from CMA objects based on
the presence of metadata, aiding in false positive suppres-
sion §3.5.1 and information tracking in bug reports.

3.4. Enhance UAF and DF Detection

With only the instrumentation of primitive APIs, CMASan
cannot detect UAF and DF bugs that occur a significant
time after the free or clear API calls. To enhance UAF and
DF detection, CMASan introduces quarantine zones and
allocation zones without changing the internal logic of the
CMA. These zones are instance-specific to accommodate
applications that contain multiple CMAs.

3.4.1. Instance-specific Free-delaying Quarantine Zone.
As the freed object will be unpoisoned when it is allocated as
another object at the same location, CMASan cannot detect
subsequent UAF and DF after the recycling. However, it
does not mean that UAF and DF are no longer present. For
instance, if a pointer p1 points to an object o1, and the object
is freed and recycled as o2, p1 could still persist, pointing
to o2. In this setup, any further access to p1 constitutes a
UAF bug, as p1 could read from or write to o2. Thus, it is
important to monitor the freed objects for an extended time to
prevent the freed objects from being prematurely recycled. To
improve the detection of UAF and DF, CMASan intentionally
delays the recycling of freed objects. This allows for a longer
detection window during which memory accesses to these
objects that could lead to violations are more likely to be
identified.
Free-delaying. ASan delays object recycling by imple-
menting a quarantine zone. When a memory deallocation
is requested, ASan adds these requested objects to the
quarantine zone, preventing objects within this zone from
being directly recycled as other objects. If the quarantine
zone reaches its capacity, ASan frees the objects from the
zone.

Unlike ASan, which uses its own internal allocator to
perform actual frees and delay reuses, CMASan delays
free requests by only marking them in the redzone without
actually freeing them, thus not altering the allocator’s logic.
Specifically, when a CMA receives an object-free request,
CMASan queues the free request instead of processing it
directly with the CMA, and it poisons the memory region
associated with the free request. This approach allows
CMASan to monitor any subsequent incorrect accesses or
free requests on freed objects, thus detecting potential UAF
or DF. CMASan holds these CMA free requests until the
quarantine zone reaches capacity. Once this occurs, CMASan
begins to delay incoming free requests along with removing
a request from the free request queue and forwarding it to
the CMA to free up space. The capacity of the quarantine
zone is determined by both the size in bytes and the number
of objects to accommodate the variable sizes of objects.
Importantly, CMASan’s quarantine zone includes a free
request queue, where it stores free request information (e.g.,
object address and size). This strategy is only applied to
internal free APIs, not to realloc APIs, because realloc retains
the content of the given object.
Instance Specific. Different CMA implementations can have
notably different patterns in memory deallocation and differ-
ent metadata for objects. However, using a single quarantine
zone for all different CMAs can lead to several side effects.
For example, freeing an object allocated by a CMA with a
free API of another CMA can cause metadata corruption or
undefined behavior (e.g., invalid free). Therefore, CMASan
provides an individual quarantine zone for each CMA to
ensure that memory objects allocated by different CMAs do
not collide.

The overall operation of the quarantine zone is summa-
rized in Figure 6: 1 On a CMA free request for an object
allocated by a specific CMA instance (e.g., k), CMASan

intercepts this free request instead of sending it directly to
the CMA. 2 CMASan finds the corresponding quarantine
zone that contains target objects from target CMA instance
k. 3 To detect UAF and DF, CMASan steals and poisons
the object before the free call, and pushes it to the quarantine
zone. If the quarantine zone is full, CMASan proceeds to
steps 4 and 5 , otherwise, it stops here. 4 CMASan pops
the first-in object from the quarantine zone, and 5 the
popped object is passed to the free function instead of the
original object that is in the last-in position in the quarantine
zone. In this way, CMASan successfully delays the actual
free on an object, while sequentially freeing the oldest object
for memory efficiency.

3.4.2. Instance-specific Allocation Zone for Clear APIs.
To detect UAF and DF on objects freed by clear APIs,
as discussed in §2.3.2, CMASan must first identify which
objects are requested to be freed by these clear APIs.
To this end, CMASan stores each allocated object in the
corresponding instance-specific allocation zone. When a clear
API is invoked, it marks all objects in the target zone as
freed. The necessity for an instance-specific allocation zone
is similar to that of a quarantine zone, as the target program
can contain multiple CMAs.

3.5. False Positive Avoidance

CMASan manages redzones without replacing existing
CMAs with ASan’s internal memory allocators. Although this
approach preserves the internal behavior of CMAs, it could
lead to false positives, for example, when accessing metadata
on freed objects. This section explains how CMASan avoids
these potential false positives.

3.5.1. Call Stack-based Suppression. After CMASan
poisons the object freed by CMA, other CMA internal
codes can access these objects for operations, such as data
flushing or logging. For example, retaining metadata on
freed objects is a common design choice, as exemplified
by glibc’s ptmalloc [31]. Note that those accesses are
legitimate while being detected as violations (i.e., false
positives). To avoid a similar issue, ASan maintains an ignore
list [32] to eliminate ASan checks in those functions causing
false positives. However, this approach makes it difficult to
handle more complicated cases where the common functions
under CMAs might also be used elsewhere. Consequently,
removing ASan checks from those functions could lead
to false negatives. Instead, CMASan automatically extracts
all the addresses of the CMA-related functions and uses
those addresses to filter false positives. Specifically, when a
memory corruption is detected by CMASan, it inspects the
call stack of the execution to check whether a CMA-related
function appears on the stack. If it does, CMASan ignores
the detection result.

3.5.2. Call Stack-based Activation. CMA’s realloc API can
be implemented by combining alloc and free APIs. Moreover,
alloc and free APIs can also be invoked in a nested manner. If

we activate the instrumentations for all the APIs that can be
called in a nested way, it may result in false positive reports
of DF bugs in nested free calls. Similarly, nested alloc calls
with different sizes may unnecessarily increase the redzone’s
size. Additionally, if we instrument only the inner alloc
and free instead of realloc itself, CMASan would miss cases
where realloc resizes an old object without invoking any inner
free or alloc calls. Hence, when nested CMA API calls are
detected, CMASan activates the instrumentation only for the
outermost CMA call while disabling the instrumentation for
all inner CMA calls (i.e., child functions). For this, CMASan
inspects the call stack for every instrumentation and activates
it only when no CMA function is present in its call stack. In
particular, for the realloc implemented as a combination of
alloc and free, CMASan’s instrumentation of alloc and free
will not activate, and only the outermost instrumentation in
realloc will handle poisoning the given object and securing
the redzone area.

3.5.3. Size Leakage Avoidance. CMAs often include
size querying APIs, such as sqlite3DbMallocSize() from
SQLite3 [33], which return the size of a given object. Since
CMASan adds the redzone size to the program-requested
size at allocation, these APIs would return a larger size,
including the redzones CMASan poisons. In such cases, the
program could access memory beyond its requested size,
potentially triggering false positive detections of BOF bugs.
To handle this, since a program expects an object of the
size that it initially requested to be allocated from a CMA,
CMASan instruments these size-querying APIs to return the
original, safely accessible memory size that applications had
initially requested.

3.5.4. Object-collecting API Handling. Although CMASan
intercepts the object before the free calls, these objects can
still be forcibly recycled if CMA employs object-collecting
APIs (e.g., garbage collector), which collects a part of
allocated objects under specific conditions. This could lead
to unexpected behavior as CMASan will request a free on
already-freed or invalid objects. To address this, CMASan
empties the corresponding quarantine zone when object-
collecting APIs are called.

4. Implementation

CMASan is implemented on the top of Address Sanitizer
of LLVM version 15.0.6. The total lines of code (LoC) is
around 3,000. Additionally, we develop CMA Identification
on top of CodeQL version 2.18.2.

4.1. CMA API Instrumentation

4.1.1. Implicit granularity inference. To infer the granular-
ity of typed alloc, which implicitly provides the allocation
granularity by the return type, CMASan extracts and records
the type size from the data layout during the instrumentation
of alloc API. However, LLVM 15 enables the opaque pointer

TABLE 1: The result of CMA object and family analysis.

Application CMA Object Analysis CMA Family Analysis
CMA Objects Base Chunks Freed Objects load/store Checks (Ratio) Candidates Identified Arena Recycler Max. CMA Instances

gRPC 623,109,396 30,462,031 10,107,363 242,237,783,898 (11.61%) 37 4 4 3 14,599
PHP 66,431,503 144,425 39,204,885 9,710,058,737 (30.02%) 49 7 7 3 30,754
Redis 26,867,307 77 26,846,482 4,353,464,117 (42.93%) 12 2 2 1 1
folly 1,087,644 3865 1,058,373 19,827,983 (0.06%) 12 6 5 3 32
MicroPython 839,561 957 110,415 467,351,689 (9.79%) 9 1 1 1 1
ncnn 95,741 1,176 95,741 55,053,014,784 (87.15%) 14 2 2 2 2
cocos2d-x 29,504 86 2,926 20,861,206 (0.71%) 16 6 6 0 15
Swoole 704 2 64 123,346 (0.01%) 18 4 3 2 1
Taichi 468 188 55 6,443,346 (0.00%) 10 3 2 2 2
RocksDB 97,101,151 4,844,394 - 32,875,914,933 (4.46%) 13 2 2 0 30,256
TensorFlow 92,900 10,539 - 231,364,292 (1.77%) 153 14 13 5 25,715
Godot 298 33 - 8,426 (0.00%) 62 9 8 2 33

feature [34], which eliminates the type information for the
pointer and makes our implicit granularity inference difficult.
As a solution, we build LLVM 15 without the opaque pointer
feature for the implicit granularity inference, which only
affects compiler analysis performance.

4.1.2. Avoiding Inlining for CMAs. Developers commonly
choose to inline CMA APIs for optimization purposes.
However, since the inline pass of LLVM precedes ASan pass,
this inline optimization of CMA APIs results in omitting
CMASan’s instrumentations. To handle this, we traverse the
Clang Abstract Syntax Tree (AST) and annotate CMAs to
forcefully prevent the CMA functions from being inlined.

4.2. CMA Object Tracking

Since CMAs can recycle a freed object or clear the arena and
reuse it from the start address, collisions can occur between
the existing metadata and the newly allocated metadata.
In such cases, CMASan overwrites the metadata for the
newly allocated object while retaining the metadata on the
remaining freed object region that does not overlap with the
newly allocated object. This implementation allows CMASan
to detect bugs from both the newly allocated object and the
remaining freed object region.

4.3. Enhancing UAF and DF Detection

4.3.1. Implicit Instance Inference. In §3.1.2, CMASan
categorizes each CMA family based on the CMA definition to
support instance-specific Quarantine and Allocation zones. To
facilitate this, we automatically infer the instance information
from specific CMAs that are defined as C++ classes or structs,
as these instances can be implicitly identified. To recognize
this implicit instantiation, CMASan utilizes the feature of
LLVM IR, which places the class (or structure) instance
as the method’s first argument. In the Clang AST, when
the CMA API is identified as a CXX Method Declaration,
CMASan uses the first argument as the instance argument if
no explicit instance argument is recognized from the CMA
identification process.

4.3.2. Quarantine Zone and Allocation Zone. Since both
the Quarantine and the Allocation zones require memory
that accumulates over time, a size limit is necessary. For the
Quarantine zone, we set the default size limit as 256KB like
ASan, and the default object count limit as 8,192. Regarding
the Allocation zone, CMASan tracks up to 10,000 recently
allocated objects by default. Note that these constraints are
determined empirically and can be adjusted by users.

4.4. Call stack-based Avoidance

To enable false positive suppression as discussed in §3.5,
CMASan checks for the presence of a CMA in the call
stack at runtime. To implement this, CMASan extracts the
start and end addresses of the CMA functions from the
target binary and libraries at the program start-up using
llvm-objdump [35], and checks whether each frame pointer
in the call stack falls within the pre-extracted CMA function
address range. However, if a CMA is in a shared library, the
address of the function will be changed after the library is
actually loaded. Thus, CMASan resolves the addresses of
CMAs in shared libraries by inspecting the dynamic libraries
loaded by default and intercepting every dlopen.

5. Evaluation

In this section, we evaluate CMASan on five aspects: de-
tection coverage (§5.2), performance overhead (§5.3), false
positive avoidance (§5.4), bug detection capability (§5.5),
and real-world unknown bug finding (§5.6).

5.1. Evaluation Setup

All of our evaluations are conducted in the following
environment: a 32-core Intel(R) Core(TM) i9-13900KF CPU
with 128GB DDR4 RAM and an NVIDIA GeForce RTX
4090 GPU, running on Ubuntu 22.04.1 LTS (GNU/Linux
6.2.0).
Evaluation set. To evaluate detection coverage (§5.2),
performance overhead (§5.3), and false positive avoidance
(§5.4), we select the top 30 GitHub repositories ranked by
stars for both C and C++, totaling 60 repositories. Then,

TABLE 2: Performance and memory overhead of CMASan
compared to ASan.

Application Performance Overhead (%) Memory Overhead (%)

gRPC 3.55 10.99
PHP 21.76 7.85
Redis 9.50 33.46
folly 9.39 3.16
MicroPython 3.15 4.93
ncnn 22.44 99.09
cocos2d-x 0.13 1.02
Swoole 4.64 0.68
Taichi 2.27 0.43
RocksDB 2.81 5.90
TensorFlow 28.80 9.80
Godot 7.13 0.68
Average 9.63% 14.83%

we select 12 repositories as our final evaluation target
repositories, which meet the following criteria: (1) buildable
using the Clang version used to implement CMASan (i.e.
Clang 15.0.6), (2) utilizes at least one CMA, and (3) provides
workloads (e.g., unit test or benchmark).
Comparison target preparation. For a pair comparison, we
utilize ASan included in LLVM version 15.0.6 to implement
CMASan. Both ASan and CMASan are built using the
recommended options [36] (-fno-omit-frame-pointer and
-fno-optimize-sibling-calls) and -O2 optimization option.
Additionally, version 3e073da of Goshawk [8] is used for
comparison.

5.2. Detection Coverage

In this evaluation, we evaluate CMASan against real-world
applications to verify that applying CMASan can indeed
increase the detection coverage compared to native ASan for
various CMA objects and operations. To do this, we measure
the number of CMA APIs and CMA objects used in each
target application and count the number of memory access
checks by CMASan on the CMA objects, as well as the
proportion of quarantine zone usage.

First, to measure this, we identify CMA alloc API
candidates (generated from CodeQL-based CMA allocation
API recognition §3.1.1) used by the target applications.
Then, we categorize these alloc candidates using our semi-
automated procedure, as mentioned in §3.1.2. For this target
categorization, using our predefined rule, an assigned person
spends approximately 10 minutes for each application to
manually categorize each CMA family function. This is a
one-time cost that only needs to be incurred once. It is an
additional step for increasing the accuracy of CMA memory
bug detection—specifically, reducing both false positives and
false negatives—by recognizing all relevant functions in a
CMA.

In Table 1, the number of CMA objects (CMA Objects
in Table 1) and base chunks (Base Chunk) indicates that
several CMA objects are generated from one base chunk.
This indicates that in the Arena pattern, a single large base
chunk is divided into multiple smaller objects. Additionally,

in the Recycler pattern, a single base chunk is reused as a
CMA object across multiple lifecycles.

The significant number of freed CMA objects
(Freed Objects) in nine applications indicates a high poten-
tial for UAF bugs and the importance of the Quarantine
zone. The load/store checks (and Ratio) in the table,
which measure the number of ASan checks associated with
CMA objects (and their proportion of load/store checks
related to CMA objects out of all load/store checks), reveal
that a significant number of checks are performed in all
programs (except Godot). This indicates that many CMA-
related memory accesses are not verified by ASan but can
be checked through CMASan. For further details on the total
number of load/store checks, please refer to Appendix
§C.2.

As shown in Table 1, applications commonly use Arena
(Arena in Table 1) and Recycler (Recycler) patterns, which
ASan does not handle. We also find that some CMA
families utilize a combination of Arena and Recycler. For
instance, gRPC utilizes a total of 4 different CMA families,
all utilizing Arena-type CMAs, with 3 of these families
also using Recycler-type CMAs. The Identified column
under CMA Family Analysis in Table 1 denotes the number
of CMAs at static time, and Max. CMA Instances refers to
their number at runtime. A CMA family can be defined in
the form of a class or structure, allowing multiple creations
(i.e., even with a single definition, multiple instances can
exist at runtime). For instance, in gRPC, 4 CMA families are
generated 14,599 times during our evaluation.

5.3. Performance Overhead

In this evaluation, we measure the additional overhead
generated by CMASan compared to ASan. To do this, we
utilize the wall time provided by each benchmark and unit
test. If wall time is not provided, we measure the time
using the /usr/bin/time -v command. Memory overhead is
assessed by measuring the peak resident set size to determine
the maximum usage of physical memory.

Table 2 shows the performance and memory overhead of
CMASan. The average overhead of CMASan is 1.096 times
(performance overhead) and 1.148 times (memory overhead)
compared to ASan, showing a minor increase in overhead.
However, ncnn and Redis have notably higher memory
overhead, which is due to the relatively higher percentage
of total memory usage accounted for by CMA in these
two applications. This is caused by the allocation of large
CMA objects, leading to an increased demand to save related
information to the CMASan metadata table. Additionally,
the delayed freeing of CMA objects due to our quarantine
zone (i.e., need to secure additional new memory regions)
also contributes to the memory overhead observed in ncnn
and Redis. Additionally, PHP and TensorFlow show relatively
high-performance overhead compared to other applications
due to our use of CMASan’s FP Avoidance approach based
on call stack tracing. Applications like TensorFlow and PHP
have higher overhead than other programs because of the
need to suppress many false positives. This performance

TABLE 3: False positive rates without and with FP Avoidance. The
percentages (%) represent the ratio of workloads that failed due
to false positives, and the fraction next to the percentage indicates
the number of failed workloads relative to the total number of
workloads ((# of failed workloads)/(# of total workloads)).
crashed indicates that target test applications are terminated due
to false positives before the test.

Application Without FP Avoidance With FP Avoidance

gRPC 10.68% (110/1030) 0%
MicroPython 32.32% (298/922) 0%

Redis crashed 0%
PHP crashed 0%

TensorFlow crashed 0%

and memory overhead also arise from additional processing
by CMASan, which manages the CMA-related metadata
table and shadow memory of CMA objects—tasks that
ASan does not handle. For example, ncnn shows both high
performance and memory overhead due to the allocation and
use of large CMA objects, which can incur relatively high
metadata management and poisoning overhead. Note that
ASan itself incurs 2.01 times memory overhead compared to
native applications, mainly due to the large shadow memory.
CMASan, which builds on top of this, adds an extra 14.83%
memory overhead to the ASan’s 2.01 times overhead (i.e.,
2.31 times memory overhead compared to native).

5.4. False Positive Avoidance

In this section, we evaluate the effectiveness of CMASan’s
false positive avoidance approaches (§3.5). For this evalua-
tion, we disable all CMASan’s four false positive avoidance
approaches (from §3.5.1 to §3.5.4) mentioned in §3.5. As
shown in Table 3, 5 out of 12 applications show false
positives, while CMASan successfully suppress all these false
positives. Three applications (Redis, PHP, and TensorFlow)
are terminated due to false positives before the test. Addi-
tionally, gRPC reports false positives in 110 out of 1030 tests
(10.68%), and MicroPython reports false positives in 298
out of 922 tests (32.32%).

We analyze the main reasons for these false positives.
First, four applications, except for TensorFlow, access the
redzone area due to metadata-related operations, such as
freed segment management, data flush, and logging. These
false positives can be prevented by enabling CMASan’s
call stack-based suppression feature (§3.5.1). Additionally,
since PHP implements realloc as a combination of alloc and
free, activating our instrumentation for both realloc and free,
results in false positive DF detection, which can be prevented
through CMASan’s call stack-based activation mentioned
in §3.5.2. CMAs in Redis and PHP provide size querying
APIs that return the size of objects, including redzone
sizes. As a result, they access beyond the program-requested
size, leading to BOF false positives that can be prevented
through the size leakage avoidance approach (§3.5.3). Lastly,
MicroPython, PHP, and Tensorflow utilize object-collecting
APIs (e.g., garbage collector). Thus, our quarantine zone

TABLE 4: Known CMA (shim) bugs from PHP and ImageMagick.

Bug ID Application Type ASan CMASan

Issue 11028 PHP BOF ✗ ✓
Issue 10581 PHP UAF ✗ ✓
CVE-2015-2787 PHP UAF ✗ ✓
CVE-2019-13307 ImageMagick BOF ✗ ✓
Issue 1714 ImageMagick BOF ✗ ✓
CVE-2019-17541 ImageMagick UAF ✗ ✓
Issue 1621 ImageMagick BOF ✗ ✓
Issue 1644 ImageMagick BOF ✗ ✓
CVE-2018-8804 ImageMagick DF ✗ ✓
CVE-2021-3962 ImageMagick UAF -> DF ✗ ✓

frees objects already freed (collected) by CMAs, leading
to false positive DF detection. These issues can also be
prevented through CMASan’s object-collecting API-aware
false positive avoidance approach (§3.5.4).

5.5. Bug Detection Capability

In this section, we evaluate whether CMASan accurately
detects existing CMA memory bugs. Due to the absence of
proper CMA memory bug detection approaches, most known
memory bugs are not related to CMA. Therefore, with our
best effort, as shown in Table 4, we collect ten existing
CMA bugs previously reported in PHP and ImageMagick.
These bugs consist of BOF, UAF, and DF. The notation
UAF->DF indicates that the DF bug occurs following a UAF
bug. All these CMA memory bugs are detected through the
ASan Shim logic.

For this evaluation, we perform the bug detection ca-
pability evaluation in two configurations: one with ASan’s
Shim logic disabled and the other with CMASan applied
and Shim logic disabled. As shown in Table 4, when Shim
is disabled, ASan fails to adequately detect CMA memory
bugs. However, CMASan successfully detected all known
CMA memory bugs. This evaluation highlights CMASan’s
effectiveness in detecting existing CMA bugs without the
necessity of manually implementing separate Shim logic.

5.6. Real-world Unknown Bug Detection

We apply CMASan to various real-world applications, in-
cluding calculator (qhull), parser (RapidJSON), and database
(SQLite3) that contains CMAs to evaluate its capability to
detect new unknown bugs. As a result, as shown in Table 5,
we identify 19 previously unknown bugs from seven applica-
tions. Specifically, the bugs in MicroPython and one of the
bugs in PHP are discovered through fuzzing using the AFL++
with CMASan, while other bugs are detected during unit
tests. We report all 19 bugs to their corresponding project
developer. As of the time of this paper’s writing, twelve of
these have been confirmed, and six have been patched and
assigned CVE IDs.

We compare these bugs with existing works, ASan and
Goshawk, to check whether they also detect these bugs under
the same conditions. ASan is unable to detect CMA bugs
as it does not handle Arena and Recycler CMA patterns

TABLE 5: Unknown bugs detected by CMASan (A: Arena, R: Recycler).

ID Bug ID Application CMA Pattern Bug Type Status CMASan Asan Goshawk

1 CVE-2023-7152 MicroPython A+R UAF patched & CVE ✓ ✗ ✗
2 CVE-2023-7158 MicroPython A+R BOF patched & CVE ✓ ✗ ✗
3 CVE-2024-8946 MicroPython A+R BOF patched & CVE ✓ ✗ ✗
4 CVE-2024-8947 MicroPython A+R UAF patched & CVE ✓ ✗ ✗
5 CVE-2024-8948 MicroPython A+R BOF patched & CVE ✓ ✗ ✗
6 Issue #13004 MicroPython A+R BOF reported ✓ ✗ ✗
7 Issue #13046 MicroPython A+R BOF patched ✓ ✗ ✗
8 Issue #13220 MicroPython A+R BOF reported ✓ ✗ ✗
9 Issue #13428 MicroPython A+R BOF reported ✓ ✗ ✗

10 Issue #136-1 qhull A+R UAF confirmed ✓ ✗ ✗
11 Issue #136-2 qhull A+R UAF confirmed ✓ ✗ ✗
12 PR #2213 RapidJSON A BOF reported ✓ ✗ ✗
13 PR #2244 RapidJSON A UAF reported ✓ ✗ ✗
14 PR #2256 RapidJSON A UAF reported ✓ ✗ ✗
15 CVE-2023-7104 SQLite3 A+R BOF patched & CVE ✓ ✗ ✗
16 Issue #13230 PHP A+R UAF confirmed ✓ ✗ ✗
17 GHSA-rwp7-7vc6-8477 PHP A+R UAF confirmed ✓ ✗ ✗
18 Issue #8501 Taichi A+R BOF reported ✓ ✗ ✗
19 Issue #5734 ncnn A+R BOF confirmed ✓ ✗ ✗

as mentioned in §2.2. More specifically, the allocators in
MicroPython, SQLite3, PHP, qhull, Taichi and ncnn employ
Arena and Recycler CMA patterns that are difficult for ASan
to address. As for RapidJSON, it uses the Arena CMA pattern
and the clear API. As described in §2.3.2, the clear API is
a difficult type for ASan to address, even when utilizing its
Shim or ASan manual poisoning API. However, CMASan
detects two UAF CMA memory bugs (Bugs ID 13 and 14)
that occurred after clear API is used to access freed chunks,
as well as a BOF (Bug ID 12) that is obscured by the Arena
CMA pattern.

In the case of Goshawk, it does not support BOF detection
and only handles UAF and DF detection. However, all
Goshawk’s UAF and DF detection failed due to the following
four main reasons: (1) failed CMA API detections (Bug IDs
10 and 11), (2) limited clear API UAF detection (Bug IDs 13
and 14), (3) not treating realloc as free by design (Bug IDs
1 and 4), and (4) complex paths that are difficult to manage
(Bug ID 16 and 17). More specifically, in failing CMA
API detection (case 1), Goshawk’s NLP initially classifies
it correctly as a candidate but then removes it during the
subsequent verification process. Regarding complex paths
that are difficult to manage (case 4), they can not handle
target paths due to the considerable distance between free
and access operations.

These unknown bugs detected through CMASan show
the effectiveness of the CMASan’s internal approaches, such
as quarantine zone and clear API handling. For example, in
the case of MicroPython bug (Bug ID 1) and qhull bug (Bug
ID 11), they are not detected if the Quarantine zone is not
applied. This is because the CMA immediately reallocates
the chunk after freeing it, making it impossible to detect the
UAF bug without a Quarantine zone (i.e., without delay).

Furthermore, as expected, unique CMA patterns, such
as clear API, are not sufficiently tested in practice. In our
evaluation, by handling the clear API of RapidJSON’s Arena
CMA, two bugs (Bug IDs 13 and 14) are detected. Although
these bugs have been consistently triggered during their unit
test and perftest, these bugs remained undetected due to the
lack of handling for the clear API. These cases demonstrate

the importance of CMASan, which is able to be aware of
and test both the Arena and the clear API.

While Shim requires expert knowledge and manual
effort from developers, SQLite3 and PHP have successfully
implemented Shim testing despite the complex relationship
of the Lookaside allocator and Zend allocator with the DB
and zend heap context. Even with the implementation of
Shim for CMA, ASan is unable to detect CMA bugs because
developers accidentally failed to activate the Shim in certain
sections. For example, we find SQLite3 (Bug ID 15) bugs
that have been present in testing workloads for nine years and
a PHP bug (Bug ID 16) that is also triggered by their testing
workloads and undetected for two years. This highlights that
even if Shim is applied to CMA, additional manual Shim
configurations are needed, and failing this step could lead
to false native, However, CMASan is able to automatically
test all CMAs without the manual effort of applying Shim.
Moreover, apart from Shim applied CMAs in SQLite3 and
PHP, we discover additional uncovered CMAs (by Shim) in
SQLite3 and PHP: one pcache in SQLite3 and six others in
PHP.

6. Discussion

Manual analysis. Although CMASan does not require an
understanding of the target program and its CMAs, nor does
it need manual code modifications to the target programs, the
CMA identification process within CMASan does involve
some manual analysis (one-time cost) to categorize CMA
APIs. Testers can bypass this manual analysis by directly
providing the CMA API lists to CMASan (e.g., by referring
to official documents or directly using the CodeQL results).
However, we recommend using our CMA identification
process to ensure all CMAs in the repository are accurately
recognized. Although this is not our main contribution, to
assist users in the quick and accurate categorization of CMA
APIs, CMASan provides a script that implements the rules
in Table 6 and procedures in Algorithm 1 described in the
Appendix.

Size Modification. CMASan preserves the logic of CMAs.
However, there is one exception: when allocating a CMA
object, CMASan modifies the size to be larger than requested
to secure space for the redzone. This approach, which returns
a size larger than requested, can lead to side effects. However,
in our evaluation with twelve real-world applications, only
three show minor side effects. More specifically, PHP and Re-
dis show false positives due to access based on the increased
size returned by size querying APIs, which CMASan can
avoid using CMASan’s size leakage avoidance technique as
mentioned in §3.5.3. RocksDB optimizes the database based
on the total allocation size, so CMASan’s size increment
affects optimization performance, leading to some unit test
failures (resolvable by adjusting thresholds or redzone size).
This alteration, however, only affects performance and does
not compromise the application’s correctness.
CMA Internal Bugs. While our false positive suppression
(§3.5.1) helps CMASan operate accurately, it may miss CMA
internal bugs. CMASan aims to detect memory bugs on
objects allocated by applications through CMAs. Therefore,
bugs occurring within the CMA are out of CMASan’s scope.
However, it is worth noting that CMASan can detect such
internal CMA bugs by turning off false positive suppression
(with halt_on_error=0).
Performance-critical Application Testing. CMASan incurs
approximately 1.92 times performance overhead compared
to native. More specifically, the performance overhead from
ASan itself (about 1.752x) combined with the additional
performance overhead from CMASan (around 1.096x) results
in a total of about 1.92 times performance overhead. Such
performance overhead can cause side effects during the
testing of performance-critical applications. To measure
these side effects, we test our 12 selected evaluation tar-
get applications and two additional performance-sensitive
applications (e.g., Nginx, SQLite3) through manual or unit
tests. However, CMASan’s performance overhead does not
cause any special issues except for a few PHP unit tests. These
failed PHP test cases are due to timeouts caused by ASan
and CMASan’s performance overhead, but after adjusting
these test configurations, all test cases passed successfully.

7. Related Work

CMA Memory bug detection techniques are classified into
static bug detection approaches [7–11] that utilize symbolic
execution for bug detection and dynamic bug detection
approaches [12, 17, 37] that perform runtime detection
through additional instrumentation or code modification.
Static CMA Memory Bug Detectors. HOTracer [7]
is a CMA out-of-range memory bug detection approach
for binary-only programs. After defining the patterns of
CMA allocator functions (e.g., the return value is a heap
pointer), HOTracer identifies any function matching at least
one of these patterns as a candidate for CMA allocator.
HOTracer then identifies pairs of suspicious heap operations
(i.e., allocation, access) and verifies them through symbolic
execution. Heapster [10] is designed to identify CMA internal

bugs (not bugs in CMA utilizing applications) in monolithic
firmware images. Heapster identifies allocator and deallocator
APIs through static analysis that starts with basic memory
operations, such as memcpy. After defining malicious allocator
behavior (e.g., chunks overlapping), Heapster uses symbolic
execution to detect CMA internal bugs. NLP-EYE [11]
leverages an NLP-based approach for identifying CMA
APIs. Then, it uses symbolic execution to check whether a
memory operation leads to incorrect memory usage, such
as null pointer dereference, UAF, or DF. Goshawk [8] and
Sparrowhawk [9], similar to NLP-EYE, utilize NLP [38], to
identify CMA APIs and further enhance accuracy through
additional static analysis verification. Goshawk is able to
detect UAF and DF bugs except for BOF and realloc-related
UAF and DF bugs (due to limited realloc modeling).

All mentioned approaches commonly utilize symbolic ex-
ecution for CMA memory bug detection. However, symbolic
execution is unable to detect all types of memory bugs in
large and complex programs due to its inherent limitations,
such as path explosion and the limited handling of complex
data structures and real-world input. Since CMASan is the
ASan-based approach that performs runtime checks, It does
not suffer from the same limitation as symbolic execution,
thereby allowing for the identification of all CMA bugs in
large and complicated programs.

Dynamic CMA Memory Bug Detectors. ASan [12], the
most widely used approach to detect memory bugs, is limited
to detecting CMA memory bugs, as ASan only handles the
standard library allocator and memory bugs related to the
object allocated from it. Therefore, the Shim [13] approach
and ASan manual poisoning API [15] have been proposed
to detect CMA memory bugs through ASan. This Shim
technique allows users to replace the CMA allocator with
the standard memory allocator. If CMA’s internal logic is
identical to that of the standard memory allocator, a Shim
approach to detect CMA bugs would be appropriate. CMA,
however, has various internal logic, unlike the standard library
allocator, such as inplace-realloc, which assigns an object
to a fixed address, or the clear API, which frees all objects
at once. This makes direct mapping with certain functions
of the standard allocator challenging. However, CMASan,
without the challenging or impossible requirement of directly
mapping to the standard memory allocator, maintains and
handles the unique logic of CMA, thus identifying all types
of CMA memory bugs.

The ASan Manual Poisoning APIs support manual poison-
ing through the insertion of __asan_poison_memory_region
and __asan_unpoison_memory_region APIs by users into
appropriate parts of the code according to the lifecycle of
CMA while maintaining CMA’s logic. However, using these
APIs requires code modifications and expert knowledge of the
target program and CMA. For example, in the case of Arena
CMA, users need to manually modify CMA to secure redzone
areas. Additionally, traditional ASan utilizes a Quarantine
zone to delay the freeing of objects for a certain period, thus
increasing the chance of detecting UAF and DF memory
bugs. However, when using the ASan manual poisoning API

while maintaining the original logic of CMA, the Quarantine
zone cannot be directly utilized without modifying CMA to
delay object-free, making the detection of CMA’s DF and
UAF memory bugs difficult.

Valgrind [39] is a widely used framework for detect-
ing memory bugs. However, Valgrind occurs around 10
times more overhead [40] compared to ASan and has
limited detection coverage (e.g., Valgrind cannot detect
stack out-of-bounds, global out-of-bounds, and use-after-
return) than ASan. Nevertheless, unlike ASan, Valgraind
is able to detect memory bugs in binary-only programs.
Similarly to ASan’s manual poisoning API, Valgrind pro-
vides specialized APIs such as VALGRIND_DESTROY_MEMPOOL,
VALGRIND_MEMPOOL_ALLOC, and VALGRIND_MEMPOOL_FREE to
detect CMA memory bugs.

However, like ASan’s Manual Poisoning API, these APIs
have limitations, including the need for expert knowledge
and limited CMA bug detection capabilities. The API-
based methods provided by ASan and Valgrind, including
ASan’s Shim, all require expert knowledge and manual
source code modifications. Due to these inconveniences,
most programs do not apply these APIs or Shim approaches
(for example, only 5 out of the top 100 C/C++ applications
based on Github stars fully utilize them). However, because
CMASan preserves the CMA logic and performs automatic
instrumentation at compile time, it eliminates the need for
additional effort and expert knowledge for manual code
modification.

8. Conclusion

The custom memory allocator is widely used in real-world
applications and is also exposed to the same memory
vulnerabilities as the standard memory allocator. However,
existing CMA memory bug detection approaches do not
properly perform due to several restrictions, including limited
detection capability, the requirement for manual code modi-
fications, and the necessity for expert knowledge. This paper
proposes the first CMA-aware Address Sanitizer, CMASan,
by understanding and preserving the various and unique
internal logic of CMA, effectively detects all types of
CMA-related memory bugs without needing expert knowl-
edge or manual code modifications. Our evaluation shows
that CMASan identifies 19 new unknown CMA memory
bugs, previously undetected by native ASan. Additionally,
CMASan, compared to native ASan, only occurs 9.63%
performance overhead. The open-source version of CMASan
is available at https://github.com/S2-Lab/CMASan.

Acknowledgement

This work was supported by a Korea Internet & Security
Agency (KISA) grant funded by the Korean government
(PIPC) (No. 1781000003). This work was also supported by
the MSIT (Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support
program (IITP-2024-2021-0-01817) supervised by the IITP

(Institute for Information & Communications Technology
Planning & Evaluation). This work was also supported by
the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (RS-2024-00341722, RS-2024-00437306
and RS-2024-00341722, Development of Cyber Resilience
Method for Intelligent Service Robots, Development of Inte-
grated Platform for Expanding and Safely Applying Memory-
Safe Languages, and AI-Based Automated Vulnerability
Detection and Safe Code Generation). This work was also
supported by NSF (2426653 and 2427783). We gratefully
acknowledge their support.

References

[1] Alan Kelly, “Simpleperf case study: Fast initialization
of TFLite’s Memory Arena,” https://blog.tensorflow.org/
2023/08/simpleperf-case-study-fast.html, 2023.

[2] Google, “C++ Arena Allocation Guide,” https://
protobuf.dev/reference/cpp/arenas/.

[3] “Zend Memory Manager,” https:
//www.phpinternalsbook.com/php7/
memorymanagement/zendmemorymanager.html/,
2017.

[4] Volker Hilsheimer, “A fast and thread-safe pool alloca-
tor for Qt - Part 1,” https://www.qt.io/blog/a-fast-and-
thread-safe-pool-allocator-for-qt-part-1, 2019.

[5] OpenSSL, “OPENSSL secure malloc,”
https://www.openssl.org/docs/man1.1.1/man3/
OPENSSLsecuremalloc.html.

[6] T. B. Ferreira, R. Matias, A. Macedo, and L. B. Araujo,
“An experimental study on memory allocators in mul-
ticore and multithreaded applications,” in 2011 12th
International Conference on Parallel and Distributed
Computing, Applications and Technologies. IEEE,
2011, pp. 92–98.

[7] X. Jia, C. Zhang, P. Su, Y. Yang, H. Huang, and D. Feng,
“Towards efficient heap overflow discovery,” in 26th
USENIX Security Symposium (USENIX Security 17),
2017, pp. 989–1006.

[8] Y. Lyu, Y. Fang, Y. Zhang, Q. Sun, S. Ma, E. Bertino,
K. Lu, and J. Li, “Goshawk: Hunting memory corrup-
tions via structure-aware and object-centric memory
operation synopsis,” in 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 2022, pp. 2096–
2113.

[9] Y. Lyu, W. Gao, S. Ma, Q. Sun, and J. Li,
“Sparrowhawk: Memory safety flaw detection via
data-driven source code annotation,” in Information
Security and Cryptology: 17th International Conference,
Inscrypt 2021, Virtual Event, August 12–14, 2021,
Revised Selected Papers. Berlin, Heidelberg: Springer-
Verlag, 2021, p. 129–148. [Online]. Available:
https://doi.org/10.1007/978-3-030-88323-27

[10] F. Gritti, F. Pagani, I. Grishchenko, L. Dresel, N. Redini,
C. Kruegel, and G. Vigna, “Heapster: Analyzing the
security of dynamic allocators for monolithic firmware
images,” in 2022 IEEE Symposium on Security and

https://github.com/S2-Lab/CMASan
https://blog.tensorflow.org/2023/08/simpleperf-case-study-fast.html
https://blog.tensorflow.org/2023/08/simpleperf-case-study-fast.html
https://protobuf.dev/reference/cpp/arenas/
https://protobuf.dev/reference/cpp/arenas/
https://www.phpinternalsbook.com/php7/memory_management/zend_memory_manager.html/
https://www.phpinternalsbook.com/php7/memory_management/zend_memory_manager.html/
https://www.phpinternalsbook.com/php7/memory_management/zend_memory_manager.html/
https://www.qt.io/blog/a-fast-and-thread-safe-pool-allocator-for-qt-part-1
https://www.qt.io/blog/a-fast-and-thread-safe-pool-allocator-for-qt-part-1
https://www.openssl.org/docs/man1.1.1/man3/OPENSSL_secure_malloc.html
https://www.openssl.org/docs/man1.1.1/man3/OPENSSL_secure_malloc.html
https://doi.org/10.1007/978-3-030-88323-2_7

Privacy (SP). IEEE Computer Society, 2022, pp.
1559–1559.

[11] J. Wang, S. Ma, Y. Zhang, J. Li, Z. Ma, L. Mai, T. Chen,
and D. Gu, “Nlp-eye: Detecting memory corruptions
via semantic-aware memory operation function identifi-
cation,” in 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID), 2019, pp.
309–321.

[12] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov, “{AddressSanitizer}: A fast address sanity
checker,” in 2012 USENIX annual technical conference
(USENIX ATC 12), 2012, pp. 309–318.

[13] “Unified allocator shim,” https://
chromium.googlesource.com/chromium/src/base/
+/master/allocator/README.md.

[14] Hanno Böck, “Custom Memory allocators,” https://
fuzzing-project.org/tutorial-malloc.html.

[15] Google, “Address Sanitizer Manual Poisoning,”
https://github.com/google/sanitizers/wiki/
AddressSanitizerManualPoisoning.

[16] P. C. Amusuo, R. A. C. Méndez, Z. Xu, A. Machiry,
and J. C. Davis, “Systematically detecting packet
validation vulnerabilities in embedded network stacks,”
in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2023,
pp. 926–938.

[17] K. K. Bozdoğan, D. Stavrakakis, S. Issa, and P. Bha-
totia, “Safepm: A sanitizer for persistent memory,” in
Proceedings of the Seventeenth European Conference
on Computer Systems, 2022, pp. 506–524.

[18] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu,
and I. Finocchi, “A survey of symbolic execution
techniques,” ACM Computing Surveys (CSUR), vol. 51,
no. 3, pp. 1–39, 2018.

[19] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert,
P. Larsen, and M. Franz, “Sok: Sanitizing for security,”
in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 1275–1295.

[20] Dmitry Vyukov, “Address/thread/memorysanitizer
slaughtering c++ bugs,” https://www.slideshare.net/
sermp/sanitizer-cppcon-russia.

[21] Google, “Address sanitizer found bugs,”
https://github.com/google/sanitizers/wiki/
AddressSanitizerFoundBugs.

[22] Z. Y. Ding and C. Le Goues, “An empirical study of
oss-fuzz bugs,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR),
2021, pp. 131–142.

[23] GitHub, “CodeQL,” https://codeql.github.com/.
[24] Tencent, “ncnn,” https://github.com/Tencent/ncnn.
[25] Google, “Address Sanitizer Algorithm,”

https://github.com/google/sanitizers/wiki/
AddressSanitizerAlgorithm.

[26] cppreference.com, “realloc,” https://
en.cppreference.com/w/c/memory/realloc.

[27] “MicroPython,” https://micropython.org/.
[28] “An open-source C++ library developed and used at

Facebook,” https://github.com/facebook/folly.

[29] GitHub, “Class HeuristicAllocationFunction,”
https://codeql.github.com/codeql-standard-libraries/
cpp/semmle/code/cpp/models/interfaces/Allocation.qll/
type.Allocation$HeuristicAllocationFunction.html.

[30] N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cfixx:
Object type integrity for c++ virtual dispatch,” in
Symposium on Network and Distributed System Security
(NDSS), 2018.

[31] “MallocInternals,” https://sourceware.org/glibc/wiki/
MallocInternals.

[32] “Sanitizer special case list,” https://releases.llvm.org/
15.0.0/tools/clang/docs/SanitizerSpecialCaseList.html.

[33] “Dynamic Memory Allocation In SQLite,” https://
www.sqlite.org/malloc.html.

[34] LLVM, “Opaque Pointers,” https://releases.llvm.org/
15.0.0/docs/OpaquePointers.html.

[35] ——, “llvm-objdump - LLVM’s object file
dumper,” hhttps://llvm.org/docs/CommandGuide/
llvm-objdump.html.

[36] “Clang 15.0.0 documentation AddressSanitizer,”
https://releases.llvm.org/15.0.0/tools/clang/docs/
AddressSanitizer.html.

[37] “Memcheck: a memory error detector,”
https://valgrind.org/docs/manual/mc-manual.html#mc-
manual.mempools.

[38] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and
R. Shah, “Signature verification using a" siamese" time
delay neural network,” Advances in neural information
processing systems, vol. 6, 1993.

[39] N. Nethercote and J. Seward, “Valgrind: a framework
for heavyweight dynamic binary instrumentation,” ACM
Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007.

[40] “AddressSanitizer Comparison Of MemoryTools,”
https://github.com/google/sanitizers/wiki/
AddressSanitizerComparisonOfMemoryTools.

https://chromium.googlesource.com/chromium/src/base/+/master/allocator/README.md
https://chromium.googlesource.com/chromium/src/base/+/master/allocator/README.md
https://chromium.googlesource.com/chromium/src/base/+/master/allocator/README.md
https://fuzzing-project.org/tutorial-malloc.html
https://fuzzing-project.org/tutorial-malloc.html
https://github.com/google/sanitizers/wiki/AddressSanitizerManualPoisoning
https://github.com/google/sanitizers/wiki/AddressSanitizerManualPoisoning
https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://codeql.github.com/
https://github.com/Tencent/ncnn
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://en.cppreference.com/w/c/memory/realloc
https://en.cppreference.com/w/c/memory/realloc
https://micropython.org/
https://github.com/facebook/folly
https://codeql.github.com/codeql-standard-libraries/cpp/semmle/code/cpp/models/interfaces/Allocation.qll/type.Allocation$HeuristicAllocationFunction.html
https://codeql.github.com/codeql-standard-libraries/cpp/semmle/code/cpp/models/interfaces/Allocation.qll/type.Allocation$HeuristicAllocationFunction.html
https://codeql.github.com/codeql-standard-libraries/cpp/semmle/code/cpp/models/interfaces/Allocation.qll/type.Allocation$HeuristicAllocationFunction.html
https://sourceware.org/glibc/wiki/MallocInternals
https://sourceware.org/glibc/wiki/MallocInternals
https://releases.llvm.org/15.0.0/tools/clang/docs/SanitizerSpecialCaseList.html
https://releases.llvm.org/15.0.0/tools/clang/docs/SanitizerSpecialCaseList.html
https://www.sqlite.org/malloc.html
https://www.sqlite.org/malloc.html
https://releases.llvm.org/15.0.0/docs/OpaquePointers.html
https://releases.llvm.org/15.0.0/docs/OpaquePointers.html
hhttps://llvm.org/docs/CommandGuide/llvm-objdump.html
hhttps://llvm.org/docs/CommandGuide/llvm-objdump.html
https://releases.llvm.org/15.0.0/tools/clang/docs/AddressSanitizer.html
https://releases.llvm.org/15.0.0/tools/clang/docs/AddressSanitizer.html
https://valgrind.org/docs/manual/mc-manual.html#mc-manual.mempools
https://valgrind.org/docs/manual/mc-manual.html#mc-manual.mempools
https://github.com/google/sanitizers/wiki/AddressSanitizerComparisonOfMemoryTools
https://github.com/google/sanitizers/wiki/AddressSanitizerComparisonOfMemoryTools

Appendix A.
Rules and Algorithms for CMA Categorization

Algorithm 1: CMA API categorization algorithm
Input :PALLOC

PALLOC ← a set of ALLOC candidates;
Output : V

1 Initialize a map V with the key loc and the entry {func,
type, id};

2 foreach function f and location l ∈ PALLOC do
3 if f satisfies Rsize then
4 Annotate the size argument of f ;
5 if f has an additional size argument then
6 Annotate the granularity argument of f ;
7 Insert <l, {f , CALLOC, −1}> to V ;
8 end
9 else if f resizes a given object then

10 Annotate the object argument of f ;
11 Insert <l, {f , REALLOC, −1}> to V ;
12 end
13 else
14 Insert <l, {f , ALLOC, −1}> to V ;
15 end
16 end
17 end
18 id← 0 ;
19 foreach key l and entry E ∈ V do
20 if E.id == −1 then
21 E.id← id ;
22 For E.func, collect a family function set F by

Rfamily ;
23 foreach function ff and location ll ∈ F do
24 if V has ll with entry EE then
25 EE.id = id ;
26 end
27 else if ff satisfies Robject then
28 Annotate the object argument of f ;
29 Insert <ll, {ff , FREE, id}> to V ;
30 end
31 else if ff satisfies Rclear then
32 Insert <ll, {ff , CLEAR, id}> to V ;
33 end
34 else if ff satisfies one of type T in Rfp then
35 Annotate the object argument of f if any;
36 Insert <ll, {ff , T , id}> to V ;
37 end
38 end
39 end
40 id← id+ 1;
41 end
42 foreach entry E ∈ V do
43 if E.func satisfies Ruleinstance then
44 Annotate the instance argument of E.func;
45 end
46 end

Appendix B.
Pseudo Code of Metadata Management

CMASan utilizes the same redzone-based poisoning
approach as ASan. However, the information available from

Algorithm 2: Pseudo code of metadata management in
alloc, free, and ASan check functions.

Data: ObjectInfo: ptr, size, rz_size, status, cid,
alloc_trace, free_trace

1 Function at_alloc_exit(ptr, size, rz_size, cid):
2 create a new ObjectInfo info;
3 set ptr, size, rz_size, cid in info;
4 update info.alloc_trace;
5 info.status← ALLOCATED;
6 insert info into the two-level table;
7 poison the redzone for the range

[ptr + size, ptr + size+ rz_size);
8 ;
9 Function at_free_entry(ptr, cid):

10 lookup info by ptr from the two-level table;
11 if info exists then
12 if info.status == FREED and info.cid

== cid then
13 report double free error;
14 end
15 update info.free_trace;
16 info.status← FREED;
17 poison the redzone for the range

[ptr, ptr + info.size);
18 end
19 ;
20 Function asan_check(region):
21 if region is poisoned then
22 if region has associated ObjectInfo info

then
23 use info for bug report;
24 end
25 else
26 use default ASan info for bug report;
27 end
28 end

shadow memory alone is insufficient for detecting CMA
memory bugs. To address this, additional metadata—such
as object size and redzone size (for poisoning freed ob-
jects), allocation status and CMA instance information (for
UAF/DF detection), and alloc/free traces (for bug tracing)—is
managed in the CMASan’s two-level metadata table as
shown in Algorithm 2. At the exit of allocation functions
(at_alloc_exit), CMASan creates a chunk (info) and stores
the start address (ptr), object size (size), redzone size
(rz_size), and CMA ID (cid) in this chunk, then sets the
allocation status to ALLOCATED. This chunk is stored in a two-
level table spanning the object’s address range (Lines 1-7).
At the entry of free functions (at_free_entry), CMASan
retrieves the metadata from the two-level table using the
object’s address (Line 10). If the allocation status is already
FREED and the metadata has the same CMA ID, it reports a
double free (Lines 12-14). Otherwise, CMASan updates the
allocation status to FREED and poisons the object region using
the size information from the metadata (Lines 15-18). When

TABLE 6: Rules for the CMA validation

Rulesize
(size argument)

There is an integer (size) argument used for the object allocation by:
(a) Pointer arithmetic (including array indexing)
(b) Comparison with internal metadata
If the product of two arguments satisfies the above rules, one argument is size, and the other is granularity.

Rulefamily

(family matching) The given two functions are defined in the same source file, spanning both header and source files.

Ruleobject
(object argument) There is a pointer argument to be stored in the internal storage, which is used for allocating an object in the matched ALLOC candidates

Ruleclear
(Clear API) It destroys the CMA family by releasing all the resources the CMA allocated or resets the base pointer to the first position.

Rulefp
(false positives)

Object accessing API: The given function accesses objects allocated by the CMA family
Size querying API: The given function receives an object argument and returns the size of the object
Object collecting API: The given function collects the objects into internal structures under specific conditions (i.e., reference counting).

Ruleinstance

(instance argument) There is an argument that serves as the source for the internal storage, responsible for storing and providing the object

checking the validity of memory accesses (asan_check), if a
memory bug is detected, the memory access address is used
to determine whether it is related to an object managed by
the two-level table (Line 22). If so, corresponding metadata
is extracted and used (Line 23) to generate the bug report
(Lines 20-28).

Appendix C.
Additional Evaluation Results

C.1. Memory Overhead

TABLE 7: Aggregated peak resident set size of CMASan and
ASan for each workload.

Application CMASan (MB) ASan (MB) # process

gRPC 2,199,582 1,981,835 9189
PHP 553,752 513,460 14121
Redis 3,115 2,334 70
folly 72,104 69,898 3047
MicroPython 16,232 15,469 957
ncnn 2,025 1,017 1
cocos2d-x 1,357 1,343 1
Swoole 369 367 2
Taichi 87,349 86,975 339
RocksDB 1,216,685 1,148,862 11463
TensorFlow 2,754 2,508 1
Godot 3,326 3,303 1

Table 7 shows the resident set size (RSS) measured and
aggregated from all processes (i.e., # process) executed
while running the given workload for each application
with CMASan and ASan applied. CMASan does not incur
significantly more memory overhead compared to ASan. The
main reason is that the most memory-consuming 2nd-level
table (128MB per table) is allocated on demand. Note that
the 1st-level table only requires 64MB of memory.

C.2. Load/store Checks

TABLE 8: Number of load/store checks on CMA objects and all
objects.

Application CMA Object load/store Checks All load/store Checks

gRPC 242,237,783,898 2,086,871,852,186
PHP 9,710,058,737 32,346,399,996
Redis 4,353,464,117 10,141,977,621
folly 19,827,983 34,224,267,807
MicroPython 467,351,689 4,762,795,646
ncnn 55,053,014,784 63,169,000,513
cocos2d-x 20,861,206 2,921,250,379
Swoole 123,346 960,544,384
Taichi 643,346 52,300,562,797
RocksDB 33,164,420,791 743,727,824,901
TensorFlow 231,364,292 13,075,270,979
Godot 8,426 279,604,507,191

C.3. Long-term Evaluation of False Positive Avoid-
ance

TABLE 9: Fuzzing test results (24 hours) for the fuzzer-supported
program.

Application # Fuzzers # Seeds FP ratio (%)

gRPC 11 2,380 0%
PHP 8 9,016 0%

RocksDB 1 374 0%

To evaluate whether false positives are consistently
suppressed by CMASan’s false positive avoidance features,
we additionally conduct long-term tests using a fuzzing
tool and check if false positives are consistently suppressed.
For this, we perform long-term fuzzing (i.e., 24 hours) on
three (i.e., gRPC, PHP, and RocksDB) of our 12 selected
target evaluation applications that offer fuzzing drivers (i.e.,
fuzzers) or seeds (i.e., # seeds) for fuzzing. As shown
in Table 9, the existing false positives in gRPC and PHP
observed in previous evaluation (Table 3) are still effectively
suppressed, and no additional false positives are observed
during this evaluation.

Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

CMASan is a novel memory bug detection tool specifi-
cally designed for applications using Custom Memory Allo-
cators (CMAs). Unlike existing tools, CMASan is tailored to
handle the unique characteristics of CMAs, ensuring accurate
detection without requiring code modifications. CMASan
efficiently tracks memory allocations, deallocations, and
accesses, identifying various memory bugs such as buffer
overflows, use-after-free, and double-free errors. Through
its advanced techniques, CMASan minimizes false positives
and provides a reliable solution for improving the security
and reliability of CMA-based software.

D.2. Scientific Contributions

• Development of the first CMA-aware address sanitizer
• Introduction of novel techniques for CMA-specific

memory bug detection
• Demonstration of improved detection capabilities in

real-world applications

D.3. Reasons for Acceptance

1) The paper addresses a critical gap in memory bug
detection tools by introducing the first CMA-aware
address sanitizer. This contribution is significant because
CMAs are widely used in various applications, and
existing tools often fail to adequately detect memory
bugs in these contexts.

2) Moreover, CMASan introduces innovative techniques
specifically tailored to handle the unique characteris-
tics of CMAs. These techniques, such as CMA API
identification, metadata management, quarantine zones,
and false positive suppression, demonstrate a deep
understanding of the challenges associated with CMA-
based memory bug detection.

D.4. Noteworthy Concerns

1) Compatibility: CMASan’s compatibility with a wide
range of CMAs and programming languages should be
thoroughly evaluated. While the paper has focused on
C/C++, its applicability to other languages or specialized
CMAs might require additional adaptations.

Appendix E.
Response to the Meta-Review

Since CMASan is developed based on ASan, it is
compatible with other languages supported by ASan (e.g.,
Rust) and can support different CMA patterns as well.
However, although the CodeQL used by CMASan supports
a wide range of languages, it does not yet support languages
(e.g., Rust) that ASan can be applied, requiring additional
work. In the case of different CMA pattern supporting,
besides the Arena and Recycler patterns, other CMA patterns
(e.g., logging allocators) also exist. However, most of these
CMA patterns are covered by ASan as their alloc and free
functions are essentially wrappers of the standard library’s
malloc/free functions. The remaining major patterns, Arena
and Recycler, which ASan cannot handle but CMASan
covers, are widely used in real-world applications, with 71%
of CMA-utilizing applications (among the top 100 programs
on GitHub) relying on these patterns. Although CMASan
currently covers most of the patterns that ASan does not,
we will leave the identifying and addressing new additional
patterns that CMASan does not currently cover as future
work.

	Introduction
	Background and Motivation
	Mechanism of Address Sanitizer
	CMA Patterns against ASan
	Challenges of Applying Shim Mode
	In-place Realloc
	Clear APIs

	Design
	CMA Identification
	CodeQL-based CMA Allocation API Recognition
	Semi-automated Categorization Procedure

	Instrumentation of primitive CMA APIs
	Alloc
	Free
	Realloc

	CMA Object Tracking
	On-demand Metadata Storage for CMA Objects
	Handling Metadata Lifecycle

	Enhance UAF and DF Detection
	Instance-specific Free-delaying Quarantine Zone
	Instance-specific Allocation Zone for Clear APIs

	False Positive Avoidance
	Call Stack-based Suppression
	Call Stack-based Activation
	Size Leakage Avoidance
	Object-collecting API Handling

	Implementation
	CMA API Instrumentation
	Implicit granularity inference
	Avoiding Inlining for CMAs

	CMA Object Tracking
	Enhancing UAF and DF Detection
	Implicit Instance Inference
	Quarantine Zone and Allocation Zone

	Call stack-based Avoidance

	Evaluation
	Evaluation Setup
	Detection Coverage
	Performance Overhead
	False Positive Avoidance
	Bug Detection Capability
	Real-world Unknown Bug Detection

	Discussion
	Related Work
	Conclusion
	Appendix A: Rules and Algorithms for CMA Categorization
	Appendix B: Pseudo Code of Metadata Management
	Appendix C: Additional Evaluation Results
	Memory Overhead
	Load/store Checks
	Long-term Evaluation of False Positive Avoidance

	Appendix D: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix E: Response to the Meta-Review

